80V, 300mW Boost Converter and Current Monitor for APD Bias Applications

General Description

The MAX15031 consists of a constant-frequency pulsewidth modulating (PWM) step-up DC-DC converter with an internal switch and a high-side current monitor with high-speed adjustable current limiting. This device can generate output voltages up to 76 V and provides current monitoring up to 4 mA (up to 300 mW). The MAX15031 can be used for a wide variety of applications such as avalanche photodiode biasing, PIN biasing, or varactor biasing, and LCD displays. The MAX15031 operates from 2.7V to 11V.
The constant-frequency (400 kHz), current-mode PWM architecture provides low-noise output voltage that is easy to filter. A high-voltage, internal power switch allows this device to boost output voltages up to 76 V . Internal soft-start circuitry limits the input current when the boost converter starts. The MAX15031 features a shutdown mode to save power.

The MAX15031 includes a current monitor with more than three decades of dynamic range and monitors current ranging from 500 nA to 4 mA with high accuracy. Resistor-adjustable current limiting protects the APD from optical power transients. A clamp diode protects the monitor's output from overvoltage conditions. Other protection features include cycle-by-cycle current limiting of the boost converter switch, undervoltage lockout, and thermal shutdown if the die temperature reaches $+160^{\circ} \mathrm{C}$.

The MAX15031 is available in a thermally enhanced $4 \mathrm{~mm} \times 4 \mathrm{~mm}$, 16-pin TQFN package and operates over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ automotive temperature range.

Applications

Avalanche Photodiode Biasing and Monitoring
PIN Diode Bias Supplies
Low-Noise Varactor Diode Bias Supplies
FBON Modules
GPON Modules
LCD Displays

Typical Operating Circuits appear at end of data sheet.

Features

- Input Voltage Range
+2.7 V to +5.5 V (Using Internal Charge Pump) or +5.5 V to +11 V
- Wide Output-Voltage Range from (VIN + 1V) to 76V
- Internal 1Ω (typ) 80V Switch
- 300mW Boost Converter Output Power
- Accurate $\pm 10 \%$ (500 nA to 1 mA) and $\pm 3.5 \%$ (1 mA to 4mA) High-Side Current Monitor
- Resistor-Adjustable Ultra-Fast APD Current Limit (1 $\mu \mathrm{s}$ Response Time)
- Open-Drain Current-Limit Indicator Flag
- 400kHz Fixed Switching Frequency
- Constant PWM Frequency Provides Easy Filtering in Low-Noise Applications
- Internal Soft-Start
- $2 \mu \mathrm{~A}$ (max) Shutdown Current
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Temperature Range
- Small Thermally Enhanced, 4mm x 4mm, 16-Pin TQFN Package

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX15031ATE +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 TQFN-EP ${ }^{*}$

+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP $=$ Exposed pad.
Pin Configuration

*EXPOSED PAD

80V, 300mW Boost Converter and Current Monitor for APD Bias Applications

ABSOLUTE MAXIMUM RATINGS

Continuous Power Dissipation
16-Pin TQFN (derate $25 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 2000 mW Thermal Resistance (Note 1)
${\text { OJA... } 40^{\circ} \mathrm{C} / \mathrm{W}}^{\text {. }}$
${\text { JC. ... } 6^{\circ} \mathrm{C} / \mathrm{W}}^{\circ}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature ... $+150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)
$+300^{\circ} \mathrm{C}$
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{I N}=V_{P W R}=3.3 \mathrm{~V} . V_{\text {SHDN }}=3.3 \mathrm{~V} . C_{I N}=C_{P W R}=10 \mu F . C_{C P}=10 \mathrm{nF}, V_{C N T R L}=V_{I N} . V_{R L I M}=0 . V_{P G N D}=V_{S G N D}=0 . V_{B I A S}=40 \mathrm{~V}\right.$. $\mathrm{APD}=$ unconnected. $\mathrm{CLAMP}=$ unconnected. $\overline{\mathrm{LIIM}}=$ unconnected, $\mathrm{MOUT}=$ unconnected. $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

