RFMA1415-1W-Q7

UPDATED: 04/24/2008

14.4-15.4 GHz High Gain Surface-Mounted PA

FEATURES

- $14.4-15.4 \mathrm{GHz}$ Operating Frequency Range
- 29.0dBm Output Power @1dB Compression
- 28.0dB Typical Power Gain @1dB Compression
- -40dBc OIMD3 @Pout $18.5 \mathrm{dBm} /$ tone
- 7X7mm QFN Package

APPLICATIONS

- Point-to-point and point-to-multipoint radio
- Military Radar Systems

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{B}}=25^{\circ} \mathrm{C}$)

SYMBOL	PARAMETER/TEST CONDITIONS	MIN	TYP	MAX	UNITS
F	Operating Frequency Range	14.4		15.4	GHz
$\mathrm{P}_{1 \mathrm{~dB}}$	Output Power @1dB Gain Compression	28.0	29.0		dBm
$\mathrm{G}_{1 \mathrm{~dB}}$	Gain @1dB Gain Compression	24.0	28.0		dB
OIMD3	Output $3^{\text {rd }}$ Order Intermodulation Distortion $@ \Delta f=10 \mathrm{MHz}$, Pout $=18.5 \mathrm{dBm} /$ tone		-40	-37	dBc
Input RL	Input Return Loss		-10	-8	dB
Output RL	Output Return Loss		-15		dB
ID 1	Drain Current ${ }^{1}$		180	220	mA
$\mathrm{I}_{\mathrm{D} 2}$	Drain Current ${ }^{1}$		800	940	mA
$\mathrm{V}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{D} 2}$	Drain Voltage		7		V
$\mathrm{V}_{\mathrm{G} 1}, \mathrm{~V}_{\mathrm{G} 2}$	Gate Voltage	-2.5		-0.25	V
Rth	Thermal Resistance ${ }^{2}$		9		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Tb	Operating Base Plate Temperature	-30		+75	${ }^{\circ} \mathrm{C}$

1. Recommended to bias each amplifier stage separately using a gate voltage range, starting from -2.5 to -0.3 V to achieve typical current levels. 2. Rth is mounting dependent. Measured result when used with Excelics recommended evaluation board.

MAXIMUM RATINGS AT $25^{\circ} \mathbf{C}^{3,4}$

SYMBOL	CHARACTERISTIC	ABSOLUTE	CONTINOUS
$\mathrm{V}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{D} 2}$	Drain to Source Voltage	12 V	8 V
$\mathrm{~V}_{\mathrm{G} 1}, \mathrm{~V}_{\mathrm{G} 2}$	Gate to Source Voltage	-5 V	-2.5 V
$\mathrm{I}_{\mathrm{D} 1}, \mathrm{I}_{\mathrm{D} 2}$	Drain Current	Idss	$220,940 \mathrm{~mA}$
P_{II}	Input Power	20 dBm	$@ 3 \mathrm{~dB}$ compression
T_{CH}	Channel Temperature	$175^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{STG}}$	Storage Temperature	$-65 / 175^{\circ} \mathrm{C}$	$-65 / 150^{\circ} \mathrm{C}$
P_{T}	Total Power Dissipation	15.0 W	12.6 W

[^0]Package Dimension and Pin Assignment

Top View

Additional Notes:

1) Ground Plane must be soldered to PCB RF ground
2) All dimensions are in inches
3) Refer to Excelics application notes on QFNs for further guidelines
4) Pin Assignment:

Pin	Assignment
$1,2,3,5,6,7,8,10,11,12,14$	NC
4	$\mathrm{RF}_{\mathrm{in}}$
9	$\mathrm{~V}_{\mathrm{g} 1}$
13	$\mathrm{~V}_{\mathrm{g} 2}$
$15,16,17,19,20,21,22,24,25,26,28$	NC
18	$\mathrm{RF}_{\mathrm{out}}$
23	$\mathrm{~V}_{\mathrm{d} 2}$
27	$\mathrm{~V}_{\mathrm{d} 1}$

Typical Performance:

1. Small Signal Performance $\left(@ V_{d 1}=V_{d 2}=7 \mathrm{~V}, I_{d 1}=180 \mathrm{~mA}, I_{\mathrm{d} 2}=800 \mathrm{~mA}\right)$

2. $P 1-\mathrm{dB}$ \& G1-dB ($\left.@ \mathrm{~V}_{\mathrm{d} 1}=\mathrm{V}_{\mathrm{d} 2}=7 \mathrm{~V}, \mathrm{I}_{\mathrm{d} 1}=180 \mathrm{~mA}, \mathrm{I}_{\mathrm{d} 2}=800 \mathrm{~mA}\right)$

14.4-15.4 GHz High Gain Surface-Mounted PA

3. P1-dB \& G1-dB (@ $20^{\circ} \mathrm{C},-35^{\circ} \mathrm{C} \& 85^{\circ} \mathrm{C}$)

14.4-15.4 GHz High Gain Surface-Mounted PA

Recommended Circuit Schematic:

Notes:

1) External bypass capacitors should be placed as close to the package as possible.
2) Dual biasing sequence required:
a. Turn-on Sequence: Apply $\mathrm{V}_{\mathrm{g} 1}=-2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{g} 2}=-2.5 \mathrm{~V}$, followed by $\mathrm{V}_{\mathrm{d} 1}=\mathrm{V}_{\mathrm{d} 2}=7 \mathrm{~V}$, lastly increase $\mathrm{V}_{\mathrm{g} 1} \& \mathrm{~V}_{\mathrm{g} 2}$ in sequence until required $\mathrm{I}_{\mathrm{d} 1}$ and $\mathrm{I}_{\mathrm{d} 2}$ is obtained.
b. Turn-off Sequence: Turn off $\mathrm{V}_{\mathrm{d} 1} \& \mathrm{~V}_{\mathrm{d} 2}$, followed by $\mathrm{V}_{\mathrm{g} 1} \& \mathrm{~V}_{\mathrm{g} 2}$
3) Demonstration board available upon request.

[^0]: 3. Operation beyond absolute or continuous ratings may result in permanent damage or reduction of MTTF respectively.

