September 2006 Giving you the edge PCS2I99448

rev 0.4

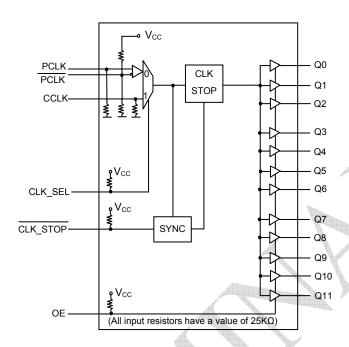
3.3V/2.5V LVCMOS 1:12 Clock Fanout Buffer

Features

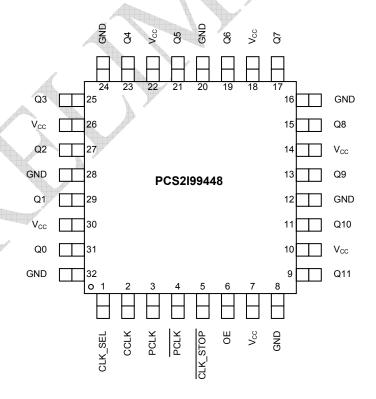
- 12 LVCMOS compatible clock outputs
- Selectable LVCMOS and differential LVPECL compatible clock inputs
- Maximum clock frequency of 350MHz
- Maximum clock skew of 150pS
- Synchronous output stop in logic low state eliminates output runt pulses
- High-impedance output control
- 3.3V or 2.5V power supply
- Drives up to 24 series terminated clock lines
- Ambient temperature range -40°C to +85°C
- 32-Lead LQFP & TQFP packaging
- Supports clock distribution in networking, telecommunication and computing applications
- Pin and Function compatible to MPC9448 and MPC948

Functional Description

The PCS2I99448 is a 3.3V or 2.5V compatible, 1:12 clock fanout buffer targeted for high performance clock tree applications. With output frequencies up to 350 MHz and output skews less than 150 pS, the device meets the needs of most demanding clock applications.


The PCS2I99448 is specifically designed to distribute LVCMOS compatible clock signals up to a frequency of 350MHz. Each output provides a precise copy of the input signal with a near zero skew. The outputs buffers support driving of 50Ω terminated transmission lines on the incident edge: each output is capable of driving either one parallel terminated or two series terminated transmission lines.

Two selectable, independent clock inputs are available, providing support of LVCMOS and differential LVPECL clock distribution systems. The PCS2I99448 CLK_STOP control is synchronous to the falling edge of the input clock. It allows the start and stop of the output clock signal only in a logic low state, thus eliminating potential output runt pulses. Applying the OE control will force the outputs into high–impedance mode.


All inputs have an internal pull—up or pull—down resistor preventing unused and open inputs from floating. The device supports a 2.5V or 3.3V power supply and an ambient temperature range of -40°C to +85°C. The PCS2I99448 is pin and function compatible but performance—enhanced to the MPC948.

Block Diagram

Pin Diagram

Table 1. FUNCTION TABLE

Control	Default	0	1		
CLK_SEL	1	PECL differential input selected	CCLK input selected		
OE	1	Outputs disabled (high-impedance state) ¹	Outputs enabled		
CLK_STOP	1	Outputs synchronously stopped in logic low state	Outputs active		

Note: 1. OE=0 will high-impedance tristate all outputs independent on CLK_STOP.

Table 2. PIN CONFIGURATION

Pin#	Pin Name	I/O	Туре	Function
4,3	PCLK, PCLK	Input	LVPECL	LVPECL Clock Inputs
2	CCLK	Input	LVCMOS	Alternative clock signal input
1	CLK_SEL	Input	LVCMOS	Clock input select
5	CLK_STOP	Input	LVCMOS	Clock output enable/disable
6	OE	Input	LVCMOS	Output enable/disable (high–impedance tristate)
31,29,27,25,23,21,19,17,15,13,11,9	Q0 – Q11	Output	LVCMOS	Clock output
8,12,16,20,24,28,32	GND	Supply	Ground	Negative power supply (GND) for I/O and core.
7,10,14,18,22,26,30	Vcc	Supply	V _{CC}	Positive power supply for I/O and core. All V _{CC} pins must be connected to the positive power supply for correct operation

Table 3. ABSOLUTE MAXIMUM RATINGS¹

Symbol	Parameter	Min	Max	Unit
V _{CC}	Supply Voltage	-0.3	3.9	V
V _{IN}	DC Input Voltage	-0.3	V _{CC} + 0.3	V
V _{OUT}	DC Output Voltage	-0.3	V _{CC} + 0.3	V
lin	DC Input Current		±20	mA
Гоит	DC Output Current		±50	mA
T _{Stor}	Storage Temperature Range	-65	125	°C

Note: 1. These are stress ratings only and are not implied for functional use. Exposure to absolute maximum ratings for prolonged periods of time may affect device reliability.

