

November 2007

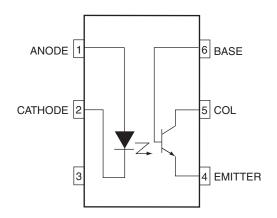
MCT5201M, MCT5210M, MCT5211M Low Input Current Phototransistor Optocouplers

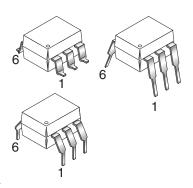
Features

- High CTR_{CE(SAT)} comparable to Darlingtons
- CTR guaranteed 0°C to 70°C
- High common mode transient rejection 5kV/µs
- Data rates up to 150kbits/s (NRZ)
- Underwriters Laboratory (UL) recognized, file #E90700, volume 2
- IEC60747-5-2 approved (ordering option V)

Applications

- CMOS to CMOS/LSTTL logic isolation
- LSTTL to CMOS/LSTTL logic isolation
- RS-232 line receiver
- Telephone ring detector
- AC line voltage sensing
- Switching power supply


Description


The MCT52XXM series consists of a high-efficiency AlGaAs, infrared emitting diode, coupled with an NPN phototransistor in a six pin dual-in-line package.

The MCT52XXM is well suited for CMOS to LSTT/TTL interfaces, offering 250% CTR_{CE(SAT)} with 1mA of LED input current. When an LED input current of 1.6mA is supplied data rates to 20K bits/s are possible.

The MCT52XXM can easily interface LSTTL to LSTTL/TTL, and with use of an external base to emitter resistor data rates of 100K bits/s can be achieved.

Schematic

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameters	Value	Units	
TOTAL DE	VICE	•	1	
T _{STG}	Storage Temperature	-55 to +150	°C	
T _{OPR}	Operating Temperature	-40 to +100	°C	
T _{SOL}	Lead Solder Temperature	260 for 10 sec	°C	
P _D	Total Device Power Dissipation @ 25°C (LED plus detector)	260	mW	
	Derate Linearly From 25°C	3.5	mW/°C	
EMITTER		•		
I _F	Continuous Forward Current	50	mA	
V _R	Reverse Input Voltage	6	V	
I _F (pk)	Forward Current - Peak (1 µs pulse, 300 pps)	3.0	А	
P _D	LED Power Dissipation	75	mW	
	Derate Linearly From 25°C	1.0	mW/°C	
DETECTO	₹			
I _C	Continuous Collector Current	150	mA	
P _D	Detector Power Dissipation	150	mW	
	Derate Linearly from 25°C	2.0	mW/°C	

Electrical Characteristics (T_A = 25°C unless otherwise specified)

Individual Component Characteristics

Symbol	Parameters	Test Conditions	Device	Min.	Тур.*	Max.	Units
EMITTER				•			
V _F	Input Forward Voltage	I _F = 5mA	All		1.25	1.5	V
ΔV_{F}	Forward Voltage Temp. Coefficient	I _F = 2mA	All		-1.75		mV/°C
ΔT_A							
V _R	Reverse Voltage	I _R = 10μA	All	6			V
CJ	Junction Capacitance	V _F = 0V, f = 1.0MHz	All		18		pF
DETECTO	R						
BV _{CEO}	Collector-Emitter Breakdown Voltage	I _C = 1.0mA, I _F = 0	All	30	100		V
BV _{CBO}	Collector-Base Breakdown Voltage	$I_C = 10\mu A, I_F = 0$	All	30	120		V
BV _{EBO}	Emitter-Base Breakdown Voltage	$I_C = 10\mu A, I_F = 0$	All	5	10		V
I _{CER}	Collector-Emitter Dark Current	$V_{CE} = 10V, I_F = 0,$ $R_{BE} = 1M\Omega$	All		1	100	nA
C _{CE}	Capacitance, Collector to Emitter	V _{CE} = 0, f = 1MHz	All		10		pF
C _{CB}	Capacitance, Collector to Base	V _{CB} = 0, f = 1MHz	All		80		pF
C _{EB}	Capacitance, Emitter to Base	V _{EB} = 0, f = 1MHz	All		15		pF

