
BCW60

NPN Silicon Epitaxial Planar Transistors

for general purpose switching and amplification.

These transistors are subdivided into three groups B, C and D, according to their current gain.

As complementary types the PNP transistors BCW61 are recommended.

1. Base 2. Emitter 3. Collector SOT-23 Plastic Package

Absolute Maximum Ratings (T_a = 25 °C)

Parameter	Symbol	Value	Unit	
Collector-Base Voltage	V _{CBO}	32	V	
Collector-Emitter Voltage	V _{CEO}	32	V	
Emitter-Base Voltage	V _{EBO}	5	V	
Collector Current	I _C	100	mA	
Peak Collector Current	I _{CM}	200	mA	
Peak Base Current	I _{BM}	200	mA	
Total Power Dissipation	P _{tot}	200	mW	
Junction Temperature	TJ	150	°C	
Storage Temperature Range	T _S	-65 to +150	°C	

Characteristics at T_a =25 °C

Parameter		Symbol	Min.	Тур.	Max.	Unit
DC Current Gain						
at $V_{CE} = 5 \text{ V}, I_{C} = 10 \mu\text{A}$	BCW60B	h_{FE}	20	-	-	-
	BCW60C	h_{FE}	40	-	-	-
	BCW60D	h_{FE}	100	-	-	-
at $V_{CE} = 5 \text{ V}$, $I_C = 2 \text{ mA}$	BCW60B	h_{FE}	180	-	310	-
	BCW60C	h_{FE}	250	-	460	-
	BCW60D	h_{FE}	380	-	630	-
at V_{CE} = 1 V, I_C = 50 mA	BCW60B	h_{FE}	70	-	-	-
	BCW60C	h_{FE}	90	-	-	-
	BCW60D	h_{FE}	100	-	-	-
Collector Saturation Voltage		V _{CEsat}	0.05	_	0.35	V
at $I_C = 10 \text{ mA}$, $I_B = 0.25 \text{ mA}$		V CEsat	0.05	_	0.55	V
Collector Saturation Voltage		V_{CEsat}	Esat 0.1	1	0.55	V
at $I_C = 50$ mA, $I_B = 1.25$ mA		▼ CEsat				
Base Saturation Voltage		V_{BEsat}	0.6	_	0.85	V
at $I_C = 10 \text{ mA}$, $I_B = 0.25 \text{ mA}$		▼ BEsat	0.0		0.00	•
Base Saturation Voltage		V_{BEsat}	0.7	_	1.05	V
at I_C = 50 mA, I_B = 1.25 mA		• BESat	0.7		1.00	•
Base-Emitter Voltage		$V_{BE(on)}$	0.55	_	0.75	V
at $I_C = 2$ mA, $V_{CE} = 5V$		• BE(OII)	0.00		0.70	
Collector Base Cutoff Current		I _{CBO}	_	_	20	nA
at V _{CB} = 32 V		_	_	_	20	μA
at V _{CB} = 32 V, T _j = 150 °C		I _{CBO}	_	-	20	μΑ
Emitter-Base Cutoff Current					00	A
at V _{EB} = 4 V		I _{EBO}	-	-	20	nA
Gain -Bandwidth Product		f _T	100	250	-	MHz
at $V_{CE} = 5 \text{ V}$, $I_{C} = 10 \text{ mA}$, $f = 100 \text{ MHz}$		'T	100	230	_	IVII IZ
Collector-Base Capacitance		C_CBO		1.7		pF
at V _{CB} = 10 V, f = 1 MHz		ОСВО	_	1.7	_	ρι
Emitter-Base Capacitance		C		11		pF
at V _{EB} = 0.5 V, f = 1 MHz		C_{EBO}		11		μ-
Noise figure	gure		NE	2	6	dB
at I_C = 200 μ A, V_{CE} = 5 V, R_S = 2 K Ω , f	=1 KHz, Δf=200Hz	IVI	-	۷	0	QD
Thermal Resistance, Junction to Ambi	ent	$R_{ heta JA}$	-	-	500 ¹⁾	K/W

¹⁾ Transistor mounted on an FR4 printed-circuit board.

SEMTECH ELECTRONICS LTD.

(Subsidiary of Sino-Tech International Holdings Limited, a company listed on the Hong Kong Stock Exchange, Stock Code: 724)