Table 4. GENERAL SPECIFICATIONS

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
V_{TT}	Output Termination Voltage		V _{CC} ÷2		V	
MM	ESD Protection (Machine Model)	200			V	
HBM	ESD Protection (Human Body Model)	2000			V	
LU	Latch-up Immunity	200		A	mA	
C _{PD}	Power Dissipation Capacitance		10		pF	Per Output
C _{IN}	Input Capacitance		4.0		pF	Inputs

Table 5. DC CHARACTERISTICS (V_{CC} = 3.3V ± 5%, T_A = -40°C to +85°C)

Symbol	Characteristic		Min	Тур	Max	Unit	Condition
V_{IH}	Input HIGH Voltage		2.0		V _{CC} + 0.3	V	LVCMOS
V_{IL}	Input LOW Voltage		-0.3		0.8	>	LVCMOS
V_{PP}	Peak-to-Peak Input Voltage	PCLK	250			mV	LVPECL
V _{CMR} ¹	Common Mode Range	PCLK	1.1		V _{CC} - 0.6	V	LVPECL
II_N	Input Current ²		4		300	μΑ	$V_{IN} = V_{CC}$ or GND
V _{OH}	Output HIGH Voltage		2.4		,	V	$I_{OH} = -24 \text{mA}^3$
V _{OL}	Output LOW Voltage				0.55 0.30	V	$I_{OL} = 24\text{mA}^3$ $I_{OL} = 12\text{mA}$
Z _{OUT}	Output Impedance	A		17		Ω	
I _{CCQ} ⁴	Maximum Quiescent Supply Cu	rrent			2.0	mA	All V _{CC} Pins

Note: 1. V_{CMR} (DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V_{CMR} range and the input swing lies within the V_{PP} (DC) specification.

2. Input pull-up / pull-down resistors influence input current.

^{3.} The PCS2I99448 is capable of driving 50Ω transmission lines on the incident edge. Each output drives one 50Ω parallel terminated transmission line to a termination voltage of V_{TC} . Alternatively, the device drives up to two 50Ω series terminated transmission lines (for V_{CC} =3.3V) or one 50Ω series terminated transmission line (for V_{CC} =2.5V).

^{4.} I_{CCQ} is the DC current consumption of the device with all outputs open and the input in its default state or open.

PCS2199448 September 2006 Giving you the edge

rev 0.4

Table 6. AC CHARACTERISTICS $(V_{CC} = 3.3V \pm 5\%, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)^{1}$

Symbol	Characteristics			Тур	Max	Unit	Condition
f_{ref}	Input Frequency		0		350	MHz	
f_{MAX}	Maximum Output Frequency	0		350	MHz		
V_{PP}	Peak-to-peak input voltage	PCLK	400		1000	mV	LVPECL
V _{CMR} ²	Common Mode Range	PCLK	1.3		V _{CC} -0.8	V	LVPECL
t _{P, REF}	Reference Input Pulse Width		1.4			nS	A
t_r , t_f	CCLK Input Rise/Fall Time				1.0 ³	nS	0.8 to 2.0V
t _{PLH/HL}	Propagation delay	PCLK to any Q	1.6		3.6	nS	
t _{PLH/HL}	Fropagation delay	CCLK to any Q	1.3		3.3	nS	
t _{PLZ, HZ}	Output Disable Time				11	nS	
t _{PZL, LZ}	Output Enable Time				11	nS	
		CCLK to CLK_STOP	0.0			nS	,
t _S	Setup time	PCLK to CLK_STOP	0.0			nS	
t _H	Hold time	CCLK to CLK_STOP	1.0			nS	
чн	riola time	PCLK to CLK_STOP	1.5			nS	
t _{sk(O)}	Output-to-output Skew				150	pS	
t _{sk(PP)}	Device-to-device Skew	PCLK or CCLK to any Q			2.0	nS	
	4	Using CCLK			300	pS	
t _{SK(P)}	Output pulse skew ⁴	Using PCLK			400	pS	
DCQ	Output Duty Cycle	f _Q <170 MHz	45	50	55	%	DC _{REF} = 50%
t_r , t_f	Output Rise/Fall Time		0.1		1.0	nS	0.55 to 2.4V