Isolation Characteristics

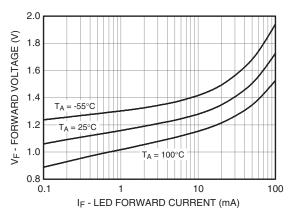
Symbol	Characteristic	Test Conditions	Device	Min.	Тур.*	Max.	Units
V _{ISO}	Input-Output Isolation Voltage ⁽¹⁰⁾	f = 60Hz, t = 1 sec.	All	7500			Vac(peak)
R _{ISO}	Isolation Resistance ⁽¹⁰⁾	V _{I-O} = 500 VDC, T _A = 25°C	All	10 ¹¹			Ω
C _{ISO}	Isolation Capacitance ⁽⁹⁾	V _{I-O} = 0, f = 1 MHz	All		0.4	0.6	pF
CM _H	Common Mode Transient	$V_{CM} = 50 V_{P-P1}, R_L = 750\Omega,$ $I_F = 0$	MCT5210M/11M		5000		V/µs
	Rejection – Output HIGH	$V_{CM} = 50 V_{P-P}, R_L = 1K\Omega,$ $I_F = 0$	MCT5201M				
CM _L	Common Mode Transient	$V_{CM} = 50 V_{P-P1}, R_L = 750 \Omega,$ $I_F = 1.6 \text{mA}$	MCT5210M/11M		5000		V/µs
	Rejection – Output LOW	V_{CM} = 50 V_{P-P1} , R_L = 1K Ω , I_F = 5mA	MCT5201M				

^{*}All typical $T_A = 25^{\circ}C$

$\textbf{Electrical Characteristics} \; (\texttt{Continued}) \; (\texttt{T}_{A} = 25 ^{\circ} \texttt{C} \; \text{unless otherwise specified})$

Transfer Characteristics

Symbol	Characteristics	Test Conditions		Device	Min.	Typ.*	Max.	Units
DC CHARA	CTERISTICS							_
CTR _{CE(SAT)}	Saturated Current	I _F = 5mA, V _{CE} = 0.4V		MCT5201M	120			%
,	Transfer Ratio ⁽¹⁾ (Collector to Emitter)	$I_F = 3.0 \text{mA}, V_{CE} = 0.4 \text{V}$		MCT5210M	60			
	(Collector to Little)	I _F = 1.6mA, V _{CE} = 0.4V		MCT5211M	100			
		I _F = 1.0mA, V _{CE} = 0.4V			75			
CTR _(CE)	Current Transfer Ratio	I _F = 3.0mA, V _{CE} = 5.0V		MCT5210M	70			%
	(Collector to Emitter) ⁽¹⁾	I _F = 1.6mA, V _{CE} = 5.0V		MCT5211M	150			
		I _F = 1.0mA, V _{CE} = 5.0V			110			
CTR _(CB)	Current Transfer Ratio	I _F = 5mA, V _{CB} = 4.3V		MCT5201M	0.28			%
	Collector to Base ⁽²⁾	I _F = 3.0mA, V _{CE} = 4.3V		MCT5210M	0.2			
		I _F = 1.6mA, V _{CE} = 4.3V		MCT5211M	0.3			
		I _F = 1.0mA, V _{CE} = 4.3V			0.25			
V _{CE(SAT)}	Saturation Voltage	I _F = 5mA, I _{CE} = 6mA		MCT5201M			0.4	V
, ,		I _F = 3.0mA, I _{CE} = 1.8mA		MCT5210M			0.4	
		I _F = 1.6mA, I _{CE} = 1.6mA		MCT5211M			0.4	1
AC CHARA	CTERISTICS				l			
T _{PHL}	Propagation Delay HIGH-to-LOW ⁽³⁾	R _L = 330 Ω, R _{BE} = ∞	I _F = 3.0mA,	= 5.0V 1.6mA, = 5.0V 1.0mA,		10		μs
		$R_L = 3.3 \text{ k}\Omega, R_{BE} = 39 \text{k}\Omega$	$V_{CC} = 5.0V$			7		
		R _L = 750 Ω, R _{BE} = ∞	I _F = 1.6mA, V _{CC} = 5.0V			14		
		$R_L = 4.7 \text{ k}\Omega, R_{BE} = 91 \text{k}\Omega$				15		
		R _L = 1.5 kΩ, R _{BE} = ∞	I _F = 1.0mA,			17		
		$R_L = 10 \text{ k}\Omega, R_{BE} = 160 \text{k}\Omega$	V _{CC} = 5.0V			24		
		$V_{CE} = 0.4V, V_{CC} = 5V,$ $R_{L} = \text{fig. } 13, R_{BE} = 330\text{k}\Omega$	I _F = 5mA	MCT5201M		3	30	
T _{PLH}	Propagation Delay LOW-to-HIGH ⁽⁴⁾	R _L = 330 Ω, R _{BE} = ∞	I _F = 3.0mA,			0.4		μs
		$R_L = 3.3 \text{ k}\Omega, R_{BE} = 39 \text{k}\Omega$	$V_{CC} = 5.0V$			8		
		R _L = 750 Ω, R _{BE} = ∞	I _F = 1.6mA,	MCT5211M		2.5		
		$R_L = 4.7 \text{ k}\Omega, R_{BE} = 91 \text{k}\Omega$	V _{CC} = 5.0V			11		
		$R_L = 1.5 \text{ k}\Omega, R_{BE} = \infty$	I _F = 1.0mA,			7		
		R_L = 10 kΩ, R_{BE} = 160kΩ	$V_{CC} = 5.0V$			16		
		$V_{CE} = 0.4V, V_{CC} = 5V,$ $R_{L} = \text{fig. } 13, R_{BE} = 330\text{k}\Omega$	I _F = 5mA	MCT5201M		12	13	
t _d	Delay Time ⁽⁵⁾	$V_{CE} = 0.4V, R_{BE} = 330k\Omega,$ $R_{L} = 1 k\Omega, V_{CC} = 5V$	I _F = 5mA	MCT5201M		1.1	15	μs
t _r	Rise Time ⁽⁶⁾	$V_{CE} = 0.4V, R_{BE} = 330k\Omega,$ $R_{L} = 1 k\Omega, V_{CC} = 5V$	I _F = 5mA	MCT5201M		2.5	20	μs
t _s	Storage Time ⁽⁷⁾	$V_{CE} = 0.4V, R_{BE} = 330 \text{ k}\Omega,$ $R_{L} = 1 \text{ k}\Omega, V_{CC} = 5V$	I _F = 5mA	MCT5201M		10	13	μs
t _f	Fall Time ⁽⁸⁾	$V_{CE} = 0.4V, R_{BE} = 330 \text{ k}\Omega,$ $R_{L} = 1 \text{ k}\Omega, V_{CC} = 5V$	I _F = 5mA	MCT5201M		16	30	μs


