

ISSUED 11/01/2007

High Efficiency Heterojunction Power FET

FEATURES

- Non-Hermetic Low Cost Ceramic 70mil Package
- +20.0 dBm Output Power at 1dB Compression
- 11.0 dB Power Gain at 18GHz
- Typical 0.75 dB Noise Figure and 12.5 dB Associated Gain at 12GHz
- 0.3 x 180 Micron Recessed "Mushroom" Gate
- Si₃N₄ Passivation
- Advanced Epitaxial Heterojunction Profile Provides Extra High Power Efficiency, and High Reliability

Caution! ESD sensitive device.

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

SYMBOL	PARAMETERS/TEST CONDITIONS	MIN	TYP	MAX	UNITS
P _{1dB}	Output Power at 1dB Compression f = 12GHz	18.5	20.0		dBm
	$V_{DS} = 6V$, $I_{DS} \approx 50\%$ I_{DSS} f = 18GHz	44.0	20.0		
G _{1dB}	Gain at 1dB Compression $f = 12GHz$ $V_{DS} = 6V$, $I_{DS} \approx 50\%$ I_{DSS} $f = 18GHz$	11.0	13.5 11.0		dB
PAE	Power Added Efficiency at 1dB Compression $V_{DS} = 6V$, $I_{DS} \approx 50\%$ I_{DSS} $f = 12GHz$		45		%
NF	Noise Figure $V_{DS} = 2V$, $I_{DS} = 15mA$ $f = 12GHz$		0.75		dB
GA	Associate Gain $V_{DS} = 2V$, $I_{DS} = 15mA$ $f = 12GHz$		12.5		dB
I _{DSS}	Saturated Drain Current $V_{DS} = 3 \text{ V}, V_{GS} = 0 \text{ V}$	30	55	80	mA
G _M	Transconductance $V_{DS} = 3 \text{ V}, V_{GS} = 0 \text{ V}$	35	60		mS
V_P	Pinch-off Voltage $V_{DS} = 3 \text{ V}, I_{DS} = 1.0 \text{ mA}$		-1.0	-2.5	V
BV_GD	Drain Breakdown Voltage I _{GD} = 1.0mA	-9	-15		V
BV _{GS}	Source Breakdown Voltage I _{GS} = 1.0mA	-6	-14		V
R _{TH}	Thermal Resistance		480*		°C/W

Notes: * Overall Rth depends on case mounting.

MAXIMUM RATINGS AT 25°C1,2

SYMBOL	CHARACTERISTIC	ABSOLUTE1	CONTINUOUS ²	
V_{DS}	Drain to Source Voltage	12 V	6 V	
V_{GS}	Gate to Source Voltage	-6 V	-3 V	
I _{DS}	Drain Current	ldss	40 mA	
I _{GSF}	Forward Gate Current	9 mA	1.5 mA	
P _{IN}	Input Power	16 dBm	@ 3dB compression	
P_T	Total Power Dissipation	285 mW	240 mW	
T _{CH}	Channel Temperature	175°C	150°C	
T_{STG}	Storage Temperature	-65/+175°C	-65/+150°C	

Exceeding any of the above ratings may result in permanent damage.

^{2.} Exceeding any of the above ratings may reduce MTTF below design goals.

ISSUED 11/01/2007

High Efficiency Heterojunction Power FET

S-PARAMETERS

6V. ½ Idss

FREQ	S	11	S	21	S	S12		S22	
(GHz)	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG	
1.0	0.984	-19.0	5.081	162.1	0.014	75.9	0.813	-11.1	
2.0	0.950	-38.2	4.859	144.2	0.026	63.4	0.789	-23.7	
3.0	0.906	-56.4	4.547	127.3	0.035	51.4	0.766	-35.3	
4.0	0.863	-74.0	4.348	111.9	0.041	42.1	0.745	-44.6	
5.0	0.813	-90.7	4.195	97.2	0.047	32.9	0.713	-53.3	
6.0	0.764	-105.0	3.973	82.9	0.049	24.2	0.675	-64.4	
7.0	0.715	-120.3	3.746	68.8	0.050	15.3	0.649	-74.6	
8.0	0.663	-134.7	3.572	55.9	0.046	6.9	0.612	-82.6	
9.0	0.614	-157.7	3.501	41.4	0.044	5.6	0.605	-87.5	
10.0	0.587	-179.9	3.388	26.4	0.044	2.1	0.585	-97.0	
11.0	0.561	168.8	3.307	13.4	0.044	0.2	0.562	-110.8	
12.0	0.539	153.6	3.248	0.0	0.045	2.0	0.551	-122.8	
13.0	0.573	127.2	3.097	-15.8	0.049	-0.6	0.527	-131.9	
14.0	0.611	104.9	2.873	-31.1	0.050	-6.1	0.510	-143.2	
15.0	0.613	90.9	2.805	-46.4	0.055	-13.0	0.513	-162.9	
16.0	0.620	74.4	2.730	-62.7	0.059	-20.7	0.503	178.0	
17.0	0.640	58.9	2.432	-76.4	0.056	-20.7	0.463	169.1	
18.0	0.692	49.7	2.365	-87.1	0.075	-32.3	0.522	157.0	
19.0	0.691	32.0	2.236	-104.4	0.064	-49.1	0.540	133.7	
20.0	0.731	16.7	2.163	-120.6	0.064	-59.8	0.591	117.3	
21.0	0.783	7.8	2.061	-134.9	0.065	-70.3	0.578	106.6	
22.0	0.771	-2.6	1.923	-148.7	0.062	-85.6	0.592	95.6	
23.0	0.752	-20.8	1.800	-166.5	0.058	-103.2	0.592	76.9	
24.0	0.776	-37.7	1.693	174.8	0.054	-123.0	0.584	59.7	
25.0	0.756	-48.6	1.690	160.0	0.055	-139.5	0.568	45.9	
26.0	0.742	-62.4	1.710	144.5	0.060	-154.9	0.555	33.7	

DISCLAIMER

EXCELICS SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. EXCELICS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

LIFE SUPPORT POLICY

EXCELICS SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF EXCELICS SEMICONDUCTOR, INC.

AS HERE IN:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.