Table 7. DC CHARACTERISTICS ($V_{CC} = 2.5V \pm 5\%$, $T_A = -40$ °C to +85°C)

Symbol	Characteristics		Min	Тур	Max	Unit	Condition
V_{IH}	Input high voltage		1.7		$V_{CC} + 0.3$	V	LVCMOS
V _{IL}	Input low voltage		-0.3		0.7	V	LVCMOS
V_{PP}	Peak-to-peak input voltage	PCLK	250			mV	LVPECL
V _{CMR} ¹	Common Mode Range	PCLK	1.0		V _{CC} -0.7	V	LVPECL
I _{IN}	Input current ²				300	μΑ	V _{IN} =GND or V _{IN} =VCC
V _{OH}	Output High Voltage		1.8			V	I_{OH} = -15 mA ³
V_{OL}	Output Low Voltage				0.6	V	I_{OL} = 15 mA ³
Z _{OUT}	Output impedance			19		Ω	
I _{CCQ} ⁴	Maximum Quiescent Supply	Current			2.0	mA	All V _{CC} Pins

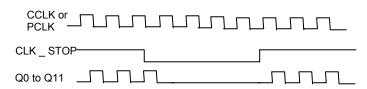
Note: 1. V_{CMR} (DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V_{CMR} range and the input swing lies within the V_{PP} (DC) specification.

Note: 1. AC characteristics apply for parallel output termination of 50Ω to V_{TT}.
 2. V_{CMR} (AC) is the crosspoint of the differential input signal. Normal AC operation is obtained when the crosspoint is within the V_{CMR} range and the input swing lies within the V_{PP} (AC) specification. Violation of V_{CMR} or V_{PP} impacts t_{PLH/HL} and t_{SK(PP)}.
 3. Violation of the 1.0 nS maximum input rise and fall time limit will affect the device propagation delay, device-to-device skew, reference input pulse

width, output duty cycle and maximum frequency specifications. 4. Output pulse skew is the absolute difference of the propagation delay times: $|\mathbf{t}_{pLH} - \mathbf{t}_{pHL}|$.

Input pull-up / pull-down resistors influence input current.
 The PCS2l99448 is capable of driving 50Ω transmission lines on the incident edge. Each output drives one 50Ω parallel terminated transmission line to a termination voltage of V_{TT}. Alternatively, the device drives one 50Ω series terminated transmission lines at V_{CC}=2.5V.
 I_{CCQ} is the DC current consumption of the device with all outputs open and the input in its default state or open.

Table 8. AC CHARACTERISTICS $(V_{CC} = 2.5V \pm 5\%, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)^{1}$


Symbol	Charac	Min	Тур	Max	Unit	Condition		
f_{ref}	Input Frequency		0		350	MHz		
f_{MAX}	Maximum Output Frequency	0		350	MHz			
V_{PP}	Peak-to-peak input voltage	PCLK	400		1000	mV	LVPECL	
V _{CMR} ²	Common Mode Range	PCLK	1.2		V _{CC} -0.8	V	LVPECL	
t _{P, REF}	Reference Input Pulse Width		1.4			nS		
t_r , t_f	CCLK Input Rise/Fall Time				1.0 ³	nS	0.8 to 2.0V	
t _{PLH/HL}	Propagation delay	PCLK to any Q	1.5		4.2	nS		
t _{PLH/HL}	Propagation delay	CCLK to any Q	1.7		4.4	nS	7	
t _{PLZ, HZ}	Output Disable Time	<u> </u>			11	nS	and the second	
t _{PZL, LZ}	Output Enable Time		P		11	nS		
		CCLK to CLK_STOP	0.0			nS		
t _S	Setup time	PCLK to CLK_STOP	0.0			nS		
t _H	Hold time	CCLK to CLK_STOP	1.0			nS		
		PCLK to CLK_STOP	1.5			nS		
t _{sk(O)}	Output-to-output Skew				150	pS		
$t_{\text{sk}(\text{PP})}$	Device-to-device Skew	PCLK or CCLK to any Q			2.7	nS		
$t_{SK(p)}$	Output pulse skew ⁴	Using CCLK Using PCLK			200 300	pS pS		
DC	Output Duty Cycle	f _Q < 350 MHz and using CLK	45	50	55	%	DO 500/	
DC_Q	Output Duty Cycle	f _Q <200 MHz and using PCLK	45	50	55	%	DC _{REF} = 50%	
t_r , t_f	Output Rise/Fall Time		0.1		1.0	nS	0.6 to 1.8V	