^{*}All typicals at $T_A = 25^{\circ}C$

Notes:

- 1. DC Current Transfer Ratio (CTR_{CE}) is defined as the transistor collector current (I_{CE}) divided by the input LED current (I_F) x 100%, at a specified voltage between the collector and emitter (V_{CF}).
- 2. The collector base Current Transfer Ratio (CTR_{CB}) is defined as the transistor collector base photocurrent(I_{CB}) divided by the input LED current (I_F) time 100%.
- 3. Referring to Figure 14 the T_{PHL} propagation delay is measured from the 50% point of the rising edge of the data input pulse to the 1.3V point on the falling edge of the output pulse.
- 4. Referring to Figure 14 the T_{PLH} propagation delay is measured from the 50% point of the falling edge of data input pulse to the 1.3V point on the rising edge of the output pulse.
- 5. Delay time (t_d) is measured from 50% of rising edge of LED current to 90% of Vo falling edge.
- 6. Rise time (t_r) is measured from 90% to 10% of Vo falling edge.
- 7. Storage time (t_s) is measured from 50% of falling edge of LED current to 10% of Vo rising edge.
- 8. Fall time (t_f) is measured from 10% to 90% of Vo rising edge.
- 9. C_{ISO} is the capacitance between the input (pins 1, 2, 3 connected) and the output, (pin 4, 5, 6 connected).
- 10. Device considered a two terminal device: Pins 1, 2, and 3 shorted together, and pins 5, 6 and 7 are shorted together.

