32-bit Microcontroller

CMOS

FR60 MB91313 Series

MB91F313

■ DESCRIPTION

The FR family* is a line of microcontrollers based on a high-performance 32-bit RISC CPU that contains a variety of built-in I/O resources for embedded control applications which require high-performance, high-speed CPU processing.
MB91313 series has multiple communication macro channels, suitable for embedded control applications such as TV control.

* : FR, the abbreviation of FUJITSU RISC controller, is a line of products of FUJITSU Limited.

■ FEATURES

1. FR CPU

- 32-bit RISC load/store architecture with a five-stage pipeline
- Operating frequency 33 MHz (oscillator frequency: 16.5 MHz ; oscillator frequency multiplier: 2 (PLL clock multiplication method))
- 16-bit fixed length instructions (basic instructions)
- Instruction execution speed : 1 instruction per cycle
- Instructions including memory-to-memory transfer, bit manipulation, and barrel shift instructions : Instructions suitable for embedded applications
- Function entry/exit instructions and register data multi-load store instructions : Instructions supporting C language
- Register interlock functions : Facilitates assembly-language coding
(Continued)

Be sure to refer to the "Check Sheet" for the latest cautions on development.

[^0]
MB91313 Series

- On-chip multiplier supported at the instruction level
- Signed 32-bit multiplication : 5 cycles
- Signed 16-bit multiplication: 3 cycles
- Interrupt (PC, PS save) : 6 cycles, 16 priority levels
- Harvard architecture enabling program access and data access to be executed simultaneously
- Instruction prefetch feature implemented using a 4-word queue in the CPU
- Instruction compatible with the FR family

2. Simple External Bus Interface

- Function as an 8-bit or 16-bit multiplexed bus through programmatic settings
- Operating frequency : Max 16.5 MHz
- Multiplexed I/O for 8/16-bit data/address
- Capable of chip-select signal output for 4 completely independent areas configurable in minimum units of 64 Kbytes
- Basic bus cycle : 3 cycles
- Automatic wait cycle generation function to be programmed for each area
- Unused data/address/control signal pins can serve as general-purpose I/O

3. Built-in Memory

Flash : 544 Kbytes, RAM : 32 Kbytes

4. DMAC (DMA Controller)

- 5 channels
- Two transfer sources : Internal peripheral/software
- Addressing modes : 20/24-bit address selectable (increment/decrement/fixed)
- Transfer modes : Burst transfer/step transfer/block transfer
- Transfer data size : Selectable from 8, 16, or 32 bits

5. Bit Search Module (for REALOS)

Function to search from the MSB (most significant bit) for the position of the first " 0 ", " 1 ", or changed bit in a word
6. 16-bit Reload Timer (Including 1 Channel for REALOS)

- 6 channels
- Internal clock: Frequency division selectable from 2, 8, and 32

MB91313 Series

7. Serial Interface

- 11 channels
- Full duplex double buffer
- Communication mode : Asynchronous (start-stop synchronization) communication, clock synchronous communication (8.25 Mbps Max), $\mathrm{I}^{2} \mathrm{C}^{*}$ standard mode (100 kbps Max), high-speed mode (400 kbps Max)
- Parity on/off selectable
- Baud rate generators for each channel
- Extensive error detection functions : Parity, frame, and overrun
- External clock can be used as transfer clock
- Ch. 0 to ch. 2 : DMA transfers/each equipped with a pair of 16 -byte transmit and receive FIFOs
- Ch. 8 to ch. 10 : 5 V tolerant
- Ch. 8 : Open drain outputs
- ${ }^{2} \mathrm{C}$ bridge function (bridges between channels 0,1 , and 2)
- SPI mode

8. Interrupt Controller

- External interrupt lines: Total of 24 lines (INT23 to INTO)
- Interrupts from internal peripherals
- Programmable 16 priority levels
- Capable of using wakeup from STOP mode

9. 10-bit A/D Converter

- 10 channels
- Successive approximation type : Conversion time : About $7.94 \mu \mathrm{~s}$
- Conversion mode : Single-shot conversion mode, scan conversion mode
- Activation sources : Software/external trigger

10. PPG

- 4 channels
- 16-bit down counter, 16 -bit data register with cycle setting buffer
- Internal clock : Frequency division selected from 1, 4, 16, and 64
- Support for automatic cycle setting by DMA transfer
- Function for supporting remote control transmission
- Open drain outputs

11. PWC

- 1 channel (1 input)
- 16-bit up counter
- Simple digital lowpass filter

12. Multi-function Timer

- 4 channels
- Lowpass filter eliminating noise below a pre-set clock frequency
- Capable of pulse width measurement using seven types of clock signals
- Pin input event count function
- Interval timer function using seven types of clock signals and external input clock
- Internal HSYNC counter mode

MB91313 Series

(Continued)

13. HDMI-CEC/Remote Control Receiver

- 2 channels
- HDMI-CEC receiver function (with automatic ACK response function)
- Remote control receiver function (built-in 4-byte receive buffer)

14. Other Interval Timers

- Watch timer (32 kHz , counts up to a maximum of 60 seconds)
- Watchdog timer

15. I/O Ports

Max 86 ports
16. Other Features

- Internal oscillator circuit as a clock source
- INITX provided as a reset pin
- Watchdog timer reset and software reset are available
- Stop and sleep modes supported as low-power consumption modes
- Gear function
- Time-base timer
- 5 V tolerant I/O (some pins)
- Package LQFP-120, 0.50 mm pitch, $16.0 \mathrm{~mm} \times 16.0 \mathrm{~mm}$
- CMOS technology ($0.18 \mu \mathrm{~m}$)
- Power supply voltage $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, 1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$ dual power supply
* : Purchase of Fujitsu $I^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ Patent Rights to use these components in an $\mathrm{I}^{2} \mathrm{C}$ system provided that the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ Standard Specification as defined by Philips.

MB91313 Series

PIN ASSIGNMENT

MB91313 Series

- PIN DESCRIPTION

Pin no.	Pin name	I/O circuit type*	Description
1	VSS	-	GND pin
2	VDDI	-	1.8 V power supply pin
3	P23	D	General-purpose port
	SIN1		Serial data input pin
4	P24	L	General-purpose port
	SOT1/SDA1 (${ }^{2} \mathrm{C}$ bridge)		Serial data output pin/12C data I/O pin
5	P25	L	General-purpose port
	SCK1/SCL1 (${ }^{2} \mathrm{C}$ bridge)		
6	P26	D	General-purpose port
	SIN2		Serial data input pin
7	P27	L	General-purpose port
	SOT2/SDA2 (${ }^{2} \mathrm{C}$ bridge)		Serial data output pin/12C data I/O pin
8	P30	L	General-purpose port
	SCK2/SCL2 (I2C bridge)		Serial communication clock I/O pin/12 ${ }^{\text {C clock I/O pin }}$
9	P31	D	General-purpose port
	TOTO		Reload timer output pin
10	P32	D	General-purpose port
	TOT1		Reload timer output pin
11	P33	D	General-purpose port
	TOT2		Reload timer output pin
12	P34	D	General-purpose port
	TINO		Event input pin for reload timer
13	P35	D	General-purpose port
	TIN1		Event input pin for reload timer
14	P36	D	General-purpose port
	TIN2		Event input pin for reload timer
15	P37	D	General-purpose port
	RIN		PWC input pin
16	P40	B	General-purpose port
	TMO0		Multi-function timer output pin
	INT16		External interrupt request input pin

(Continued)

Pin no.	Pin name	I/O circuit type*	Description
17	P41	B	General-purpose port
	TMO1		Multi-function timer output pin
	INT17		External interrupt request input pin
18	P42	B	General-purpose port
	TMO2		Multi-function timer output pin
	INT18		External interrupt request input pin
19	P43	B	General-purpose port
	TMO3		Multi-function timer output pin
	INT19		External interrupt request input pin
20	P44	B	General-purpose port
	TMIO		Multi-function timer input pin
	INT20		External interrupt request input pin
21	P45	B	General-purpose port
	TMI1		Multi-function timer input pin
	INT21		External interrupt request input pin
	SIN10		Serial data input pin
22	P46	B	General-purpose port
	TMI2		Multi-function timer input pin
	INT22		External interrupt request input pin
	SOT10/SDA10		Serial data output pin//I2C data I/O pin
23	P47	B	General-purpose port
	TMI3		Multi-function timer input pin
	INT23		External interrupt request input pin
	SCK10/SCL10		Serial communication clock I/O pin/12${ }^{2} \mathrm{C}$ clock $1 / \mathrm{O}$ pin
24	P60	C	General-purpose port
	TOT3		Reload timer output pin
	TRG2		PPG trigger input pin
25	P61	C	General-purpose port
	TOT4		Reload timer output pin
	TRG3		PPG trigger input pin
26	P62	C	General-purpose port
	TOT5		Reload timer output pin
	RDY		External ready input pin

(Continued)

MB91313 Series

Pin no.	Pin name	I/O circuit type*	Description
27	P63	C	General-purpose port
	TIN3		Event input pin for reload timer
	CLK		External clock output pin
28	P64	C	General-purpose port
	TIN4		Event input pin for reload timer
29	P65	C	General-purpose port
	TIN5		Event input pin for reload timer
30	VDDE	-	3.3 V power supply pin
31	VSS	-	GND pin
32	PF0	D	General-purpose port
	RCIN0		HDMI-CEC/Remote control 0 I/O pin
33	PF1	D	General-purpose port
	RCIN1		HDMI-CEC/Remote control 1 I/O pin
34	PF2	D	General-purpose port
35	PF3	D	General-purpose port
36	PF4	D	General-purpose port
37	PF5	D	General-purpose port
38	PF6	D	General-purpose port
39	PF7	D	General-purpose port
40	VDDE	-	3.3 V power supply pin
41	VSS	-	GND pin
42	AVSS	-	A/D converter GND pin
43	AVRH	-	A/D converter reference voltage pin
44	AVCC	-	A/D converter power supply pin
45	PD0	L	General-purpose port
	AN0		A/D converter analog input pin
46	PD1	L	General-purpose port
	AN1		A/D converter analog input pin
47	PD2	L	General-purpose port
	AN2		A/D converter analog input pin
48	PD3	L	General-purpose port
	AN3		A/D converter analog input pin
49	PD4	L	General-purpose port
	AN4		A/D converter analog input pin
50	PD5	L	General-purpose port
	AN5		A/D converter analog input pin

(Continued)

Pin no.	Pin name	I/O circuit type*	Description
51	PD6	L	General-purpose port
	AN6		A/D converter analog input pin
52	PD7	L	General-purpose port
	AN7		A/D converter analog input pin
53	PE0	L	General-purpose port
	AN8		A/D converter analog input pin
	INTO		External interrupt request input pin
54	PE1	L	General-purpose port
	AN9		A/D converter analog input pin
	PPGO		PPG output pin
	INT1		External interrupt request input pin
55	PE2	B	General-purpose port
	PPG1		PPG output pin
	INT2		External interrupt request input pin
	ATRG		A/D converter trigger input pin
56	PE3	B	General-purpose port
	PPG2		PPG output pin
	INT3		External interrupt request input pin
57	VDDE	-	3.3 V power supply
58	INITX	G	Initial reset pin
59	X0A	A	Sub clock input pin
60	X1A	A	Sub clock output pin
61	VSS	-	GND pin
62	X1	A	Main clock output pin
63	X0	A	Main clock input pin
64	VDDI	-	1.8 V power supply pin
65	MD0	F	Mode pin
66	MD1	F	Mode pin
67	MD2	F	Mode pin
68	PE4	B	General-purpose port
	PPG3		PPG output pin
	INT4		External interrupt request input pin
69	PE5	B	General-purpose port
	SIN8		Serial data input pin
	INT5		External interrupt request input pin

(Continued)

MB91313 Series

Pin no.	Pin name	I/O circuit type*	Description
70	PE6	B	General-purpose port
	SOT8/SDA8		Serial data output pin/I $I^{2} \mathrm{C}$ data I/O pin
	INT6		External interrupt request input pin
71	PE7	B	General-purpose port
	SCK8/SCL8		Serial communication clock I/O pin/12C clock I/O pin
	INT7		External interrupt request input pin
72	PC0	B	General-purpose port
	SIN9		Serial data input pin
73	PC1	B	General-purpose port
	SOT9/SDA9		Serial data output pin//I2C data I/O pin
74	PC2	B	General-purpose port
	SCK9/SCL9		Serial communication clock I/O pin/12C clock I/O pin
75	PC3	B	General-purpose port
76	PC4	B	General-purpose port
	PPGA		PPG output pin
77	PC5	B	General-purpose port
	PPGB		PPG output pin
78	PC6	B	General-purpose port
	TRGO		PPG trigger input pin
79	PC7	B	General-purpose port
	TRG1		PPG trigger input pin
80	TRSTX	G	Development tool reset pin
81	ICD0	K	Development tool data pin
82	ICD1	K	Development tool data pin
83	ICD2	K	Development tool data pin
84	ICD3	K	Development tool data pin
85	ICS0	H	Development tool status pin
86	ICS1	H	Development tool status pin
87	ICS2	H	Development tool status pin
88	ICLK	H	Development tool clock pin
89	IBREAK	I	Development tool break pin
90	VDDE	-	3.3 V power supply pin
91	VSS	-	GND pin
92	VDDI	-	1.8 V power supply pin