Note: 1. AC characteristics apply for parallel output termination of 50Ω to V_{TT}.
 V_{CMR} (AC) is the crosspoint of the differential input signal. Normal AC operation is obtained when the crosspoint is within the V_{CMR} range and the input swing lies within the V_{PP} (AC) specification. Violation of V_{CMR} or V_{PP} impacts t_{PLH/HL} and t_{SK(PP)}.
 Violation of the 1.0nS maximum input rise and fall time limit will affect the device propagation delay, device-to-device skew, reference

input pulse width, output duty cycle and maximum frequency specifications.

4. Output pulse skew is the absolute difference of the propagation delay times: | t_{pLH} - t_{pHL} |.

APPLICATIONS INFORMATION

Timing Diagram
Figure 1. Output Clock Stop (CLK_STOP)

Driving Transmission Lines

The PCS2I99448 clock driver was designed to drive high speed signals in a terminated transmission line environment. To provide the optimum flexibility to the user, the output drivers were designed to exhibit the lowest impedance possible. With an output impedance of 17Ω (Vcc=3.3V), the outputs can drive either parallel or series terminated transmission lines. In most high performance clock networks, point–to–point distribution of signals is the method of choice. In a point–to–point scheme, either series terminated or parallel terminated transmission lines can be used. The parallel technique terminates the signal at the end of the line with a 50Ω resistance to $V_{\rm CC} \div 2$.

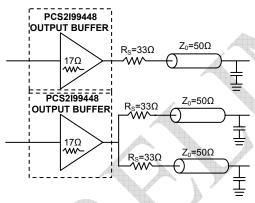


Figure 2. Single versus Dual Transmission Lines

This technique draws a fairly high level of DC current and thus only a single terminated line can be driven by each output of the PCS2l99448 clock driver. For the series terminated case, however, there is no DC current draw; thus, the outputs can drive multiple series terminated lines. Figure 2 "Single versus Dual Transmission Lines" illustrates an output driving a single series terminated line versus two series terminated lines in parallel. When taken to its extreme, the fanout of the PCS2l99448 clock driver is effectively doubled due to its capability to drive multiple lines at $V_{\rm CC}$ =3.3V.

The waveform plots in Figure 3 "Single versus Dual Line Termination Waveforms" show the simulation results of an output driving a single line versus two lines. In both

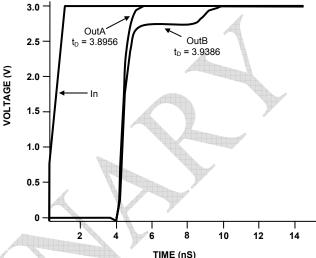


Figure 3 . Single versus Dual Line Termination
Waveforms

cases, the drive capability of the PCS2I99448 output buffer is more than sufficient to drive 50Ω transmission lines on the incident edge. Note from the delay measurements in the simulations a delta of only 43pS exists between the two differently loaded outputs. This suggests that the dual line driving need not be used exclusively to maintain the tight output–to–output skew of the PCS2I99448. The output waveform in Figure 3 "Single versus Dual Line Termination Waveforms" shows a step in the waveform; this step is caused by the impedance mismatch seen looking into the driver. The parallel combination of the 33Ω series resistor plus the output impedance does not match the parallel combination of the line impedances. The voltage wave launched down the two lines will equal:

$$\begin{aligned} &V_L = V_S \; (\; Z0 \; \dot{\div} \; (R_S + R_0 + Z_0)) \\ &Z_0 = 50 \Omega || \; 50 \Omega \\ &R_S = 33 \Omega || \; 33 \Omega \\ &R_0 = 17 \Omega \\ &V_L = 3.0 \; (\; 25 \; \dot{\div} \; (16.5 + 17 + 25)) \\ &= 1.28 V \end{aligned}$$

At the load end the voltage will double, due to the near unity reflection coefficient, to 2.5V. It will then increment towards the quiescent 3.0V in steps separated by one round trip delay (in this case 4.0nS).