Typical Performance Curves

Fig. 1 LED Forward Voltage vs. Forward Current

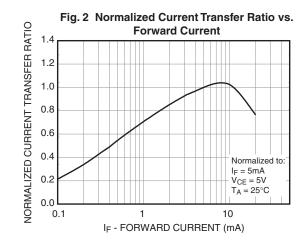


Fig. 3 Normalized CTR vs. Temperature

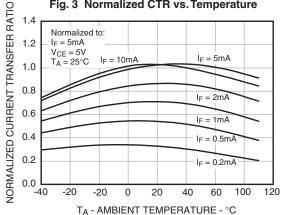


Fig. 4 Normalized Collector vs. Collector - Emitter Voltage

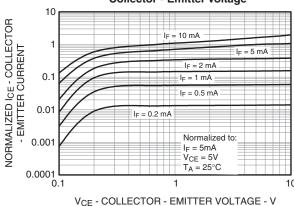
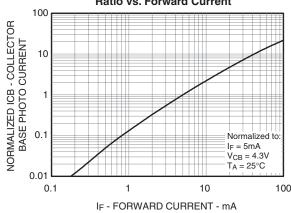
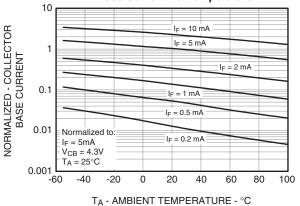
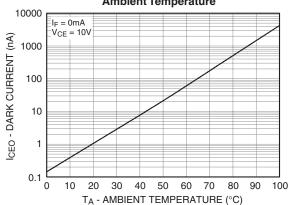
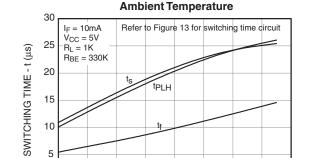


Fig. 5 Normalized Collector Base Photocurrent Ratio vs. Forward Current


Fig. 6 Normalized Collector -**Base Current vs. Temperature**

Typical Performance Curves (Continued)

Fig. 7 Collector-Emitter Dark Current vs.
Ambient Temperature

tPHL

40

TA - AMBIENT TEMPERATURE (°C)

20

0

-40

-20

Fig. 8 Switching Time vs.

Fig. 9 Switching Time vs. Ambient Temperature

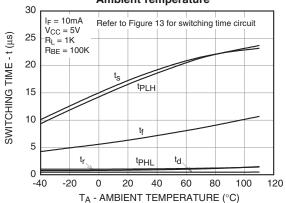


Fig. 10 Switching Time vs. Ambient Temperature

t_d

60

80

100

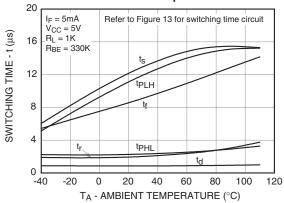


Fig. 11 Switching Time vs. Ambient Temperature

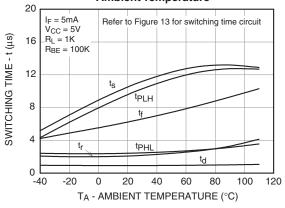
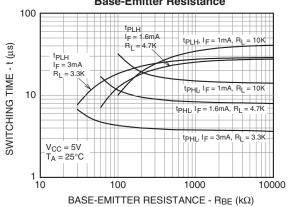



Fig. 12 Switching Time vs. Base-Emitter Resistance

Typical Electro-Optical Characteristics ($T_A = 25^{\circ}C$ unless otherwise specified

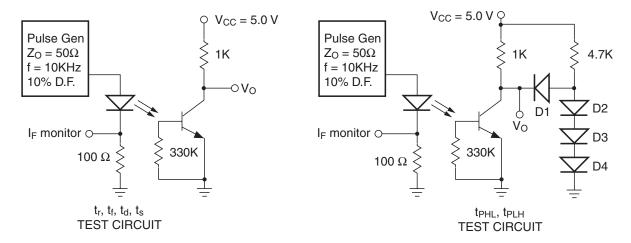
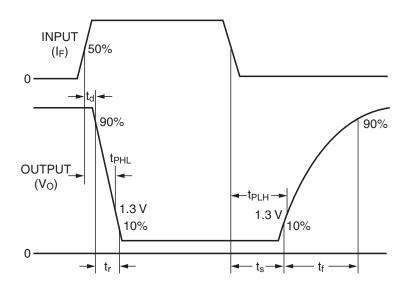
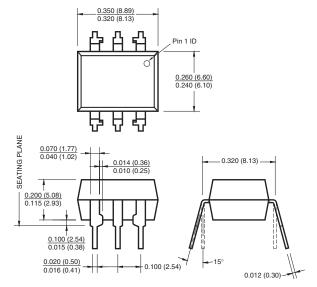
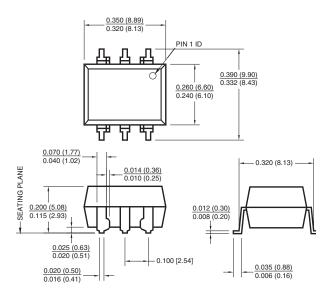
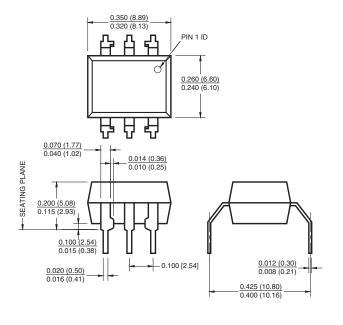


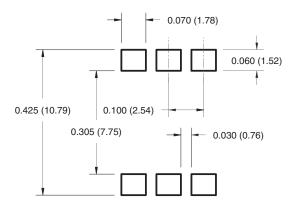
Figure 13.


