

Features

- . Stabilizes Power Supply Feedback Loop
- . Reduces Power Supply Signal Gain
- . Effective For Signals: 100<Hz to 100MHz
- . Effective Impedance for Power Supply Noise Signal:<1 Ohm
- . Low Energy Storage(Important For Safety Applications)
- Eliminates The Need For Series Ferrite Beads For Power Supply Filtering(Application Dependent)

The P103 Power Supply Damping Circuit(PSDC) suppresses high frequency noise on the DC power supply lines as well as reducing EMI rediated from the applications themselves. To achieve this the P103 provides a low impedance path from Vcc to GND for signals above 100KHz.

This device is designed to stabilize power supply resonance circuits in applications such as:

- Logic circuits
- Radio/TV frequency systems
- · High performance ADC and DAC
- Mixed signal applications

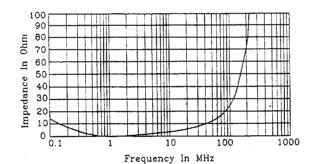
By connecting the V_{REF} input trough a series resistor to Vcc the PSDC impedance can be lowered further(Note:By exceeding the maximal allowable current consumption of 30mA the device may be damaged). When the V_{REF} input is connected to GND the PSDC will become inactive which is useful in high frequency test applications.

The PSDC functions as an AC coupled shunt regulator and can be paralleled to improve the performance of a system.

Absolute Maximum Ratings

Characteristics	Symbol	Rating	Units	
Power Supply Voltage	Vα	8	V	
Max Current Consumption	Icc	30	mA	
Max Reference Input Current	I _{REF}	4	mA	
Operating Ambient Temperature Range	TA	-20+125	.с	
Storage Temperature Range	Ts	- 55+150	.с	

P103 Ultra Low Impedance PSDC


DC Electrical Characteristics at TA=+25 C(unless otherwise noted)

			Limits			
Characteristics	Symbol	Test Conditions	Min	Тур	Max	Units
Supply Voltage	Vcc		4.5		5.5	V
Supply Current	Icc	Vcc=5V V _{REF} =OPEN	0.72	1.2	1.68	m.A
,		Vcc=5V V _{REF} =2.2KOhm to Vcc	6.2	10.4	14.5	mA
Reference Input Voltage	V_{REF}	V _{REF} =Open Circuit	1.3		1.9	V

AC Electrical Characteristics at T_A=+25 °C(unless otherwise noted)

Characteristics Sym		ol Test Conditions		Limits			
	Symbol		Min	Тур	Max	Units	
Supply Impedance Z _{VCC-VGND}		V _{REF} =Open f<1KHz	5K			Ohm	
		V _{REF} =Open f<10KHz	5K			Ohm	
	Z _{VCC-VGND}	V _{REF} =Open f=1MHz			80	Ohm	
		V _{REF} =Open f=10MHz			40	Ohm	
	V _{REF} =Open f=100MHz			45	Ohm		

PSDC Impedance versus Frequency