(Continued)

Pin no.	Pin name	I/O circuit type*	Description
93	P00	0	General-purpose port
	AD00		External address/data bus I/O pin
	SIN3		Serial data input pin
	INT8		External interrupt request input pin
94	P01	0	General-purpose port
	AD01		External address/data bus I/O pin
	SOT3/SDA3		Serial data output pin// ${ }^{2} \mathrm{C}$ data I/O pin
	INT9		External interrupt request input pin
95	P02	0	General-purpose port
	AD02		External address/data bus I/O pin
	SCK3/SCL3		Serial communication clock I/O pin/12C clock I/O pin
	INT10		External interrupt request input pin
96	P03	O	General-purpose port
	AD03		External address/data bus I/O pin
	SIN4		Serial data input pin
	INT11		External interrupt request input pin
97	P04	0	General-purpose port
	AD04		External address/data bus I/O pin
	SOT4/SDA4		Serial data output pin// ${ }^{2} \mathrm{C}$ data I/O pin
	INT12		External interrupt request input pin
98	P05	O	General-purpose port
	AD05		External address/data bus I/O pin
	SCK4/SCL4		Serial communication clock I/O pin/12C clock I/O pin
	INT13		External interrupt request input pin
99	P06	0	General-purpose port
	AD06		External address/data bus I/O pin
	SIN5		Serial data input pin
	INT14		External interrupt request input pin
100	P07	0	General-purpose port
	AD07		External address/data bus I/O pin
	SOT5/SDA5		Serial data output pin// ${ }^{2} \mathrm{C}$ data I/O pin
	INT15		External interrupt request input pin
101	P10	O	General-purpose port
	AD08		External address/data bus I/O pin
	SCK5/SCL5		Serial communication clock I/O pin/12C clock I/O pin

(Continued)

MB91313 Series

Pin no.	Pin name	I/O circuit type*	Description
102	P11	O	General-purpose port
	AD09		External address/data bus I/O pin
	SIN6		Serial data input pin
103	P12	O	General-purpose port
	AD10		External address/data bus I/O pin
	SOT6/SDA6		Serial data output pin/12C data I/O pin
104	P13	O	General-purpose port
	AD11		External address/data bus I/O pin
	SCK6/SCL6		Serial communication clock I/O pin/12 C clock I/O pin
105	P14	0	General-purpose port
	AD12		External address/data bus I/O pin
	SIN7		Serial data input pin
106	P15	0	General-purpose port
	AD13		External address/data bus I/O pin
	SOT7/SDA7		Serial data output pin/12C data I/O pin
107	P16	O	General-purpose port
	AD14		External address/data bus I/O pin
	SCK7/SCL7		Serial communication clock I/O pin//12 ${ }^{2}$ clock I/O pin
108	P17	O	General-purpose port
	AD15		External address/data bus I/O pin
109	P50	C	General-purpose port
	CSOX		External chip select pin
	PPGO		PPG output pin
110	P51	C	General-purpose port
	CS1X		External chip select pin
	PPG1		PPG output pin
111	P52	C	General-purpose port
	CS2X		External chip select pin
	PPG2		PPG output pin
112	P53	C	General-purpose port
	CS3X		External chip select pin
	PPG3		PPG output pin
113	P54	C	General-purpose port
	ASX		External address strobe output pin

(Continued)

MB91313 Series

(Continued)

Pin no.	Pin name	I/O circuit type*	Description
114	P55	C	General-purpose port
	RDX		External read strobe output pin
115	P56	C	General-purpose port
	WR0X		External data bus write strobe output pin
116	P57	C	General-purpose port
	WR1X		External data bus write strobe output pin
117	P20	D	General-purpose port
	SINO		Serial data input pin
118	P21	L	General-purpose port
	SOTO/SDAO (${ }^{2} \mathrm{C}$ bridge)		Serial data output pin/2 ${ }^{2} \mathrm{C}$ data I/O pin
119	P22	L	General-purpose port
	$\begin{gathered} \text { SCKO/SCLO } \\ \left({ }^{2} \mathrm{C}\right. \text { bridge) } \end{gathered}$		Serial communication clock I/O pin/12C clock I/O pin
120	VDDE	-	3.3 V power supply pin

*: For the details of the I/O circuit types. Refer to "■ I/O CIRCUIT TYPE".

MB91313 Series

I/O CIRCUIT TYPE

| Type | | Remarks |
| :--- | :--- | :--- | :--- |

(Continued)

MB91313 Series

Type	Circuit type	Remarks
D		- CMOS level output $\text { Іон }=4 \mathrm{~mA}$ - CMOS level hysteresis input $\mathrm{V}_{\mathrm{IH}}=0.8 \times \mathrm{V}_{\mathrm{DDE}}$ With standby control Without pull-up resistor
F		- CMOS level input - Without standby control
G		- CMOS hysteresis input - With pull-up resistor
H		CMOS level output

(Continued)

MB91313 Series

Type	Circuit type	Remarks
1		- CMOS hysteresis input - With pull-down resistor - Without standby control
K		- CMOS level output - CMOS level input - Without standby control - With pull-down resistor
L		- CMOS level output - CMOS level hysteresis input - With standby control - Analog input with switch

(Continued)

MB91313 Series

(Continued)

Type	Circuit type	Remarks
0		- CMOS level output $\mathrm{IoH}=4 \mathrm{~mA}$ - CMOS input (external bus interface) CMOS level hysteresis input (port, resource) $\mathrm{V}_{\mathrm{IH}}=0.8 \times \mathrm{V}_{\mathrm{DDE}}$ - With standby control - With pull-up control - With pull-up resistor (33 $\mathrm{k} \Omega$)

MB91313 Series

HANDLING DEVICES

- Preventing latch-up

Latch-up may occur in a CMOS IC if a voltage higher than Vdde or Vddi, or less than Vss is applied to an input or output pin or if a voltage exceeding the rating is applied between VDDE and VSS, or VDDI and VSS. If latch-up occurs, the power supply current increases rapidly, sometimes resulting in thermal breakdown of the device. Therefore, be very careful not to apply voltages in excess of the absolute maximum ratings.

- Handling of unused input pins

If unused input pins are left open, abnormal operation may result. Any unused input pins should be connected to pull-up or pull-down resistor.

- Power supply pins

In MB91313 series, devices including multiple of VDDE pins, VDDI pins and VSS pins are designed as follows; pins necessary to be at the same potential are interconnected internally to prevent malfunctions such as latch-up. All of the power supply pin and GND pin must be externally connected to the power supply and ground respectively in order to reduce unnecessary radiation, to prevent strobe signal malfunctions due to the ground level rising and to follow the total output current ratings. Furthermore, the VDDE pins, VDDI pins and VSS pins of the MB91313 series must be connected to the current supply source via a low impedance. It is also recommended to connect a ceramic capacitor of approximately $0.1 \mu \mathrm{~F}$ as a bypass capacitor between VDDE pins, VDDI pins and VSS pins near this device.

- Crystal oscillator circuit

Noise in proximity to the $\mathrm{X0}$ and X 1 (X0A, X 1 A) pins can cause the device to operate abnormally. Printed circuit boards should be designed so that the X0 (X0A) and X1 (X1A) pins, and crystal oscillator, as well as bypass capacitors connected to ground, are located near the device and ground.
It is recommended that the printed circuit board artwork be designed such that the X0 and X1 pins or X0A and X1A pins are surrounded by ground plane for the stable operation.
Please request the oscillator manufacturer to evaluate the oscillational characteristics of the crystal and this device.

- Mode pins (MD0 to MD2)

When using mode pins, connect them directly to power supply pin or GND pin. To prevent the device from entering test mode accidentally due to noise, minimize the lengths of the patterns between each mode pin and power supply pin or GND pin on the printed circuit board as possible and connect them with low impedance.

- Operation at power-on

Ensure that the INITX pin is reset and the settings are initialized (INIT) immediately after the power is turned on. Maintain the "L" level input to the INITX pin during the stabilization wait time immediately after the power on to ensure the stabilization wait time as required by the oscillator circuit (the stabilization wait time is reset to the minimum value when INIT is asserted using the INITX pin).

- Note on oscillator input at power-on

At power-on, ensure that the clock is input until the oscillator stabilization wait time has elapsed.

MB91313 Series

- Notes on the turning on/off VDDI pin (1.8 V internal power supply) and VDDE pin (3.3 V external pin power supply)

Do not apply only VDDE pin (external power supply) voltage continuously (more than one minute) while the VDDI pin (internal power supply) is disconnected as it will adversely affect the reliability of the LSI.
When the VDDE pin (external power supply) returns from the off state to the on state, the circuit may not be able to maintain its internal state, for example, due to power supply noise.

> | Power on | VDD pin (internal power supply) \rightarrow VDDE pin (external power supply) \rightarrow Analog \rightarrow Signal |
| :--- | :--- |
| Power off | Signal \rightarrow Analog \rightarrow VDDE pin (external power supply) \rightarrow VDDI pin (internal power supply) |

When the power is turned on, the states of the output pins may remain undefined until the internal power supply becomes stable.

- Notes on using an external clock

When using the external clock as a general rule you should simultaneously supply $\mathrm{X0}$ (X0A) and $\mathrm{X1}$ (X1A) pins. And also, the clock signal to $\mathrm{X0}$ (X0A) should be supplied a clock signal with the reverse phase to X 1 (X 1 A) pins. However, in this case the stop mode (oscillation stop mode) must not be used (This is because the X1 (X1A) pin stops at "H" output in STOP mode). Furthermore, supply a clock to X0 (XOA) pin only if the device is operating in less than 12.5 MHz .

Using an External Clock (Normal Method)

Cannot be used in STOP mode (oscillation stop mode).

Using an External Clock (available at 12.5 MHz or less)

Note : When operating at a frequency of 10 MHz , the delay between the $\mathrm{XO}(\mathrm{XOA})$ and X 1 signals should be less than 15 ns .

MB91313 Series

- AVCC pin

The MB91313 has a built-in A/D converter. A capacitor of approximately $0.1 \mu \mathrm{~F}$ must be connected between the AVCC pin and AVSS pin.

- Notes when not using the emulator

To operate the evaluation MCU on the user system without connecting the emulator, treat each input pin on the evaluation MCU connected to the emulator interface on the user system as shown below.
Note that switching circuits or other measures may be needed on the user system.
Emulator Interface Pin Treatment

Evaluation MCU Pin Name	Pin Connection
TRSTX	Connect to the reset output circuit on the user system.
INITX	Connect to the reset output circuit on the user system.
Other Pins	Open

- Notes on selecting PLL clocks

If the crystal oscillator is disconnected or the clock input stops while the PLL clock is selected, the microcontroller may continue to operate at the free-running frequency of the self-oscillating circuit within the PLL. However, this operation is not guaranteed.

MB91313 Series

RESTRICTIONS

1) Clock control block

When an "L" level is input to the INITX pin, ensure that it is maintained for the duration of the oscillation stabilization wait time.
2) Bit Search Module

The bit search data register for 0-detection (BSDO), bit search data register for 1-detection (BSD1), and bit search data register for change point detection (BSDC) can be accessed in word.
3) I/O Ports

Ports can only be accessed in byte.
4) Low Power Consumption Mode

- To place the device in standby mode, use the synchronous standby mode (set with bit 8 (SYNCS bit) of the timebase counter control register, TBCR) and be sure to use the following sequence :
(LDI\#value_of_standby, ro) ; value_of_standby is the data to write to STCR
(LDI\#_STCR, R12) ; _STCR is the address of STCR (481H)
STB RO, @R12 ; Write to the standby control register (STCR)
LDUB @R12, R0 ; Read STCR for synchronous standby
LDUB @R12, R0 ; Perform an additional dummy read of STCR
NOP ; $5 \times$ NOP for timing adjustment
NOP
NOP
NOP
NOP
- Do not perform any of the following actions when using the monitor debugger.
- Set a breakpoint within the sequence of instructions shown above
- Perform step execution of the sequence of instructions shown above

MB91313 Series

5) Notes on the PS register

Some instructions write to the PS register in advance before executing. When a debugger is being used, execution may break within an interrupt handler routine, or the values of the flags within the PS register may be updated due to exception processing. However, the microcontroller is designed to reprocess correctly after returning from the EIT, and to execute before and after the EIT proceeds according to the specifications.