Figure 14. Switching Circuit Waveforms

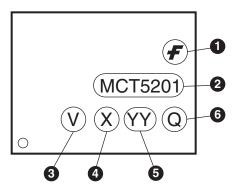
Package Dimensions


Through Hole


Surface Mount

0.4" Lead Spacing

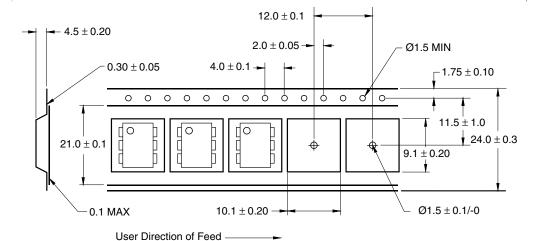
Recommended Pad Layout for Surface Mount Leadform

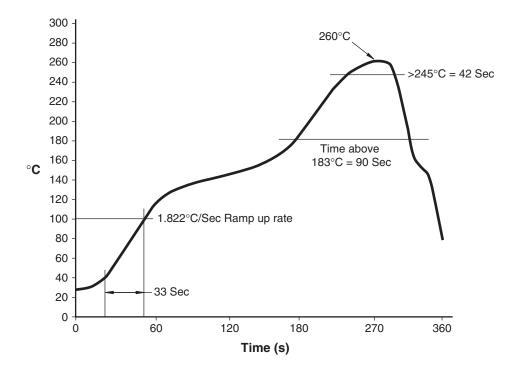

Note:

All dimensions are in inches (millimeters)

Ordering Information

Option	Order Entry Identifier (Example)	Description
No suffix	MCT5201M	Standard Through Hole Device (50 units per tube)
S	MCT5201SM	Surface Mount Lead Bend
SR2	MCT5201SR2M	Surface Mount; Tape and Reel (1,000 units per reel)
Т	MCT5201TM	0.4" Lead Spacing
V	MCT5201VM	IEC60747-5-2
TV	MCT5201TVM	IEC60747-5-2, 0.4" Lead Spacing
SV	MCT5201SVM	IEC60747-5-2, Surface Mount
SR2V	MCT5201SR2VM	IEC60747-5-2, Surface Mount, Tape and Reel (1,000 units per reel)


Marking Information


Definitions					
1	Fairchild logo				
2	Device number				
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)				
4	One digit year code, e.g., '7'				
5	Two digit work week ranging from '01' to '53'				
6	Assembly package code				

*Note – Parts that do not have the 'V' option (see definition 3 above) that are marked with date code '325' or earlier are marked in portrait format.

Carrier Tape Specification

Reflow Profile

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx® Green FPS™ Build it Now™ Green FPS™ e-Series™ CorePLUS™ GTO™ CROSSVOLT™ i-Lo™ CTL™ IntelliMAX™ Current Transfer Logic™ ISOPLANAR™ EcoSPARK® MegaBuck™ MICROCOUPLER™ Fairchild® MicroFET™ Fairchild Semiconductor® MicroPak™

FACT Quiet Series™

FACT®

FAST®

FastvCore™

FPS™

FRFET®

MillerDrive™

Motion-SPM™

OPTOLOGIC®

OPTOPLANAR®

PDP-SPM™

Global Power ResourceSM Power220[®]

Power247[®] POWEREDGE[®] Power-SPM™ PowerTrench[®]

Programmable Active Droop™ QFET® QS™

QT Optoelectronics™
Quiet Series™
RapidConfigure™
SMART START™
SPM®
STEALTH™
SuperFET™
SuperFET™
SuperSOT™-3

SuperSOT™-6

mer franchise
TinyBoost™
TinyBuck™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
μSerDes™
UHC®
UniFET™
VCX™

SuperSOT™-8

The Power Franchise®

SyncFET™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. I31