

PR1000 THRU PR1600

VOLTAGE RANGE CURRENT

1000 **to** 1600 **Volt** 0.5 **Ampere**

FEATURES

- · Fast switching.
- · Low leakage
- · High forward surge current capability.
- High temperature soldering guaranteed: 260°C/10 seconds, 0.375" (9.5mm)lead length at 5 lbs (2.3kg) tension.

MECHANICAL DATA

- · Case: transfer molded plastic
- Epoxy: UL94V 0 rate flame retardant.
- Polarity: Color band denotes cathode end.
- Lead: Plated axial lead, solderable per MIL STD 202E method 208C
- Weight: 0.012 ounce, 0.33grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

- Ratings at 25°C ambient temperature unless otherwise specified
- Single phase, half wave, 60Hz, resistive or inductive load.
- For capacitive load derate current by 20%

1.0 (25.4) M I N .	.034 (0.9) .028 (0.7) DIA.
.205 (5.2)	107 (2.7) 080 (2.0) DIA.
1.0 (25.4) MIN.	
	DO-41

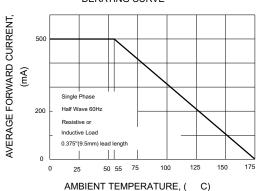
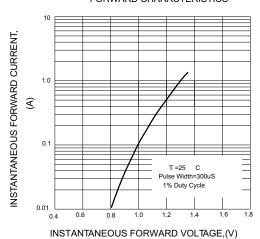
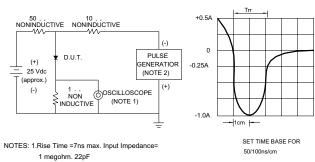
	SYMBOLS	PR1000	PR1200	PR1400	PR1600	UNIT
Maximum Repetitive Peak Reverse Voltage	V_{RRM}	1000	1200	1400	1600	Volts
Maximum RMS Voltage	V_{RMS}	700	840	980	1120	Volts
Maximum DC Blocking Voltage	V_{DC}	1000	1200	1400	1600	Volts
Maximum Average Forward Rectified Current, 0.375" (9.5mm) lead length at $T_A = 55^{\circ}C$	$I_{(AV)}$	500				
Peak Forward Surge Current 8.3ms single half sine - wave superimposed on rated load (JEDEC method)	I _{FSM}	20				
Maximum Instantaneous Forward Voltage Drop at 0.5 A	$V_{\rm F}$	1.5				
Maximum DC Reverse Current at rated DC blocking voltage at $T_A = 25^{\circ}C$	I_R	5.0				
Maximum Full Load Reverse current, full cycle average, 0.375" (9.5mm) lead length at $T_L = 55^{\circ}C$	$I_{R(AV)}$	100				
Maximum Reverse Recovery Time (Note 1)	t _{rr}	300				Ns
Typical Junction Capacitance (Note 2)	C_{J}	10				
Operating and Storage Temperature Range	T_{J}, T_{STG}	(-65 to +175)				

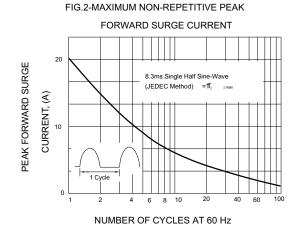
NOTES:

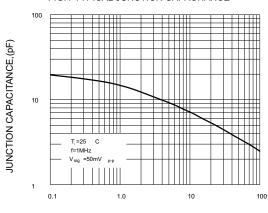
1.Test condition: $I_F = 0.5A$, $I_R = 1.0A$, $I_{RR} = 0.25A$

2.Measured at 1 MHz and applied reverse of 4.0 volts.

FIG.1-TYPICAL FORWARD CURRENT DERATING CURVE


FIG.3-TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS


FIG.5-TEST CIRCUIT DIAGRAM AND REVERSE RECOVERY TIME CHARACTERISTIC

2.Rise time=10ns max. Source Impedance= 50 ohms

FIG.4-TYPICAL JUNCTION CAPACITANCE

REVRESE VOLTAGE,(V)