- In any following situation, the previous instructions before a DIVOU or DIVOS instruction may take the processing in (1) to (3).
- A user interrupt or NMI is accepted
- Step execution is performed
- A break occurs due to a data event or by being selected from the emulator menu
(1) The D0 and D1 flags are updated in advance.
(2) The EIT handling routine (user interrupt/NMI or emulator) is executed.
(3) Upon returning from the EIT, the DIV0U or DIV0S instruction is executed and the D0/D1 flags are updated back to the same value as in step (1).
- If any of the OR CCR, ST ILM, or MOV Ri, PS instructions are executed to enable a user interrupt or NMI interrupt source when that interrupt has occurred, the following operation will be performed.
(1) The PS register is updated in advance.
(2) The EIT handling routine (user interrupt/NMI or emulator) is executed.
(3) Upon returning from the EIT, the above instructions are executed and the PS registers are updated back to the same value as in step (1).

6) Watchdog timer

The watchdog timer has a function to monitors the program to check that it delays a reset within a certain period of time, and resets the CPU if the program runs out of control and fails to delay the reset. Once the watchdog timer has been enabled, it keeps running until reset. As an exception, the reset is automatically delayed in conditions where the execution of the CPU program stops. It is possible that the watchdog timer will not be triggered if these conditions arise as a result of the system running out of control. In that case, please reset (INIT) using the external INITX pin.
7) Notes on using the A / D converter

Do not supply a voltage higher than the VDDE pin to the AVCC pin.
8) Software reset in synchronous mode

When using the software reset in synchronous mode, the following two conditions should be satisfied before setting the SRST bit in STCR (standby control register) to "0".

- The interrupt enable flag (I-Flag) is set to interrupts disabled (I-Flag=0).
- The NMI is not being used.

MB91313 Series

BLOCK DIAGRAM

MB91313 Series

- CPU AND CONTROL UNIT

Internal architecture

The FR family of CPUs is a line of high-performance cores providing advanced instructions for embedded applications based on the RISC architecture.

1. Features

- RISC architecture Basic instructions : Execute at one instruction per cycle
- 32-bit architecture

General purpose registers : 32 bits $\times 16$

- 4 Gbytes of linear memory space
- Built-in multiplier

32-bit $\times 32$-bit multiplication: 5 cycles
16 -bit $\times 16$-bit multiplication : 3 cycles

- Enhanced interrupt servicing

High-speed response (6 cycles)
Multi-level interrupt support
Level mask feature (16 levels)

- Enhanced I/O manipulation instructions

Memory-to-memory transfer instructions
Bit manipulation instructions

- Basic instruction word length : 16 bits
- Lower-power consumption

Sleep mode/stop mode
Gear function

MB91313 Series

2. Internal architecture

The FR family of CPUs uses a Harvard architecture in which the instruction bus and data bus are separated. A 32-bit $\leftrightarrow 16$-bit bus converter is connected to the 32-bit bus (F-bus) to provide an interface between the CPU and peripheral resources.
A Harvard \leftrightarrow Princeton bus converter is connected to both of the I-bus and D-bus, providing an interface between the CPU and the bus controller.

MB91313 Series

3. Programming model

MB91313 Series

4. Register

- General-purpose registers

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{32 bits}

\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{R0}} \& [Initial Value]

\hline \& \& \multirow[t]{2}{*}{XXXX XXXXH

\ldots}

\hline \multirow[t]{2}{*}{R1} \& \&

\hline \& \ldots \& \ldots

\hline \ldots \& ... \& ...

\hline R12 \& \& \ldots

\hline R13 \& AC \& \ldots

\hline R14 \& FP \& XXXX XXXXH

\hline R15 \& SP \& 0000 0000H

\hline
\end{tabular}

Registers R0 to R15 are general-purpose registers. These registers are used as the accumulator and memory access pointers in CPU operations.
Of these 16 registers, the registers listed below are intended for special applications, for which some instructions are enhanced.

- R13 : Virtual accumulator (AC)
- R14 : Frame pointer (FP)
- R15 : Stack pointer (SP)

The initial values of R0 to R14 after a reset are indeterminate. R15 is initialized to 00000000 H (SSP value).

- PS (Program Status)

This register holds the program status and is divided into the ILM, SCR, and CCR.
All undefined bits are reserved bits. Reading these bits always returns 0 . Writing to them has no effect.

MB91313 Series

- CCR (Condition Code Register)

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	[Initial Value]
-	-	S	I	N	Z	V	C	--00XXXXв

S: Stack flag
I : Interrupt Enable flag
N : Negative flag
Z : Zero flag
V : Overflow flag
C: Carrying flag

- SCR (System Condition Code Register)

bit 10	bit 9	bit 8	[Initial Value] D1
D0	T	XXOB	

D1, D0 : Flag for step division
This flag stores interim data during execution of step multiplication.

T: Step trace trap flag
This flag indicates whether the step trace trap is enabled or disabled.
The step trace trap function is used by emulators. This function therefore cannot be used within a user program when an emulator is being used.

- ILM (Interrupt Level Mask Register)

| bit 20 | bit 19 | bit 18 | bit 17 | bit 16 |
| :--- | :--- | :--- | :--- | :--- |\quad [Initial Value]

This register stores the value of the interrupt level mask, with the value stored in the ILM used as the interrupt level mask.
The register is initialized to " 01111 s " on reset.

- PC (Program Counter)

The program counter indicates the address of the instruction that is being executed.
The initial value on reset is undefined.

- TBR (Table Base Register)

bit 31 bit 0	[Initial Value]

The table base register stores the starting address of the vector table used for EIT processing.
The initial value on reset is 000 FFCOOH .

- RP (Return Pointer)

The return pointer stores the address to return from a subroutine.
When the CALL instruction is executed, the value of the PC is transferred to the RP register.
When the RET instruction is executed, the value of the RP is transferred to the PC register.
The initial value on reset is undefined.

- SSP (System Stack Pointer)

The SSP is the system stack pointer.
The SSP functions as R15 when the S flag is " 0 ".
The SSP can be explicitly specified. The SSP is also used as the stack pointer that specifies the stack for saving the PS and PC when an EIT event occurs.

The initial value after a reset is 00000000 н.

MB91313 Series

- USP (User Stack Pointer)

bit 31	bit 0
[Initial Value]	

The USP is the user stack pointer.
The USP functions as R15 when the S flag is " 1 ".
The USP can be explicitly specified.
The initial value after a reset is indeterminate.
This pointer cannot be used by the RETI instruction.

- MDH, MDL (Multiplication and Division Registers)
\square
These registers are used for multiplications and divisions and are each 32 bits long.
The initial value after a reset is indeterminate.

MB91313 Series

MEMORY SPACE

1. Memory space

The FR family has 4 Gbytes of logical address space (2^{32} addresses) linearly accessible to the CPU.

Direct Addressing Areas

The following areas in the address space are used as I/O areas.
These areas are called direct addressing areas. The addresses of operands in these areas can be specified directly within some instructions.
The direct addressing area varies depending on the size of data to be accessed as follows :

$$
\begin{aligned}
& \rightarrow \text { Byte data access : 000н to } 0 \mathrm{OFF}_{\mathrm{H}} \\
& \rightarrow \text { Half word data access: } 000 \text { н to } 1 \mathrm{FF}_{\mathrm{H}} \\
& \rightarrow \text { Word data access : 000н to 3FFн }
\end{aligned}
$$

2. Memory Map

Single chip mode		Internal ROM external bus mode	
00000000	I/O	I/O	Direct addressing area Refer to " ${ }^{\text {■ I/O MAP". }}$
	I/O	I/O	
00010000H	Access prohibited	Access prohibited	
00040000	Internal RAM 32 Kbytes	Internal RAM 32 Kbytes	
	Access prohibited	Access prohibited	
		External area	
007	Internal Flash 544 Kbytes	Internal Flash 544 Kbytes	
00200000н		Access prohibited	
O07FFFFF	prohibited	External area	
FFFFFFFFFH		Access prohibited	

MB91313 Series

I/O MAP

The following table shows the correspondence between the memory space area and each of the peripheral resource registers.
[How to read the table]

Address	Register				Block
	+0	+1	+2	+3	
000000н	PDR0 [R/W] X*XXX) 4	PDR1 [R/W] XXXXXXXX	PDR2 [R/W] XXXXXXXX	PDR3 [R/W] XXXXXXXX	T-unit Port data register
		ead/Write attrib itial value afte egister name address $4 n+1$ ocation of leftcolumn 1 is in	set column regist register (Whe MSB side of th	address 4n; ing word acces ta.	column register register

Note : The bit values in the register represent the following initial values :

- "1" : Initial value " 1 "
- "0" : Initial value "0"
- "X" : Initial value "Undefined"
- "-" : No physical register at this location

Access is prohibited for data access attributes that are not listed.

MB91313 Series

Address	Register				Block
	0	1	2	3	
000000н	$\begin{aligned} & \hline \text { PDRO [R/W] } \\ & \text { XXXXXXXX } \end{aligned}$	PDR1 [R/W] XXXXXXXX	$\begin{aligned} & \hline \text { PDR2 [R/W] } \\ & \text { XXXXXXXX } \end{aligned}$	$\begin{aligned} & \hline \text { PDR3 [R/W] } \\ & \text { XXXXXXXX } \end{aligned}$	Port data register
000004н	$\begin{aligned} & \text { PDR4 [R/W] } \\ & \text { XXXXXXX } \end{aligned}$	PDR5 [R/W] XXXXXXXX	$\begin{aligned} & \text { PDR6 [R/W] } \\ & \text {--XXXXXX } \end{aligned}$	Reserved	
000008н	Reserved				
00000С ${ }_{\text {н }}$	PDRC [R/W] XXXXXXXX	PDRD [R/W] XXXXXXXX	PDRE [R/W] XXXXXXXX	PDRF [R/W] XXXXXXX	
$\begin{array}{\|c\|} \hline 000010_{H} \\ \text { to } \\ 00001 C_{H} \end{array}$	Reserved				Reserved
000020н	$\begin{gathered} \text { ADCTH[R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { ADCTL[R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { ADCH[R/W] } \\ 0000000000000000 \end{gathered}$		10-bit A/D converter
000024H	ADATO[R] XXXXXX00 00000000		ADAT1[R] XXXXXX00 00000000		
000028н	$\begin{gathered} \text { ADAT2[R] } \\ \text { XXXXXX00 } 00000000 \end{gathered}$		ADAT3[R]XXXXXX00 00000000		
00002CH	ADAT4[R]XXXXXX00 00000000		ADAT5[R] XXXXXX00 00000000		
000030н	ADAT6[R] XXXXXX00 00000000		ADAT7[R] XXXXXX00 00000000		
000034н	ADAT8[R] XXXXXX00 00000000		ADAT9[R] XXXXXX00 00000000		
000038н, $00003 \mathrm{C}_{\mathrm{H}}$	Reserved				Reserved
000040н	EIRRO [R/W] 00000000	ENIRO [R/W] 00000000	ELVRO [R/W] 0000000000000000		External interrupt 0 to 7
000044н	$\begin{gathered} \text { DICR [R/W] }-----0 \end{gathered}$	$\begin{gathered} \text { HRCL [R, R/W] } \\ ---11111 \end{gathered}$	Reserved		Delayed/l-unit
000048н	$\begin{gathered} \text { TMRLRO [W] } \\ X X X X X X X X X X X X X \end{gathered}$		$\begin{array}{\|l} \mathrm{TI} \\ \mathrm{XXXXXX} \end{array}$	R] $x X X X X X$	Reload timer 0
00004Cн	Reserved		TMCSR0 [R, RW] 0000000000000000		
000050н	TMRLR1 [W] XXXXXXXX XXXXXXXX		TMR1 [R] XXXXXXXX XXXXXXXX		Reload timer 1
000054H	Reserved		TMCSR1 [R, RW] 0000000000000000		
000058н	TMRLR2 [W] XXXXXXXX XXXXXXXX		TMR2 [R] XXXXXXXX XXXXXXXX		Reload timer 2
00005Сн	Reserved		TMCSR2 [R, RW] 0000000000000000		

(Continued)