Since this step is well above the threshold region it will not cause any false clock triggering; however, designers may be uncomfortable with unwanted reflections on the line. To better match the impedances when driving

multiple lines, the situation in Figure 4 "Optimized Dual Line Termination" should be used. In this case, the series terminating resistors are reduced such that when the parallel combination is added to the output buffer impedance the line impedance is perfectly matched.

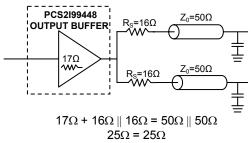


Figure 4. Optimized Dual Line Termination

Power Consumption of the PCS299448 and Thermal Management

The PCS2I99448 AC specification is guaranteed for the entire operating frequency range up to 350MHz. The PCS2I99448 power consumption and the associated long-term reliability may decrease the maximum frequency limit, depending on operating conditions such as clock frequency, supply voltage, output loading, ambient temperature, vertical convection and thermal conductivity of package and board. This section describes the impact of these parameters on the junction temperature and gives a guideline to estimate the PCS2I99448 die junction temperature and the associated device reliability.

Table 9. Die junction temperature and MTBF

Junction tempera	MTBF (Years)			
100	ph.	20.4		
110	V	9.1		
120	4	4.2		
130		2.0		

Increased power consumption will increase the die junction temperature and impact the device reliability (MTBF). According to the system-defined tolerable MTBF, the die junction temperature of the PCS2I99448 needs to be controlled and the thermal impedance of the board/package should be optimized. The power dissipated in the PCS2I99448 is represented in equation 1.

Where ICCQ is the static current consumption of the PCS2I99448, CPD is the power dissipation capacitance per output, $(M)\Sigma CL$ represents the external capacitive output load, N is the number of active outputs (N is always 12 in case of the PCS2I99448). The PCS2I99448 supports driving transmission lines to maintain high signal integrity and tight timing parameters. Any transmission line will hide the lumped capacitive load at the end of the board trace, therefore, ΣCL is zero for controlled transmission line systems and can be eliminated from equation 1. Using parallel termination output termination results in equation 2 for power dissipation.

In equation 2, P stands for the number of outputs with a parallel or thevenin termination, VOL, IOL, VOH and IOH are a function of the output termination technique and DCQ is the clock signal duty cycle. If transmission lines are used ΣCL is zero in equation 2 and can be eliminated. In general, the use of controlled transmission line techniques eliminates the impact of the lumped capacitive loads at the end lines and greatly reduces the power dissipation of the device. Equation 3 describes the die junction temperature TJ as a function of the power consumption.

Where R_{thja} is the thermal impedance of the package (junction to ambient) and TA is the ambient temperature. According to Table 9, the junction temperature can be used to estimate the long-term device reliability. Further, combining equation 1 and equation 2 results in a maximum operating frequency for the PCS2I99448 in a series terminated transmission line system, equation 4.

$$\begin{split} P_{TOT} = & \left[I_{CCQ} + V_{CC} \cdot f_{CLOCK} \cdot \left(N \cdot C_{PD} + \sum_{M} C_{L} \right) \right] \cdot V_{CC} \\ P_{TOT} = & V_{CC} \cdot \left[I_{CCQ} + V_{CC} \cdot f_{CLOCK} \cdot \left(N \cdot C_{PD} + \sum_{M} C_{L} \right) \right] + \sum_{P} \left[DC_{Q} \cdot I_{OH} \left(V_{CC} - V_{OH} \right) + \left(1 - DC_{Q} \right) \cdot I_{OL} \cdot V_{OL} \right] \quad Equation 2 \\ T_{J} = & T_{A} + P_{TOT} \cdot R_{thja} \\ f_{CLOCKMAX} = & \frac{1}{C_{PD} \cdot N \cdot V_{CC}^{2}} \cdot \left[\frac{T_{JMAX} - T_{A}}{R_{this}} - \left(I_{CCQ} \cdot V_{CC} \right) \right] \end{split} \quad Equation 4$$

 $T_{\rm J}$, MAX should be selected according to the MTBF system requirements and Table 9. $R_{\rm thja}$ can be derived from Table 10. The $R_{\rm thja}$ represent data based on 1S2P boards, using 2S2P boards will result in lower thermal impedance than indicated below.