MB91313 Series

Address	Register				Block
	0	1	2	3	
000060н	$\begin{gathered} \hline \text { SCRO [R, R/W] } \\ 0--00000 \end{gathered}$	$\begin{gathered} \hline \text { SMR0 [W, R/W] } \\ 000-0000 \end{gathered}$	$\begin{gathered} \hline \text { SSRO }[R, R / W] \\ 0-000011 \end{gathered}$	$\begin{gathered} \hline \text { ESCRO [R/W] } \\ --000000 \end{gathered}$	Serial interface 0 FIFO 0
000064н			BGR01 [R/W] 00000000	$\begin{aligned} & \text { BGR00 [R/W] } \\ & 00000000 \end{aligned}$	
000068H	$\begin{gathered} \hline \text { ISMKO [R/W] } \\ 01111110 \end{gathered}$	$\begin{aligned} & \hline \text { IBSA [R/W] } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { FCR01 [R/W] } \\ 00-00100 \end{gathered}$	$\begin{gathered} \hline \text { FCR00 [R/W] } \\ 00000000 \end{gathered}$	
00006CH	FBYTE01 [R/W] 00000000	$\begin{gathered} \text { FBYTE00 [R/W] } \\ 00000000 \end{gathered}$	Reserved		
000070н	$\begin{gathered} \hline \text { SCR1 [R, R/W] } \\ 0-00000 \end{gathered}$	$\begin{gathered} \hline \text { SMR1 [W, R/W] } \\ 000-0000 \end{gathered}$	$\begin{gathered} \hline \text { SSR1 [R, R/W] } \\ 0-000011 \end{gathered}$	$\begin{gathered} \hline \text { ESCR1 [R/W] } \\ --000000 \end{gathered}$	Serial interface 1 FIFO 1
000074н	RDR1/TRD1 [R/W]---------11111111 : RDR1----- 111		$\begin{aligned} & \text { BGR11 [R/W] } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { BGR10 [R/W] } \\ & 00000000 \end{aligned}$	
000078 ${ }_{\text {H }}$	$\begin{gathered} \hline \text { ISMK1 [R/W] } \\ 01111110 \end{gathered}$	$\begin{aligned} & \text { IBSA1 [R/W] } \\ & 00000000 \end{aligned}$	$\begin{gathered} \hline \text { FCR11 [R/W] } \\ 00-00100 \end{gathered}$	$\begin{aligned} & \hline \text { FCR10 [R/W] } \\ & 00000000 \end{aligned}$	
00007CH	FBYTE11 [R/W] 00000000	$\begin{gathered} \text { FBYTE10 [R/W] } \\ 00000000 \end{gathered}$	Reserved		
000080н	$\begin{gathered} \hline \text { SCR2 [R, R/W] } \\ 0--00000 \end{gathered}$	$\begin{gathered} \hline \text { SMR2 [W, R/W] } \\ 000-0000 \end{gathered}$	$\begin{gathered} \text { SSR2 [R, R/W] } \\ 0-000011 \end{gathered}$	$\begin{gathered} \hline \text { ESCR2 [R/W] } \\ --000000 \end{gathered}$	Serial interface 2
000084н	RDR2/TRD2 [R/W]---------11111111 : : TRD2----11000		$\begin{aligned} & \text { BGR21 [R/W] } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { BGR20 [R/W] } \\ 00000000 \end{gathered}$	
000088н	$\begin{gathered} \hline \text { ISMK2 [R/W] } \\ 01111110 \end{gathered}$	IBSA2 [R/W] 00000000	$\begin{gathered} \hline \text { FCR21 [R/W] } \\ 00-00100 \end{gathered}$	$\begin{aligned} & \hline \text { FCR20 [R/W] } \\ & 00000000 \end{aligned}$	
00008C ${ }_{\text {H }}$	$\begin{gathered} \text { FBYTE21 [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { FBYTE20 [R/W] } \\ 00000000 \end{gathered}$	Reserved		
000090н	$\begin{gathered} \hline \text { SCR3 }[R, R / W] \\ 0-00000 \end{gathered}$	$\begin{gathered} \hline \text { SMR3 }[\mathrm{W}, \mathrm{R} / \mathrm{W}] \\ 000-0000 \end{gathered}$	$\begin{gathered} \hline \text { SSR3 [R, R/W] } \\ 0-000011 \end{gathered}$	$\begin{gathered} \hline \text { ESCR3 [R/W] } \\ --000000 \end{gathered}$	Serial interface 3
000094н	RDR3/TRD3 [R/W]$---------\quad 0000000$: RDR3---1111111 : TRD3		$\begin{aligned} & \text { BGR31 [R/W] } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { BGR30 [R/W] } \\ 00000000 \end{gathered}$	
000098н	$\begin{gathered} \hline \text { ISMK3 [R/W] } \\ 01111110 \end{gathered}$	$\begin{aligned} & \text { IBSA3 [R/W] } \\ & 00000000 \end{aligned}$	Reserved		
00009CH	Reserved				
0000АОн	$\begin{gathered} \hline \text { SCR4 }[R, R / W] \\ 0--00000 \end{gathered}$	$\begin{gathered} \hline \text { SMR4 [W, R/W] } \\ 000-0000 \end{gathered}$	$\begin{gathered} \text { SSR4 [R, R/W] } \\ 0-000011 \end{gathered}$	$\begin{gathered} \text { ESCR4 [R/W] } \\ --000000 \end{gathered}$	Serial interface 4
0000A4	RDR4/T ----------1111 -1	4 [R/W] 000 : RDR4 111 : TRD4	$\begin{aligned} & \text { BGR41 [R/W] } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { BGR40 [R/W] } \\ & 00000000 \end{aligned}$	
0000A8 ${ }^{\text {¢ }}$	$\begin{gathered} \hline \text { ISMK4 [R/W] } \\ 01111110 \end{gathered}$	$\begin{aligned} & \text { IBSA4 [R/W] } \\ & 00000000 \end{aligned}$	Reserved		
0000ACH	Reserved				

(Continued)

MB91313 Series

Address	Register				Block
	0	1	2	3	
0000ВОн	$\begin{gathered} \hline \text { SCR5 }[R, R / W] \\ 0--00000 \end{gathered}$	$\begin{gathered} \hline \text { SMR5 [W, R/W] } \\ 000-0000 \end{gathered}$	$\begin{gathered} \hline \text { SSR5 [R, R/W] } \\ 0-000011 \end{gathered}$	$\begin{gathered} \hline \text { ESCR5 [R/W] } \\ --000000 \end{gathered}$	Serial interface 5
0000B4н	RDR5/TRD5 [R/W]---------11111111 : : TRD5		$\begin{aligned} & \text { BGR51 [R/W] } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { BGR50 [R/W] } \\ 00000000 \end{gathered}$	
0000B8н	$\begin{aligned} & \text { ISMK5 [R/W] } \\ & 01111110 \end{aligned}$	$\begin{aligned} & \text { IBSA5 [R/W] } \\ & 00000000 \end{aligned}$	Reserved		
0000 BC H	Reserved				
0000ССн	$\begin{gathered} \text { EIRR1 [R/W] } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { ENIR1 [R/W] } \\ & 00000000 \end{aligned}$	ELVR1 [R/W]0000000000000000		External interrupt 8 to 15
0000C4H	$\begin{gathered} \text { EIRR2 [R/W] } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { ENIR2 [R/W] } \\ & 00000000 \end{aligned}$	ELVR2 [R/W]0000000000000000		External interrupt 16 to 23
0000С8н, 0000 CC н	Reserved				Reserved
0000D0н	$\begin{gathered} \hline \text { PWCCL[R/W] } \\ 0000--00 \end{gathered}$	$\begin{gathered} \hline \text { PWCCH[R/W] } \\ 00-00000 \end{gathered}$	Reserved		PWC
0000D4н	$\begin{gathered} \text { PWCD[R] } \\ x X x X X X X X X X X X X X \end{gathered}$		Reserved		
0000D8н	$\begin{gathered} \hline \text { PWCC2[R/W] } \\ 000----- \end{gathered}$	Reserved			
0000DC ${ }_{\text {H }}$	PWCUD[R/W] XXXXXXXX XXXXXXXX		Reserved		
$\begin{aligned} & \text { 0000ЕОн } \\ & \text { to } \\ & 0000 \mathrm{EC} \end{aligned}$	Reserved				Reserved
0000FOн	$\begin{gathered} \text { TOLPCR [R/W] }---000 \end{gathered}$	$\begin{gathered} \text { TOCCR [R/W] } \\ 0-000000 \end{gathered}$	TOTCR [R/W] 00000000	$\begin{aligned} & \text { TOR [R/W] } \\ & ---00000 \end{aligned}$	Multi-function timer
0000F4н	TODRR [R/W] XXXXXXXX XXXXXXXX		TOCRR [R/W] XXXXXXXX XXXXXXXX		
0000F8H	$\begin{gathered} \hline \text { T1LPCR [R/W] } \\ ----000 \end{gathered}$	$\begin{gathered} \hline \text { T1CCR [R/W] } \\ 0-000000 \end{gathered}$	$\begin{gathered} \text { T1TCR [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { T1R [R/W] } \\ ---00000 \end{gathered}$	
0000FCн	T1DRR [R/W] XXXXXXXX XXXXXXXX		T1CRR [R/W] XXXXXXXX XXXXXXXX		
000100н	$\begin{gathered} \hline \text { T2LPCR [R/W] } \\ ----000 \end{gathered}$	$\begin{gathered} \hline \text { T2CCR [R/W] } \\ 0-000000 \end{gathered}$	$\begin{gathered} \hline \text { T2TCR [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { T2R [R/W] } \\ ---00000 \end{gathered}$	
000104н	T2DRR [R/W] XXXXXXXX XXXXXXXX		T2CRR [R/W] XXXXXXXX XXXXXXXX		
000108н	$\begin{gathered} \text { T3LPCR [R/W] } \\ ----000 \end{gathered}$	$\begin{gathered} \hline \text { T3CCR [R/W] } \\ 0-000000 \end{gathered}$	$\begin{gathered} \text { T3TCR [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { T3R [R/W] } \\ ---00000 \end{gathered}$	
00010С ${ }_{\text {н }}$	T3DRR [R/W] XXXXXXXX XXXXXXXX		T3CRR [R/W] XXXXXXXX XXXXXXXX		

(Continued)

MB91313 Series

Address	Register			Block
	0 1	2	3	
000110н	$\begin{gathered} \text { TMODE [R/W] } \\ 0000000000000000 \end{gathered}$	Reserved		Multi-function timer
$\begin{aligned} & \text { 000114H } \\ & \text { to } \\ & 00011 C_{H} \end{aligned}$	Reserved			Reserved
000120н	PDUTO[W] XXXXXXXX XXXXXXXX	$\begin{gathered} \text { PCSRO[W] } \\ \text { XXXXXXXXXXXXXXX } \end{gathered}$		PPGO
000124H	$\begin{gathered} \hline \text { PTMRO[R] } \\ 1111111111111111 \end{gathered}$	$\begin{aligned} & \text { PCNHO[R/W] } \\ & 0000000- \end{aligned}$	$\begin{gathered} \text { PCNLO[R/W] } \\ 000000-0 \end{gathered}$	
000128H	PDUT1[W] XXXXXXXX XXXXXXXX	$\begin{gathered} \text { PCSR1[W] } \\ X X X X X X X X X X X X \end{gathered}$		PPG1
00012CH	PTMR1[R] 111111111111111	$\begin{aligned} & \hline \text { PCNH1[R/W] } \\ & 0000000- \end{aligned}$	$\begin{gathered} \text { PCNL1[R/W] } \\ 000000-0 \end{gathered}$	
000130н	PDUT2[W] XXXXXXXX XXXXXXXX	PCSR2[W] XXXXXXXX XXXXXXXX		PPG2
000134н	$\begin{gathered} \text { PTMR2[R] } \\ 111111111111111 \end{gathered}$	PCNH2[R/W] $0000000-$ PCNL2[R/W] $000000-0$		
000138H	$\begin{gathered} \text { PDUT3[W] } \\ \mathrm{XXXXXXXXXXXX} \end{gathered}$	$\begin{gathered} \text { PCSR3[W] } \\ X X X X X X X X X \end{gathered}$		PPG3
00013C ${ }_{\text {н }}$	PTMR3[R] 111111111111111	$\begin{gathered} \hline \text { PCNH3[R/W] } \\ 0000000- \end{gathered}$	$\begin{gathered} \hline \text { PCNL3[R/W] } \\ 000000-0 \end{gathered}$	
$\begin{aligned} & \text { 000140н, } \\ & \text { 000144н } \end{aligned}$	Reserved			Reserved
000148H	TMRLR3 [W] XXXXXXXX XXXXXXXX	TMR3 [R] XXXXXXXX XXXXXXXX		Reload timer 3
00014CH	Reserved	$\begin{aligned} & \text { TMCSR3 [R, RW] } \\ & 0000000000000000 \end{aligned}$		
000150H	TMRLR4 [W] XXXXXXXX XXXXXXXX	$\begin{gathered} \text { TMR4 [R] } \\ \mathrm{XXXXXXXXXXX} \end{gathered}$		Reload timer 4
000154H	Reserved	TMCSR4 [R, RW] 0000000000000000		
000158H	TMRLR5 [W] XXXXXXXX XXXXXXXX	$\begin{gathered} \text { TMR5 [R] } \\ \mathrm{XXXXXXXXXXX} \end{gathered}$		Reload timer 5
00015CH	Reserved	TMCSR5 [R, RW] 0000000000000000		
$\begin{aligned} & 000160_{\mathrm{H}} \\ & \text { to } \\ & 00017 \mathrm{C}_{\mathrm{H}} \end{aligned}$	Reserved			Reserved

(Continued)

MB91313 Series

Address	Register				Block
	0	1	2	3	
000180н	$\begin{gathered} \hline \text { RCCRO [R/W] } \\ 0---0000 \end{gathered}$	$\begin{gathered} \hline \text { RCSTO [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { RCSHWO [R/W] } \\ 00000000 \end{gathered}$	RCDAHWO [R/W] 00000000	Remote controller 0
000184н	RCDBHWO [R/W] 00000000	Reserved	$\begin{gathered} \hline \text { RCADR01 [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { RCADR02 [R/W] } \\ 00000000 \end{gathered}$	
000188н	$\begin{gathered} \hline \text { RCDTOHH [R] } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { RCDTOHL [R] } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { RCDTOLH [R] } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { RCDTOLL [R] } \\ 00000000 \end{gathered}$	
00018Сн	RCCKDO [R/W] 0000000000000000		Reserved		
000190н	$\begin{gathered} \hline \text { RCCR1 [R/W] } \\ 0---0000 \end{gathered}$	$\begin{aligned} & \hline \text { RCST1 [R/W] } \\ & 00000000 \end{aligned}$	$\begin{gathered} \hline \text { RCSHW1 [R/W] } \\ 00000000 \end{gathered}$	RCDAHW1 [R/W] 00000000	Remote controller 1
000194н	RCDBHW1 [R/W] 00000000	Reserved	RCADR11 [R/W] 00000000	RCADR12 [R/W] 00000000	
000198H	$\begin{aligned} & \hline \text { RCDT1HH [R] } \\ & 00000000 \end{aligned}$	$\begin{gathered} \hline \text { RCDT1HL [R] } \\ 00000000 \end{gathered}$	$\begin{aligned} & \hline \text { RCDT1LH [R] } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \hline \text { RCDT1LL [R] } \\ & 00000000 \end{aligned}$	
00019Сн	RCCKD1 [R/W] 0000000000000000		Reserved		
$\begin{aligned} & \text { 0001AOH } \\ & \text { to } \\ & 0001 \mathrm{ACH}_{\mathrm{H}} \end{aligned}$	Reserved				Reserved
0001B0н	$\begin{gathered} \hline \text { SCR6 }[R, R / W] \\ 0--00000 \end{gathered}$	SMR6 [W, R/W] $000-0000$	$\begin{gathered} \hline \text { SSR6 [R, R/W] } \\ 0-000011 \end{gathered}$	$\begin{gathered} \hline \text { ESCR6 [R/W] } \\ --000000 \end{gathered}$	Serial interface 6
0001B4н	RDR6/TRD6 [R/W]---------11111111 : RDR6-----11000		BGR61 [R/W] 00000000	BGR60 [R/W] 00000000	
0001B8н	$\begin{gathered} \hline \text { ISMK6 [R/W] } \\ 01111110 \end{gathered}$	IBSA6 [R/W] 00000000	Reserved		
0001BCH	Reserved				
0001C0н	$\begin{gathered} \hline \text { SCR7 }[R, R / W] \\ 0--00000 \end{gathered}$	$\begin{gathered} \hline \text { SMR7 [W, R/W] } \\ 000-0000 \end{gathered}$	$\begin{gathered} \hline \text { SSR7 [R, R/W] } \\ 0-000011 \end{gathered}$	$\begin{gathered} \hline \text { ESCR7 [R/W] } \\ --000000 \end{gathered}$	Serial interface 7
0001C4н	RDR7/TR ----------11111 0000	7 [R/W] 00 : RDR7 11 : TRD7	BGR71 [R/W] 00000000	BGR70 [R/W] 00000000	
0001C8н	$\begin{gathered} \hline \text { ISMK7 [R/W] } \\ 01111110 \end{gathered}$	IBSA7 [R/W] 00000000	Reserved		
0001СС	Reserved				

(Continued)

MB91313 Series

Address	Register				Block
	0	1	2	3	
0001D0н	$\begin{gathered} \hline \text { SCR8 }[R, R / W] \\ 0--00000 \end{gathered}$	$\begin{gathered} \hline \text { SMR8 [W, R/W] } \\ 000-0000 \end{gathered}$	$\begin{gathered} \hline \text { SSR8 }[R, R / W] \\ 0-000011 \end{gathered}$	$\begin{gathered} \hline \text { ESCR8 [R/W] } \\ --000000 \end{gathered}$	Serial interface 8
0001D4н	RDR8/TRD8 [R/W]---------11111111 : TRR8-----110000		BGR81 [R/W] 00000000	$\begin{aligned} & \text { BGR80 [R/W] } \\ & 00000000 \end{aligned}$	
0001D8H	$\begin{gathered} \hline \text { ISMK8 [R/W] } \\ 01111110 \end{gathered}$	$\begin{aligned} & \text { IBSA8 [R/W] } \\ & 00000000 \end{aligned}$	Reserved		
0001DCH	Reserved				
0001EOH	$\begin{gathered} \hline \text { SCR9 }[R, R / W] \\ 0--00000 \end{gathered}$	$\begin{gathered} \hline \text { SMR9 [W, R/W] } \\ 000-0000 \end{gathered}$	$\begin{gathered} \hline \text { SSR9 [R, R/W] } \\ 0-000011 \end{gathered}$	$\begin{gathered} \text { ESCR9 [R/W] } \\ --000000 \end{gathered}$	Serial interface 9
0001E4н	RDR9/TRD9 [R/W]---------11111111 : : TRD9		$\begin{aligned} & \text { BGR91 [R/W] } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { BGR90 [R/W] } \\ & 00000000 \end{aligned}$	
0001E8H	$\begin{gathered} \text { ISMK9 [R/W] } \\ 01111110 \end{gathered}$	$\begin{aligned} & \text { IBSA9 [R/W] } \\ & 00000000 \end{aligned}$	Reserved		
0001ECH	Reserved				
0001F0н	$\begin{gathered} \hline \text { SCRA[R, R/W] } \\ 0--00000 \end{gathered}$	$\begin{gathered} \hline \text { SMRA [W, R/W] } \\ 000-0000 \end{gathered}$	$\begin{gathered} \hline \text { SSRA [R, R/W] } \\ 0-000011 \end{gathered}$	$\begin{gathered} \text { ESCRA[R/W] } \\ --000000 \end{gathered}$	Serial interface 10
0001F4н	RDRA/TRDA [R/W]$---------\quad 00000000$: RDRA11111111 : TRDA		$\begin{aligned} & \text { BGRA1 [R/W] } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { BGRAO [R/W] } \\ 00000000 \end{gathered}$	
0001F8H	$\begin{aligned} & \hline \text { ISMKA [R/W] } \\ & 01111110 \end{aligned}$	$\begin{aligned} & \text { IBSAA }[\mathrm{R} / \mathrm{W}] \\ & 00000000 \end{aligned}$	Reserved		
$0001 \mathrm{FC}{ }_{\text {H }}$	Reserved				
000200н	DMACAO [R/W]00000000000000000000000000000000				DMAC
000204н	DMACBO [R/W]00000000000000000000000000000000				
000208н	DMACA1 [R/W]00000000000000000000000000000000				
00020CH	DMACB1 [R/W]00000000000000000000000000000000				
000210н	DMACA2 [R/W]00000000000000000000000000000000				
000214	DMACB2 [R/W]00000000000000000000000000000000				
000218н	DMACA3 [R/W]00000000000000000000000000000000				
00021 CH	DMACB3 [R/W]00000000000000000000000000000000				
000220н	DMACA4 [R/W]00000000000000000000000000000000				

(Continued)

MB91313 Series

Address	Register				Block
	0	1	2	3	
000224н	DMACB4 [R/W]00000000000000000000000000000000				DMAC
$\begin{gathered} \text { 000228н } \\ \text { to } \\ 00023 \text { CH }^{2} \end{gathered}$	Reserved				
000240н	DMACR [R/W] 0XX00000 XXXXXXXX XXXXXXXX XXXXXXXX				
$\begin{gathered} 000244 \mathrm{H} \\ \text { to } \\ 0003 E \text { C }^{2} \end{gathered}$	Reserved				Reserved
0003F0н					Bit search module
0003F4н	BSD1 [R/W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
0003F8н					
0003FCн					
000400н	$\begin{gathered} \text { DDR0 [R/W] } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { DDR1 [R/W] } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { DDR2 [R/W] } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { DDR3 [R/W] } \\ 00000000 \end{gathered}$	Data direction register
000404н	$\begin{aligned} & \text { DDR4 [R/W] } \\ & 00000000 \end{aligned}$	$\begin{gathered} \hline \text { DDR5 [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { DDR6 [R/W] } \\ --000000 \end{gathered}$	Reserved	
000408H	Reserved				
00040С ${ }_{\text {н }}$	$\begin{gathered} \hline \text { DDRC [R/W] } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { DDRD }[\mathrm{R} / \mathrm{W}] \\ & 00000000 \end{aligned}$	$\begin{gathered} \hline \text { DDRE [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { DDRF [R/W] } \\ 00000000 \end{gathered}$	
000410н	Reserved				
$\begin{gathered} 000414 \mathrm{H} \\ \text { to } \\ 00041 \mathrm{C}_{\mathrm{H}} \end{gathered}$	Reserved				Reserved
000420н	PFRO [R/W] 00000000	PFR1 [R/W] 00000000	PFR2 [R/W] 00000000	$\begin{gathered} \hline \text { PFR3 }[\text { R/W }] \\ 00000000 \end{gathered}$	Port function register
000424	PFR4 [R/W] 00000000	PFR5 [R/W] 00000000	$\begin{aligned} & \hline \text { PFR6 [R/W] } \\ & \text {--000000 } \end{aligned}$	Reserved	
000428н	Reserved				
00042Сн	$\begin{aligned} & \text { PFRC [R/W] } \\ & 00000000 \end{aligned}$	$\begin{gathered} \hline \text { PFRD [R/W] } \\ 00000000 \end{gathered}$	PFRE [R/W] 00000000	$\begin{gathered} \text { PFRF }[R / W] \\ 000000000 \end{gathered}$	
000430н	Reserved				
$\begin{gathered} 000434 н \\ \text { to } \\ 00043 \text { C }_{H} \end{gathered}$	Reserved				Reserved

(Continued)

MB91313 Series

\left.	Address	Register				Block
	0	1	2	3		$\right]$

(Continued)