Table 10. Thermal package impedance of the 32LQFP

Convection, LFPM	R _{thja} (1P2S board), °C/W	R _{thja} (2P2S board), °C/W
Still air	86	61
100 lfpm	76	56
200 lfpm	71	54
300 lfpm	68	53
400 lfpm	66	52
500 lfpm	60	49

If the calculated maximum frequency is below 350 MHz, it becomes the upper clock speed limit for the given application conditions. The following eight derating charts describe the safe frequency operation range for the PCS2I99448. The charts were calculated for a maximum tolerable die junction temperature of 110°C (120°C), corresponding to an estimated MTBF of 9.1 years (4 years), a supply voltage of 3.3V and series terminated

transmission line or capacitive loading. Depending on a given set of these operating conditions and the available device convection a decision on the maximum operating frequency can be made.

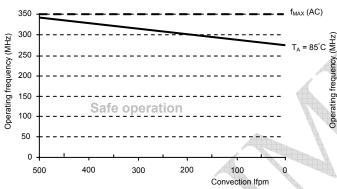


Figure 5. Maximum PCS2I99448 frequency V_{CC} = 3.3V, MTBF 9.1 years, driving series terminated transmission lines, 2s2p board

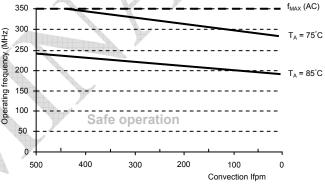


Figure 6. Maximum PCS2I99448 frequency V_{CC}= 3.3V, MRBF 9.1 years, 4pF load per line, 2s2p board

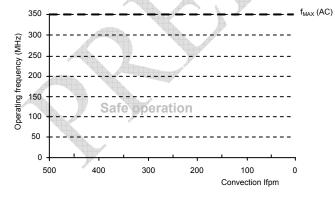


Figure 7. No maximum frequency limitation for V_{CC} = 3.3V, MTBF 4 years, driving series terminated transmission lines, 2s2p board

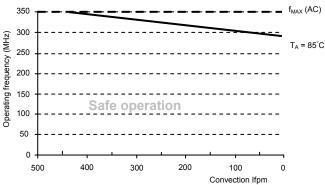


Figure 8. Maximum PCS2l99448 frequency V_{CC} = 3.3V, MRBF 4 years, 4pF load per line, 2s2p board

The Following Figures illustrate the Measurement Reference for the PCS2I99448 Clock Driver Circuit

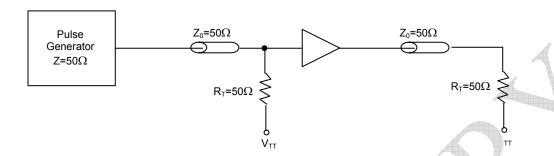
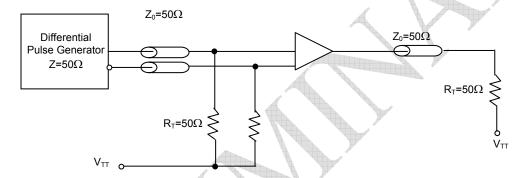
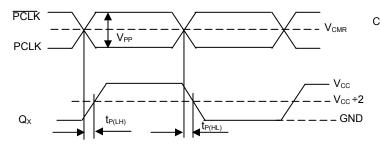


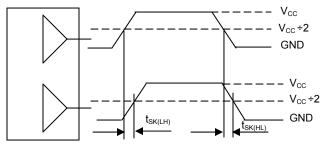
Figure 9. CCLK PCS2I99448 AC Test Reference for V_{CC} = 3.3V and V_{CC}