MB91313 Series

Address	Register				Block
	0	1	2	3	
000500н	PCRO [R/W]	PCR1 [R/W] 00000000	Reserved		Port pull-up control registers
000504н	Reserved	PCR5 [R/W] 00000000	$\begin{aligned} & \text { PCR6 [R/W] } \\ & --000000 \end{aligned}$	Reserved	
$\begin{aligned} & \hline 000508 \mathrm{H} \\ & \text { to } \\ & 00051 \mathrm{H}_{\mathrm{H}} \end{aligned}$	Reserved				
$\begin{gathered} \hline 000514_{H} \\ \text { to } \\ 00051 \text { C }_{H} \end{gathered}$	Reserved				Reserved
000520н	EPFRO [R/W] 00000000	$\begin{gathered} \text { EPFR1 [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { EPFR2 [R/W] } \\ 11111111 \end{gathered}$	$\begin{gathered} \text { EPFR3 [R/W] } \\ 11111111 \end{gathered}$	External port function register
000524н	$\begin{gathered} \hline \text { EPFR4 [R/W] } \\ 11111111 \end{gathered}$	$\begin{gathered} \hline \text { EPFR5 [R/W] } \\ 11111111 \end{gathered}$	$\begin{gathered} \text { EPFR6 [R/W] } \\ --001000 \end{gathered}$	Reserved	
000528 ${ }^{\text {H }}$	Reserved				
00052CH	$\begin{gathered} \hline \text { EPFRC [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { EPFRD [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { EPFRE [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { EPFRF [R/W] } \\ 00000000 \end{gathered}$	
000530н	Reserved				
$\begin{gathered} \hline 000534_{\mathrm{H}} \\ \text { to } \\ 00056 \mathrm{C}_{\mathrm{H}} \end{gathered}$	Reserved				Reserved
000570н	ADER[R/W]000000111111111		Reserved		$\begin{gathered} \mathrm{EXT} / /^{2} \mathrm{C} / \\ \mathrm{A} / \mathrm{D} \end{gathered}$
000574	Reserved				Reserved
000578	$\begin{array}{r} \text { NS } \\ -----000 \end{array}$	$\begin{aligned} & \text { W] } \\ & 000000 \end{aligned}$	Reserved		${ }^{12} \mathrm{C}$ Noise filter
$\begin{gathered} \hline 00057 \mathrm{C}_{\mathrm{H}} \\ \text { to } \\ 00063 \mathrm{C}_{\mathrm{H}} \end{gathered}$	Reserved				Reserved
000640н	ASR0 [R/W]0000000000000000		ACRO [R/W]00110×0000000000		External bus interface
000644	$\begin{gathered} \text { ASR1 }[\mathrm{R} / \mathrm{W}] \\ 0000000 \mathrm{XXXXXXX} \end{gathered}$		ACR1 [R/W] 00XX0X00 00X0XXXX		
000648	$\begin{gathered} \text { ASR2 }[\mathrm{R} / \mathrm{W}] \\ 00000000 \mathrm{XXXXXXX} \end{gathered}$		$\begin{gathered} \text { ACR2 }[\mathrm{R} / \mathrm{W}] \\ \text { 00xX0X00 00X0XXXX } \end{gathered}$		
00064CH	$\begin{gathered} \text { ASR3 }[\mathrm{R} / \mathrm{W}] \\ 00000000 \mathrm{XXXXXXX} \end{gathered}$		$\begin{gathered} \text { ACR3 }[\mathrm{R} / \mathrm{W}] \\ \text { 00xX0X00 00X0XXXX } \end{gathered}$		
$\begin{gathered} 000650_{\mathrm{H}} \\ \text { to } \\ 00065 \mathrm{CH}_{\mathrm{H}} \end{gathered}$	Reserved				
000660н	AWRO $[$ R/W]0111000001011011		AWR1 $\quad[\mathrm{R} / \mathrm{W}]$$0 \times X X 0000$$0 \times 0 X 1 \mathrm{XXX}$		

(Continued)

MB91313 Series

Address	Register				Block
	0	1	2	3	
000664	AWR2 $[\mathrm{R} / \mathrm{W}]$$0 X X X 0000$ 0X0X1XXX		AWR30XXX0000 0X0X1XXX		External bus interface
$\begin{gathered} \hline 000668 \text { н } \\ \text { to } \\ 00067 \text { CH }^{2} \end{gathered}$	Reserved				
000680н	$\begin{aligned} & \text { CSER[R/W] } \\ & 00000001 \end{aligned}$	Reserved			
000684н	Reserved				
$\begin{gathered} \hline 000688 \text { н } \\ \text { to } \\ 0007 \mathrm{~F} 8 \mathrm{H} \end{gathered}$	Reserved				Unused
0007FCH	Reserved	MODR [W] XXXXXXXX			-
000800н to 000AFCH	Reserved				Unused
$\begin{gathered} \hline \text { 000B00н } \\ \text { to } \\ 000 \text { FFCH } \end{gathered}$	Reserved				Reserved
001000н	DMASAO [R/W] 00000000000000000000000000000000				DMAC
001004н	DMADAO [R/W] 00000000000000000000000000000000				
001008н	DMASA1 [R/W]00000000000000000000000000000000				
00100С ${ }_{\text {H }}$	DMADA1 [R/W]00000000000000000000000000000000				
001010 ${ }_{\text {H }}$	DMASA2 [R/W]00000000000000000000000000000000				
001014	DMADA2 [R/W] 00000000000000000000000000000000				
001018	DMASA3 [R/W]00000000000000000000000000000000				
00101CH	DMADA3 [R/W]00000000000000000000000000000000				
001020н	DMASA4 [R/W]00000000000000000000000000000000				
001024H	DMADA4 [R/W]00000000000000000000000000000000				
$\begin{gathered} \hline 001028 \text { н } \\ \text { to } \\ 006 \text { FFC } \end{gathered}$	Reserved				Reserved

MB91313 Series

(Continued)

Address	Register				Block
	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	
007000_{H}	FLCR[R/W] $0000 X 000$	Reserved			
$007004 H$	FLWC[R/W] 00011011	Reserved			

MB91313 Series

VECTOR TABLE

Interrupt source	Interrupt number		Interrupt level	Offset	TBR default address	DMA transfer	$\begin{aligned} & \text { DMAC } \\ & \text { STOP } \\ & \text { source } \end{aligned}$
	Decimal	Hexadecimal					
Reset	0	00	-	3FCH	000FFFFFCн	-	-
Mode vector	1	01	-	3F8H	000FFFF8\%	-	-
System reserved	2	02	-	3F4н	000FFFFF4н	-	-
System reserved	3	03	-	3FOH	000FFFFF0н	-	-
System reserved	4	04	-	3ECH	000FFFECH	-	-
System reserved	5	05	-	3E8н	000FFFE8н	-	-
System reserved	6	06	-	3E4н	000FFFE4н	-	-
Coprocessor absent trap	7	07	-	3E0н	000FFFEEOH	-	-
Coprocessor error trap	8	08	-	3DCH	000FFFDCH	-	-
INTE instruction	9	09	-	3D8H	000FFFD8н	-	-
System reserved	10	OA	-	3D4н	000FFFD4н	-	-
System reserved	11	OB	-	3D0н	000FFFD0н	-	-
Step trace trap	12	OC	-	ЗССн	000FFFCCH	-	-
NMI request (tool)	13	OD	-	3С8н	000FFFFC8н	-	-
Undefined instruction exception	14	OE	-	3С4н	000FFFFC4	-	-
System reserved	15	OF	15 (FH) fixed	3COH	000FFFCOH	-	-
External interrupt 0	16	10	ICR00	3 BC H	000FFFBCH	-	-
External interrupt 1	17	11	ICR01	3B8H	000FFFB8 ${ }_{\text {н }}$	-	-
External interrupt 2	18	12	ICR02	3B4н	000FFFB4н	-	-
External interrupt 3	19	13	ICR03	3В0н	000FFFB0н	-	-
External interrupt 4	20	14	ICR04	3АС ${ }_{\text {н }}$	000FFFACH	-	-
External interrupt 5	21	15	ICR05	3A8H	000FFFA8н	-	-
External interrupt 6	22	16	ICR06	3А4н	000FFFA4н	-	-
External interrupt 7	23	17	ICR07	3АО	000FFFAOH	-	-
Reload timer 0	24	18	ICR08	39Сн	000FFF9Cн	-	-
Reload timer 1	25	19	ICR09	398H	000FFF98н	-	-
Reload timer 2	26	1A	ICR10	394н	000FFF94н	-	-
UART0 RX/I ${ }^{2} \mathrm{C}$ status	27	1B	ICR11	390н	000FFF90н	\bigcirc	STOP
UARTO TX	28	1 C	ICR12	38С ${ }_{\text {H }}$	000FFF8CH	\bigcirc	-
UART1 RX/I2C status	29	1D	ICR13	388н	000FFF88н	\bigcirc	STOP
UART1 TX	30	1E	ICR14	384н	000FFF84н	\bigcirc	-
UART2 RX/I²C status	31	1F	ICR15	380H	000FFF80н	\bigcirc	STOP
UART2 TX	32	20	ICR16	37 CH	000FFF7Cн	\bigcirc	-
UART3 RX/TX/I² ${ }^{\text {C }}$ status	33	21	ICR17	378 ${ }^{\text {H }}$	000FFF78н	-	-

(Continued)

MB91313 Series

Interrupt source	Interrupt number		Interrupt level	Offset	TBR default address	DMA transfer	$\begin{aligned} & \hline \text { DMAC } \\ & \text { STOP } \\ & \text { source } \end{aligned}$
	Decimal	Hexadecimal					
UART4 RX/TX/12C status	34	22	ICR18	374н	000FFF74 ${ }_{\text {н }}$	-	-
UART5 RX/TX/12C status	35	23	ICR19	370н	000FFF70н	-	-
UART6 RX/TX/12C status	36	24	ICR20	$36 \mathrm{C}_{\mathrm{H}}$	000FFF6CH	-	-
UART7 RX/TX/12C status	37	25	ICR21	368н	000FFF684	-	-
UART8 RX/TX/12C status	38	26	ICR22	364н	000FFF64н	-	-
UART9 RX/TX/12C status	39	27	ICR23	360н	000FFF60Н	-	-
UART10 RX/TX/12C status	40	28	ICR24	$35 \mathrm{C}_{\mathrm{H}}$	000FFF5CH	-	-
A/D converter	41	29	ICR25	358н	000FFF584	-	-
PPGO	42	2A	ICR26	354н	000FFF544	\bigcirc	-
PWC	43	2B	ICR27	350н	000FFF50Н	-	-
HDMI-CEC/Remote controller 0,1	44	2 C	ICR28	34С	000FFF4C ${ }_{\text {н }}$	-	-
Watch timer	45	2D	ICR29	348H	000FFF484	-	-
Main oscillation wait	46	2E	ICR30	344н	000FFF44 ${ }_{\text {н }}$	-	-
Timebase timer	47	2F	ICR31	340 H	000FFF40н	-	-
Reload timer 3	48	30	ICR32	33С	000FFF3C ${ }_{\text {н }}$	-	-
Reload timer 4	49	31	ICR33	338н	000FFF384	-	-
Reload timer 5	50	32	ICR34	334н	000FFF34 ${ }_{\text {¢ }}$	-	-
PPG1	51	33	ICR35	330н	000FFF30н	\bigcirc	-
PPG2	52	34	ICR36	32С ${ }_{\text {H }}$	000FFF2C ${ }_{\text {н }}$	\bigcirc	-
PPG3	53	35	ICR37	328H	000FFF28н	\bigcirc	-
DMAC0	54	36	ICR38	324н	000FFF24н	-	-
DMAC1	55	37	ICR39	320н	000FFF20н	-	-
DMAC2	56	38	ICR40	$31 \mathrm{C}_{\mathrm{H}}$	000FFF1C ${ }_{\text {н }}$	-	-
DMAC3	57	39	ICR41	318н	000FFF18 ${ }_{\text {н }}$	-	-
DMAC4	58	3A	ICR42	314н	000FFF14 ${ }_{\text {¢ }}$	-	-
External interrupt 8 to 15	59	3B	ICR43	310н	000FFF10н	-	-
External interrupt 16 to 23	60	3C	ICR44	30С	000FFFOC ${ }_{\text {н }}$	-	-
Multi-function timer 0, 1	61	3D	ICR45	308н	000FFF08н	-	-
Multi-function timer 2, 3	62	3 E	ICR46	304н	000FFF04н	-	-
Delay interrupt	63	3 F	ICR47	300н	000FFFOOH	-	-
System reserved (Used by REALOS)	64	40	-	2FCH	000FFEFCH	-	-
System reserved (Used by REALOS)	65	41	-	2F8н	000FFEF8 ${ }_{\text {н }}$	-	-
System reserved	66	42	-	2F4н	000FFEF4 ${ }_{\text {H }}$	-	-

(Continued)

MB91313 Series

(Continued)