Figure 10. PCLK PCS2I99448 AC Test Reference

September 2006

•


rev 0.4

CCLK $V_{cc} + 2$ $V_{cc} + 2$ GND $V_{cc} + 2$ $V_{cc} + 2$

Figure 11. Propagation Delay (t_{PD}) Test Reference

Figure 12. Propagation Delay (tpD) Test Reference

The pin-to-pin skew is defined as the worst case difference in propagation between any similar delay path within a single device

Figure 13. Output-to-Output Skew t_{SK/(LH. HL)}

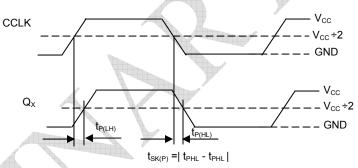
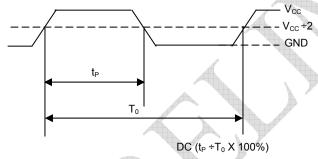



Figure 14. Output Pulse Skew (tsk(P) Test Reference

The time from the output controlled edge to the non-controlled edge, divided by the time output controlled edge, expressed as a percentage.

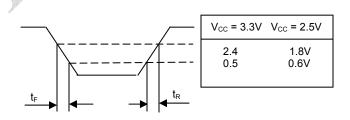
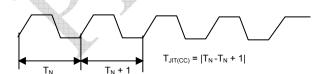



Figure 16. Output Transition Time Test Reference

Figure 15. Output Duty Cycle (DC)

The variation in cycle time of a single between adjacent cycles, over a random sample of adjacent cycle pairs

Figure 17. Cycle-to-Cycle Jitter Reference

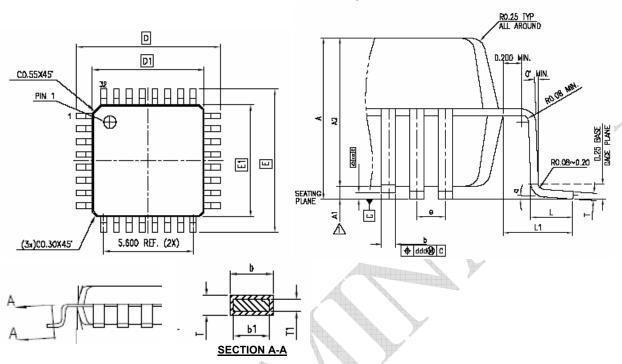
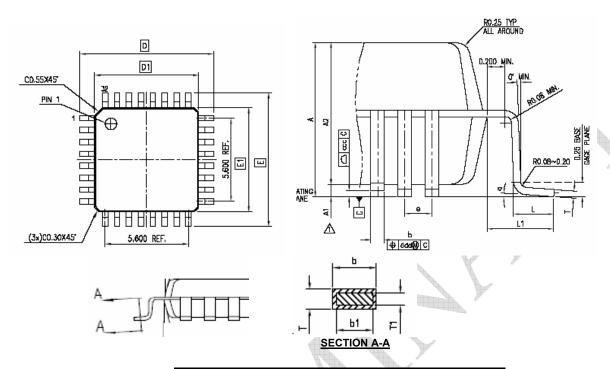


Figure 18. Setup and Hold Time (t_{S} , t_{H}) Test

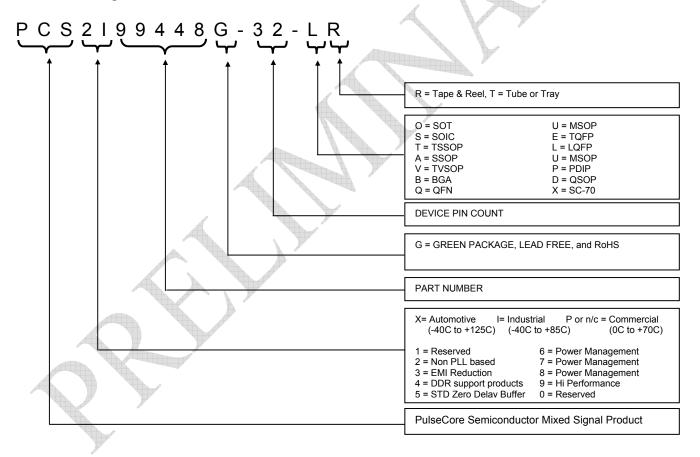
Package Information


32-lead TQFP

	Dimensions						
Symbol	Inch	ies	Millimeters				
	Min	Max	Min	Max			
Α	\ <i>P</i>	0.0472		1.2			
A1	0.0020	0.0059	0.05	0.15			
A2	0.0374	0.0413	0.95	1.05			
D	0.3465	0.3622	8.8	9.2			
D1	0.2717	0.2795	6.9	7.1			
É	0.3465	0.3622	8.8	9.2			
E1	0.2717	0.2795	6.9	7.1			
L	0.0177	0.0295	0.45	0.75			
L1	0.03937	7 REF	1.00	REF			
Т	0.0035	0.0079	0.09	0.2			
T1	0.0038	0.0062	0.097	0.157			
b	0.0118	0.0177	0.30	0.45			
b1	0.0118	0.0157	0.30	0.40			
R0	0.0031	0.0079	0.08	0.2			
а	0°	7°	0°	7°			
е	0.031 E	BASE	0.8 B	ASE			

32-lead LQFP

	Dimensions						
Symbol	Inch	es	Millimeters				
	Min	Max	Min	Max			
Α		0.0630		1.6			
A1	0.0020	0.0059	0.05	0.15			
A2	0.0531	0.0571	1.35	1.45			
D	0.3465	0.3622	8.8	9.2			
D1	0.2717	0.2795	6.9	7.1			
E	0.3465	0.3622	8.8	9.2			
E1	0.2717	0.2795	6.9	7.1			
L	0.0177	0.0295	0.45	0.75			
L1	0.03937	7 REF	1.00	REF			
Т	0.0035	0.0079	0.09	0.2			
T1	0.0038	0.0062	0.097	0.157			
b	0.0118	0.0177	0.30	0.45			
b1	0.0118	0.0157	0.30	0.40			
R0	0.0031	0.0079	0.08	0.20			
е	0.031 E	BASE	0.8 B	ASE			
а	0°	7°	0°	7°			


September 2006 Giving you the edge PCS2I99448

rev 0.4

Ordering Information

Part Number	Marking	Package Type	Operating Range
PCS2P99448G-32-LT	PCS2P99448GL	32-pin LQFP, Tray, Green	Commercial
PCS2P99448G-32-LR	PCS2P99448GL	32-pin LQFP –Tape and Reel, Green	Commercial
PCS2P99448G-32-ET	PCS2P99448GE	32-pin TQFP, Tray, Green	Commercial
PCS2P99448G-32-ER	PCS2P99448GE	32-pin TQFP –Tape and Reel, Green	Commercial
PCS2I99448G-32-LT	PCS2I99448GL	32-pin LQFP, Tray, Green	Industrial
PCS2I99448G-32-LR	PCS2I99448GL	32-pin LQFP –Tape and Reel, Green	Industrial
PCS2I99448G-32-ET	PCS2I99448GE	32-pin TQFP, Tray, Green	Industrial
PCS2I99448G-32-ER	PCS2I99448GE	32-pin TQFP –Tape and Reel, Green	Industrial

Device Ordering Information

Licensed under US patent #5,488,627, #6,646,463 and #5,631,920.

PulseCore Semiconductor Corporation 1715 S. Bascom Ave Suite 200 Campbell, CA 95008 Tel: 408-879-9077

Fax: 408-879-9018 www.pulsecoresemi.com Copyright © PulseCore Semiconductor All Rights Reserved Preliminary Information Part Number: PCS2I99448 Document Version: 0.4

Note: This product utilizes US Patent # 6,646,463 Impedance Emulator Patent issued to PulseCore Semiconductor, dated 11-11-2003

© Copyright 2006 PulseCore Semiconductor Corporation. All rights reserved. Our logo and name are trademarks or registered trademarks of PulseCore Semiconductor. All other brand and product names may be the trademarks of their respective companies. PulseCore reserves the right to make changes to this document and its products at any time without notice. PulseCore assumes no responsibility for any errors that may appear in this document. The data contained herein represents PulseCore's best data and/or estimates at the time of issuance. PulseCore reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. PulseCore does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of PulseCore products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in PulseCore's Terms and Conditions of Sale (which are available from PulseCore). All sales of PulseCore products are made exclusively according to PulseCore's Terms and Conditions of Sale. The purchase of products from PulseCore does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of PulseCore or third parties. PulseCore does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of PulseCore products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify PulseCore against all claims arising from such use.