Interrupt source	Interrupt number		Interrupt level	Offset	TBR default address	$\underset{\text { transfer }}{\text { DMA }}$	DMAC STOP source
	Decimal	Hexadecimal					
System reserved	67	43	-	2FOн	000FFEFFOH	-	-
System reserved	68	44	-	2ЕСн	000FFEEC ${ }_{\text {¢ }}$	-	-
System reserved	69	45	-	2Е8н	000FFEE8 ${ }_{\text {н }}$	-	-
System reserved	70	46	-	2E4H	000FFEE4 ${ }_{\text {н }}$	-	-
System reserved	71	47	-	2Е0н	000FFEEEO ${ }_{\text {H }}$	-	-
System reserved	72	48	-	2DCH	000FFEDCH	-	-
System reserved	73	49	-	2D8н	000FFED8H	-	-
System reserved	74	4A	-	2D4	000FFED4	-	-
System reserved	75	4B	-	2D0н	000FFEDOH	-	-
System reserved	76	4 C	-	2ССн	000FFECC ${ }_{\text {H }}$	-	-
System reserved	77	4D	-	2С8н	000FFEC8H	-	-
System reserved	78	4E	-	2C4H	000FFEC4 ${ }_{\text {¢ }}$	-	-
System reserved	79	4F	-	2 COH	000FFECO ${ }_{\text {н }}$	-	-
Used by INT instruction	$\begin{gathered} 80 \\ \text { to } \\ 255 \end{gathered}$	$\begin{aligned} & \hline 50 \\ & \text { to } \\ & \text { FF } \end{aligned}$	-	$\begin{gathered} 2 \mathrm{BC} \mathrm{C}_{\mathrm{H}} \\ \text { to } \\ 00 \mathrm{O}_{\mathrm{H}} \end{gathered}$	$\begin{aligned} & \text { O00FFEBCH } \\ & \text { to } \\ & 000 \text { FFC00н } \end{aligned}$	-	-

MB91313 Series

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage*1	Vdie (3.3 V)	Vss - 0.5	Vss + 4.0	V	
	Vodi (1.8 V)	Vss-0.3	Vss + 2.5	V	
Analog power supply voltage*1	AVcc	Vss - 0.5	Vss + 4.0	V	
	AVRH	Vss - 0.5	Vss + 4.0	V	
Input voltage*1	V	Vss - 0.5	Vdde + 0.5	V	
		Vss - 0.5	Vss +6.0	V	5 V tolerant pin
Analog pin input voltage*1	VIA	Vss - 0.5	AVcc +0.5	V	
Output voltage*1	Vo	Vss-0.5	Vdde + 0.5	V	
"L" level maximum output current*2	lol	-	8	mA	
"L" level average output current*3	lolav	-	4	mA	
"L" level total maximum output current	Slo	-	60	mA	
"L" level total average output current ${ }^{* 4}$	Slolav	-	30	mA	
"H" level maximum output current*2	Іон	-	-8	mA	
"H" level average output current*3	lohav	-	-4	mA	
" H " level total maximum output current	Σ Іон	-	-60	mA	
" H " level total average output current ${ }^{* 4}$	Σ Іонav	-	- 30	mA	
Power consumption	Po	-	300	mW	
Storage temperature	Tstg	-40	+ 125	${ }^{\circ} \mathrm{C}$	

*1 : This parameter is based on $\mathrm{V}_{\mathrm{ss}}=\mathrm{AV}$ ss $=0.0 \mathrm{~V}$
*2 : The maximum output current is the peak value for a single pin.
*3 : The average output current is the average current for a single pin over a period of 100 ms .
*4 : The total average output current is the average current for all pins over a period of 100 ms .

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB91313 Series

2. Recommended Operating Conditions
(VSS = AVSS = 0.0 V)

Parameter	Symbol	Value		Unit
		Min	Max	
Operating temperature	Ta	-40	+ 85	${ }^{\circ} \mathrm{C}$
Power supply voltage	Vdot (3.3 V)	3.0	3.6	V
	Vdol (1.8 V)	1.65	1.95	
Analog power supply voltage	AVcc	3.0	VdDE	V
5 V tolerant pin input voltage	VI	-	Vss +5.5	V

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB91313 Series

3. DC Characteristics
$\left(\mathrm{V}\right.$ DDE $=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}$ DII $=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{~V}$ ss $=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value			Unit
				Min	Typ	Max	
Current Consumption (upper: 1.8 V lower : 3.3 V)	Ісст	-	$\begin{aligned} & \text { Clock mode } \\ & \mathrm{Ta}=+25^{\circ} \mathrm{C}, \\ & \text { fclk }=32 \mathrm{kHz} \end{aligned}$	-	200	400	$\mu \mathrm{A}$
		-		-	100	300	
	Icc	-	During normal operation $\mathrm{Ta}=+25^{\circ} \mathrm{C}$, fcp $=33 \mathrm{MHz}$, fcpp $=33 \mathrm{MHz}$	-	55	80	mA
		-		-	25	40	
	Icos	-	$\begin{aligned} & \text { Main sleep mode } \\ & \mathrm{Ta}=+25^{\circ} \mathrm{C}, \\ & \mathrm{fcp}=33 \mathrm{MHz}, \\ & \mathrm{fcpp}=33 \mathrm{MHz} \end{aligned}$	-	30	50	mA
		-		-	15	30	
	Iccl	-	Sub RUN mode $\mathrm{Ta}=+25^{\circ} \mathrm{C}$, fclk $=32 \mathrm{kHz}$	-	250	450	$\mu \mathrm{A}$
		-		-	150	400	
	Icch	-	$\begin{aligned} & \text { Main Stop mode } \\ & \mathrm{Ta}=+25^{\circ} \mathrm{C}, \\ & \text { fclk }=0 \end{aligned}$	-	150	300	$\mu \mathrm{A}$
		-		-	40	80	
		-	$\begin{aligned} & \text { Main Stop mode } \\ & \mathrm{Ta}=+70^{\circ} \mathrm{C}, \\ & \text { fclk }=0 \end{aligned}$	-	400	800	$\mu \mathrm{A}$
		-		-	100	200	
" H " level input voltage	V_{H}	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P60 to P65, PD0 to PD7, PE0, PE1, PF0 to PF7	VdDe $=3.3 \mathrm{~V}$	Vdie $\times 0.8$	-	Vdde	V
		$\begin{aligned} & \text { PE2 to PE7, PC0 to PC7, } \\ & \text { P40 to P47 } \end{aligned}$		$V_{\text {die }} \times 0.7$	-	Vdde	V
"L" level input voltage	VIL	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P60 to P65, PD0 to PD7, PE0, PE1, PF0 to PF7	$V_{\text {die }}=3.3 \mathrm{~V}$	Vss	-	Vide $\times 0.2$	V
		```PE2 to PE7, PC0 to PC7, P40 to P47```		Vss	-	Vide $\times 0.3$	V
"H" level output voltage	Vон	All port pins	$\begin{aligned} & \mathrm{V} \text { DDE }=3.3 \mathrm{~V}, \\ & \mathrm{IOH}=-4 \mathrm{~mA} \end{aligned}$	Vdde - 0.5	-	Vdde	V
"L" level output voltage	Vol	All port pins	$\begin{aligned} & \mathrm{V} \text { DDE }=3.3 \mathrm{~V}, \\ & \mathrm{loL}=4 \mathrm{~mA} \end{aligned}$	Vss	-	0.4	V

(Continued)

## MB91313 Series

(Continued)
$\left(\mathrm{V}\right.$ DDE $=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}$ DII $=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{~V}$ SS $=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value			Unit
				Min	Typ	Max	
Input leak current	IIL	Other than   PD0 to PD7, PE0, PE1	-	- 5	-	+ 5	$\mu \mathrm{A}$
		PD0 to PD7, PE0, PE1		- 10	-	+ 10	$\mu \mathrm{A}$
Pull-up/ Pull-down resistance	R	Pull-up :   P00 to P07, P10 to P17,   P50 to P57, P60 to P65,   INITX, TRSTX   Pull-down:   ICDO to ICD3, IBREAK	Pull-up :   V IL $=0 \mathrm{~V}$   Pull-down : $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DDE}}$	10	33	80	k $\Omega$
${ }^{12} \mathrm{C}$ bus switch connection resistance	Rbs	Between P21 and P24   Between P22 and P25   Between P24 and P27   Between P25 and P30	-	-	-	130	$\Omega$

## MB91313 Series

## 4. AC Characteristics

(1) Clock Timing

$$
\left(\mathrm{V} \text { DDE }=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{VDDI}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{~V} \text { Ss }=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
Clock frequency	fc	X0, X1	-	10	16.5	33	MHz	PLL clock (self-oscillation 16.5 MHz doubled via PLL: internal operation at 33 MHz max.)
Sub clock frequency	fclk	$\begin{aligned} & \mathrm{XOA}, \\ & \mathrm{X} 1 \mathrm{~A} \end{aligned}$	-	-	32.768	-	kHz	
Internal operating clock frequency	fcp	-	-	-	-	33	MHz	CPU
	fcpp			-	-	33	MHz	Peripheral
	fcpt			-	-	16.5	MHz	External bus

(2) Clock Output Timing
$\left(\mathrm{VDE}=\mathrm{AV} \mathrm{VC}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{VDD}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{~V}\right.$ Ss $=\mathrm{AV}$ SS $=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Cycle time	toyc	CLK	-	60.7	-	ns	*1
CLK $\uparrow \rightarrow$ CLK $\downarrow$	tchcı	CLK		$1 / 2 \times$ toyc -5	$1 / 2 \times$ tcyc +5	ns	*2
CLK $\downarrow \rightarrow$ CLK $\uparrow$	tcler	CLK		$1 / 2 \times$ torc -5	$1 / 2 \times$ torc +5	ns	*3

*1: tcyc is the frequency of one clock cycle after gearing.
*2: These ratings are for the gear ratio set to $\times 1$.
For the ratings when the gear ratio is set to between $1 / 2,1 / 4$ and $1 / 8$, substitute $1 / 2,1 / 4$ or $1 / 8$ for $n$ in the following equation.
$(1 / 2 \times 1 / n) \times$ tcrc -10

* 3 : These ratings are for the gear ratio set to $\times 1$.

(3) PLL Oscillation Stabilization Wait Time
$\left(\mathrm{V}\right.$ DDE $=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}$ DII $=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Value		Unit	Remarks
		Max			
PLL oscillation stabilization   wait time	tLock	600	-	$\mu \mathrm{s}$	

## MB91313 Series

(4) Reset Input

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
INITX input time (at power-on)	tintı	INITX	-	Oscillation stabilization delay time of oscillator $+\mathrm{tcp} \times 10$	-	$\mu \mathrm{s}$
INITX input time (other than power-on)				tcp $\times 10$	-	ns
INITX input time (Stop recovery time)				Oscillation stabilization delay time of oscillator $+\operatorname{tcp} \times 10$	-	$\mu \mathrm{s}$



## MB91313 Series

(5) Normal Access Read/Write Operation

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
CSOX to CS3X setup	tcstch	$\begin{gathered} \text { CLK } \\ \text { CSOX to CS3X } \end{gathered}$	AWRxL: $\mathrm{WO} 2=0$	3	-	ns	*1
	tcsolch		AWRxL: WO2 = 1	-3	-	ns	*1
CSOX to CS3X hold	tchesh		-	3	$1 / 2 \times$ tcyc +6	ns	
Address setup time	tasch	$\begin{array}{\|c} \text { CLK } \\ \text { AD15 to AD00 } \end{array}$		3	-	ns	
Address hold time	tchax			3	$1 / 2 \times$ tcyc +6	ns	
WR0X, WR1X delay time	tchwi	CLK   WR0X, WR1X		-	6	ns	
WR0X, WR1X delay time	tchwh			-	6	ns	
WROX, WR1X minimum pulse width	twıwh	WR0X, WR1X		12	-	ns	
Data setup $\rightarrow$ WRxX $\uparrow$	toswh	WR0X, WR1X		tovc	-	ns	
WRxX $\uparrow \rightarrow$ Data hold time	twhdx	AD15 to AD00		3	-	ns	
RDX delay time	tchri	CLK		-	6	ns	
RDX delay time	Існвн	RDX		-	6	ns	
RDX $\downarrow \rightarrow$   Valid data input time	trldv	$\begin{gathered} \text { RDX } \\ \text { AD15 to AD00 } \end{gathered}$		-	tcyc - 30	ns	*2
$\text { Data setup } \rightarrow \mathrm{RDX} \uparrow$ Time	toser			30	-	ns	
RDX $\uparrow \rightarrow$ Data hold time	trhdx			0	-	ns	
RDX minimum pulse width	trLRH	RDX		12	-	ns	
ASX setup	taslch	$\begin{aligned} & \text { CLK } \\ & \text { ASX } \end{aligned}$		3	-	ns	
ASX hold	$\mathrm{tashch}^{\text {a }}$			3	$1 / 2 \times$ tcyc +6	ns	

## *1 : AWRxL : Area Wait Register

*2 : When the bus timing is delayed by automatic wait insertion or RDY input, add the time (tcyc $\times$ the number of cycles added for the delay) to this rating.

## MB91313 Series

(6) Multiplexed Bus Access Read/Write Operation

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
AD15 to AD00 address setup time $\rightarrow$ CLK $\uparrow$	tasch	$\begin{gathered} \text { CLK } \\ \text { AD15 to AD00 } \end{gathered}$	-	3	-	ns	
CLK $\uparrow \rightarrow$ AD15 to AD00 address setup time	tchax			3	$1 / 2 \times$ tcyc +6	ns	
AD15 to AD00 address setup time $\rightarrow$ ASX $\uparrow$	tasash	ASX   AD15 to AD00		12	-	ns	*
ASX $\uparrow \rightarrow$ AD15 to AD00 address setup time	tashax			tcyc-3	tcyc +3	ns	*

*: CSxX $\rightarrow$ RDX/WRxX setup extension $=1$
Note : Use the same rating as normal bus interface except for this rating.

- $\operatorname{CSxX} \rightarrow$ RDX/WRxX setup extension $=1$



## MB91313 Series

- CSxX $\rightarrow$ RDX/WRxX setup extension $=0$



## MB91313 Series

(7) Ready Input Timings

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
$\begin{aligned} & \text { RDY setup time } \rightarrow \\ & \text { CLK } \downarrow \end{aligned}$	trdys	CLK, RDY	-	25	-	ns
CLK $\downarrow \rightarrow$ RDY hold time	troyn	CLK, RDY	-	0	-	ns



## MB91313 Series

(8) UART timing
$\left(\mathrm{V}_{\text {DDE }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDI}}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{~V}\right.$ SS $=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
Serial clock cycle time	tscrc	SCK0 to SCK10	Internal shift clock operation	4 tcycp	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	tstov	SCK0 to SCK10 SOT0 to SOT10		-20	+ 20	ns
Valid SIN $\rightarrow$ SCK $\uparrow$	tivsh	SCK0 to SCK10 SIN0 to SIN10		30	-	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	SCK0 to SCK10 SINO to SIN10		20	-	ns
Serial clock "H" pulse width	tshsL	SCK0 to SCK10	External shift clock operation	2 tcycp	-	ns
Serial clock "L" pulse width	tsısH	SCK0 to SCK10		2 tcycp	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	tstov	$\begin{aligned} & \text { SCKO to SCK10 } \\ & \text { SOT0 to SOT10 } \end{aligned}$		-	30	ns
Valid SIN $\rightarrow$ SCK $\uparrow$	tivsh	$\begin{gathered} \text { SCK0 to SCK10 } \\ \text { SINO to SIN10 } \end{gathered}$		20	-	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	$\begin{aligned} & \text { SCK0 to SCK10 } \\ & \text { SINO to SIN10 } \end{aligned}$		20	-	ns

Notes : - The above standards apply to the CLK synchronous mode.

- tcycp indicates the peripheral clock cycle time.


## MB91313 Series

- Internal shift clock mode

- External shift clock mode



## MB91313 Series

(9) Reload timer clock, PPG timer input, multi-function timer input timing
$\left(\mathrm{V}\right.$ DDE $=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V} \mathrm{VDI}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{~V}$ SS $=0 \mathrm{~V}$, $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ )

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
Input pulse width	ttiwh ttiwn	TIN0 to TIN5 TRG0 to TRG3	-	2 tcycp	-	ns

Note : tcycp is the cycle time of the peripheral clock.

(10) Trigger Input Timing

$\left(\mathrm{V}_{\text {dde }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}\right.$ dit $=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{~V}$ Ss $=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$						
Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
A/D activation trigger input time	$\mathrm{t}_{\text {ATRG }}$	ATRG	-	5 tcycp	-	ns

Note : tcycp is the cycle time of the peripheral clock.


## MB91313 Series

(11) Remote control signal input timing

Parameter	Symbol	Pin name	Conditions	Value		Unit	Parameter
				Min	Max		
Remote control input pulse width	trcin	RCINO RCIN1	At 32.768 kHz	62	-	$\mu \mathrm{s}$	Count 2 clocks or more



## MB91313 Series

(12) $I^{2} C$ timing

- When operating in master mode

Parameter	Symbol	Conditions	Typical mode		High-speed mode*1		Unit	Remarks
			Min	Max	Min	Max		
SCL clock frequency	fscl	$\begin{aligned} & \mathrm{R}=1 \mathrm{k} \Omega, \\ & \mathrm{C}=50 \mathrm{pF}^{\star 2} \end{aligned}$	0	100	0	400	kHz	
"L" period of SCL clock	tıow		4.7	-	1.3	-	$\mu \mathrm{s}$	
"H" period of SCL clock	thigh		4.0	-	0.6	-	$\mu \mathrm{s}$	
Bus free time between "STOP condition" and "START condition"	tbus		4.7	-	1.3	-	$\mu \mathrm{s}$	
SCL $\downarrow \rightarrow$ SDA output delay time	tdldat		-	$5 \times \mathrm{M}^{* 3}$	-	$5 \times \mathrm{M}^{* 3}$	ns	
"Repeated START condition" setup time SCL $\uparrow \rightarrow$ SDA $\downarrow$	tsusta		4.7	-	0.6	-	$\mu \mathrm{s}$	
"Repeated START condition" hold time SDA $\downarrow \rightarrow$ SCL $\downarrow$	thdsta		4.0	-	0.6	-	$\mu \mathrm{s}$	The first clock pulse is generated after this.
"STOP condition" setup time SCL $\uparrow \rightarrow$ SDA $\uparrow$	tsusto		4.0	-	0.6	-	$\mu \mathrm{s}$	
SDA data input hold time (vs. SCL $\downarrow$ )	thdoat		$2 \times \mathrm{M}^{* 3}$	-	$2 \times \mathrm{M}^{\star 3}$	-	$\mu \mathrm{s}$	
SDA data input setup time (vs. SCL $\uparrow$ )	tsudat		250	-	100*4	-	ns	

*1: For use at over 100 kHz , set the resource clock to 6 MHz or higher.
*2 : R and C represent the pull-up resistance and load capacitance of the SCL and SDA output lines, respectively.
*3: M = Resource clock cycle (ns)
*4: A high-speed mode $I^{2} \mathrm{C}$ bus device can be used on a standard mode $\mathrm{I}^{2} \mathrm{C}$ bus system as long as the device satisfies the requirement of "tsudat $\geq 250 \mathrm{~ns}$ ".
When a device does not extend the "L" period of the SCL signal, the next data must be output to the SDA line within 1250 ns (maximum SDA/SCL rise time + tsudat) from when the SCL line is released.

## MB91313 Series

- When operating in slave mode

Parameter	Symbol	Conditions	Typical mode		High-speed mode*1		Unit	Remarks
			Min	Max	Min	Max		
SCL clock frequency	fscl	$\begin{aligned} & \mathrm{R}=1 \mathrm{k} \Omega, \\ & \mathrm{C}=50 \mathrm{pF}^{\star 2} \end{aligned}$	0	100	0	400	kHz	
"L" period of SCL clock	tow		4.7	-	1.3	-	$\mu \mathrm{s}$	
"H" period of SCL clock	thigh		4.0	-	0.6	-	$\mu \mathrm{s}$	
Bus free time between "STOP condition" and "START condition"	tbus		4.7	-	1.3	-	$\mu \mathrm{s}$	
SCL $\downarrow \rightarrow$ SDA output delay time	toldat		-	$5 \times \mathrm{M}^{* 3}$	-	$5 \times \mathrm{M}^{* 3}$	ns	
"Repeated START condition" setup time SCL $\uparrow \rightarrow$ SDA $\downarrow$	tsusta		4.7	-	0.6	-	$\mu \mathrm{s}$	
"Repeated START condition" hold time SDA $\downarrow \rightarrow$ SCL $\downarrow$	thdsta		4.0	-	0.6	-	$\mu \mathrm{s}$	The first clock pulse is generated after this.
"STOP condition" setup time SCL $\uparrow \rightarrow$ SDA $\uparrow$	tsusto		4.0	-	0.6	-	$\mu \mathrm{s}$	
SDA data input hold time (vs. SCL $\downarrow$ )	thdoat		$2 \times \mathrm{M}^{* 3}$	-	$2 \times \mathrm{M}^{* 3}$	-	$\mu \mathrm{S}$	
SDA data input setup time (vs. SCL $\uparrow$ )	tsudat		250	-	$100 * 4$	-	ns	

*1: For use at over 100 kHz , set the resource clock to 6 MHz or higher.
*2 : R and C represent the pull-up resistance and load capacitance of the SCL and SDA output lines, respectively.
*3: M = Resource clock cycle (ns)
*4: A high-speed mode $I^{2} \mathrm{C}$ bus device can be used on a standard mode $I^{2} \mathrm{C}$ bus system as long as the device satisfies the requirement of "tsudat $\geq 250 \mathrm{~ns}$ ". When a device does not extend the "L" period of the SCL signal, the next data must be output to the SDA line within 1250 ns (maximum SDA/SCL rise time + tsudat) from when the SCL line is released.

## MB91313 Series

## 5. Electrical Characteristics for the A/D Converter

(1) Electrical Characteristics

$$
\left(\mathrm{VDDE}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V} \text { DDI }=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{~V} \text { Ss }=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Value			Unit	Remarks
	Min	Typ	Max		
Resolution	-	-	10	bit	
Total error*1	-	-	$\pm 5.5$	LSB	$\mathrm{AVcc}=3.3 \mathrm{~V}$,   $\mathrm{AVRH}=3.3 \mathrm{~V}$ (CPU sleep)
Nonlinear error*1	-	-	$\pm 3.5$	LSB	
Differential linear error*1	-	-	$\pm 2.0$	LSB	
Zero transition voltage*1	-4.0	-	+ 6.0	LSB	
Full transition voltage*1	AVRH - 5.5	-	AVRH + 3.0	LSB	
Conversion time	7.94*2	-	-	$\mu \mathrm{s}$	
Power supply current (analog + digital)	-	-	3	mA	
Reference power supply current (between AVRH and AVSS)	-	-	100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{AVRH}=3.0 \mathrm{~V}, \\ & \mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V} \end{aligned}$
Analog input capacitance	-	-	21	pF	
Interchannel disparity	-	-	4	LSB	

*1 : Measured in the CPU sleep state
*2 : Depending on the clock cycle supplied to peripheral resources
AN9 to ANO
Analog input pin

## MB91313 Series

- The relationship between peripheral clock and external impedance
(Peripheral clock frequency and external impedance) (Peripheral clock cycle and external impedance)


Peripheral clock frequency [MHz]

## MB91313 Series

## (2) Definition of terms

Resolution
Linearity error
: Analog variation that is recognized by an A/D converter.
: The deviation between the actual conversion characteristics and a straight line connecting the device's zero transition point ("00 00000000 s " $\longleftrightarrow$ "00 00000001 s ") and full scale transition point ("11 $11111110 \mathrm{~B} " \longleftrightarrow$ "11 1111 1111s").
Differential linear error : Deviation from the ideal value of the input voltage that is required to change the output code by 1 LSB.
Total error : This error indicates the difference between actual and ideal values, including the zero transition error/full-scale transition error/linearity error

(Continued)

## MB91313 Series

(Continued)


## MB91313 Series

6. Flash Memory Write/Erase Characteristics

(VDDE $\left.=3.3 \mathrm{~V}, \mathrm{VdD}=1.8 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}\right)$						
Parameter		Value			Remarks	
	Min	Typ	Max			
Sector erase time	-	0.9	3.6	s	Excludes internal programming   prior erasure.	
Word write time	-	23	370	$\mu \mathrm{~s}$	Excludes system-level overhead.	
Chip write time	-	6.2	102	s	Excludes system-level overhead.	
Erase/write cycle	10000	-	-	cycle		
Data retention time	$20^{*}$	-	-	year	Average $\mathrm{Ta}=+85^{\circ} \mathrm{C}$	

*: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at $+85^{\circ} \mathrm{C}$ ).

## MB91313 Series

■ ORDERING INFORMATION

Part number	Package
MB91F313PMC-GE1	120-pin plastic LQFP
	(FPT-120P-M21)

## MB91313 Series

## PACKAGE DIMENSION

120-pin plastic LQFP	Lead pitch	0.50 mm
	Package width $\times$   package length	$16.0 \times 16.0 \mathrm{~mm}$
	Lead shape	Gullwing
	Sealing method	Plastic mold
	Wounting height   (FPT-120P-M21)	Weight



Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/fj/DATASHEET/ef-ovpklv.html

## MB91313 Series

The information for microcontroller supports is shown in the following homepage.
http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html

## FUJITSU LIMITED

## All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

## Edited Business Promotion Dept.


[^0]:    "Check Sheet" is seen at the following support page
    URL : http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html
    "Check Sheet" lists the minimal requirement items to be checked to prevent problems beforehand in system development.