80V, 300mW Boost Converter and Current Monitor for APD Bias Applications

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{I N}=V_{P W R}=3.3 \mathrm{~V} . V_{S H D N}=3.3 \mathrm{~V} . C_{I N}=C_{P W R}=10 \mu F . C C P=10 n F, V_{C N T R L}=V_{I N} . V_{R L I M}=0 . V_{P G N D}=V_{S G N D}=0 . V_{\text {BIAS }}=40 \mathrm{~V}\right.$. APD $=$ unconnected. $\mathrm{CLAMP}=$ unconnected. $\overline{\mathrm{ILIM}}=$ unconnected, $\mathrm{MOUT}=$ unconnected. $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Soft-Start Duration					8		ms
Soft-Start Steps		(0.25 x lLIM_LX) to ILIM_L			32		Steps
CONTROL INPUT (CNTRL)							
Maximum Control Input Voltage Range		FB set point is regulated to $\mathrm{V}_{\text {CNTRL }}$		1.25			V
CURRENT MONITOR							
Bias Voltage Range	VBIAS			10		76	V
Bias Quiescent Current	IBIAS	IAPD $=500 \mathrm{nA}$				100	$\mu \mathrm{A}$
		$\mathrm{I}_{\text {APD }}=2 \mathrm{~mA}$				3.2	mA
Voltage Drop	V DROP	$\mathrm{I}_{\text {APD }}=2 \mathrm{~mA}, \mathrm{~V}_{\text {DROP }}=\mathrm{V}_{\text {BIAS }}-\mathrm{V}_{\text {APD }}$				1	V
Dynamic Output Resistance at MOUT	Rmout	$\mathrm{I}_{\text {APD }}=500 \mathrm{nA}$			1		G Ω
		IAPD $=2.5 \mathrm{~mA}$			890		$\mathrm{M} \Omega$
MOUT Output Leakage		APD is unconnected			1		nA
Output Clamp Voltage	VMOUT $V_{\text {CLAMP }}$	Forward diode current $=1 \mathrm{~mA}$		0.5	0.73	0.95	V
Output Clamp Leakage Current		$\mathrm{V}_{\text {BIAS }}=\mathrm{V}_{\text {CLAMP }}=76 \mathrm{~V}$			1		nA
Output-Voltage Range	Vmout	$10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{BI}} \mathrm{AS} \leq 76 \mathrm{~V}, 0 \leq \mathrm{I}_{\mathrm{APD}} \leq 1 \mathrm{~mA},$ CLAMP is unconnected		$\mathrm{V}_{\mathrm{BIAS}}-$ 1V			V
Current Gain	Imout/IAPD	IAPD $=500 \mathrm{nA}$		0.095	0.1	0.11	
		$\mathrm{I}_{\text {APD }}=2 \mathrm{~mA}$		0.0965	0.1	0.1035	
Power-Supply Rejection Ratio (Note 3)	PSRR	(Δ IMOUT/IMOUT)/ $/$ V $_{\text {BIAS }}$, $\mathrm{V}_{\mathrm{BI}} \mathrm{AS}=10 \mathrm{~V}$ to 76 V	$I_{\text {APD }}=500 \mathrm{nA}$	-1000	+300	+1500	ppm/
			$\begin{aligned} & \mathrm{I} \mathrm{APD}=5 \mu \mathrm{~A} \text { to } \\ & 1 \mathrm{~mA} \end{aligned}$	-250	+24	+250	
APD Input Current Limit	ILIM_APD	$\mathrm{V}_{\text {APD }}=35 \mathrm{~V}, \mathrm{RLIM}=3.3 \mathrm{k} \Omega$		3.15	3.75	4.35	mA
Current-Limit Adjustment Range		$12.45 \mathrm{k} \Omega \geq \mathrm{RLIM} \geq 2.5 \mathrm{k} \Omega$		1		5	mA
Power-Up Settling Time	ts	IMOUT settles to within 0.1%, 10nF connected from APD to ground	$I_{\text {APD }}=500 \mathrm{nA}$		7.5		ms
			$\mathrm{I}_{\text {APD }}=2.5 \mathrm{~mA}$		90		$\mu \mathrm{s}$
LOGIC INPUTS/OUTPUTS							
SHDN Input-Voltage Low	$\mathrm{V}_{\text {IL }}$					0.8	V
$\overline{\text { SHDN }}$ Input-Voltage High	V_{IH}			2.4			V
ILIM Output-Voltage Low	VOL	$\mathrm{ILIM}=2 \mathrm{~mA}$				0.3	V
ILIM Output Leakage Current	IOH	VIIIM $=11 \mathrm{~V}$				1	$\mu \mathrm{A}$
THERMAL PROTECTION							
Thermal Shutdown		Temperature rising			+160		${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hysteresis					10		${ }^{\circ} \mathrm{C}$

Note 2: All minimum/maximum parameters are tested at $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$. Limits over temperature are guaranteed by design.
Note 3: Guaranteed by design and not production tested

80V, 300mW Boost Converter and Current Monitor for APD Bias Applications

Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{PWR}}=\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=70 \mathrm{~V}\right.$, circuit of Figure 3 (Figure 4 for $\mathrm{V}_{\mathrm{IN}}>5.5 \mathrm{~V}$), unless otherwise noted.)

MINIMUM STARTUP VOLTAGE
vs. LOAD CURRENT

SUPPLY CURRENT
vs. SUPPLY VOLTAGE

EFFICIENCY vs. LOAD CURRENT

NO-LOAD SUPPLY CURRENT
vs. SUPPLY VOLTAGE

\qquad

80V, 300mW Boost Converter and Current Monitor for APD Bias Applications

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\text {PWR }}=\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}\right.$, $\mathrm{V}_{\text {OUT }}=70 \mathrm{~V}$, circuit of Figure 3 (Figure 4 for $\left.\mathrm{V}_{\mathrm{IN}}>5.5 \mathrm{~V}\right)$, unless otherwise noted. $)$

LX LEAKAGE CURRENT

LOAD-TRANSIENT RESPONSE

$100 \mathrm{~ms} / \mathrm{div}$

LINE-TRANSIENT RESPONSE

$100 \mathrm{~ms} /$ div

MAXIMUM LOAD CURRENT vs. INPUT VOLTAGE

vs. TEMPERATURE

BIAS CURRENT vs. BIAS VOLTAGE

80V, 300mW Boost Converter and Current Monitor for APD Bias Applications

80V, 300mW Boost Converter and Current Monitor for APD Bias Applications

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\text {PWR }}=\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=70 \mathrm{~V}\right.$, circuit of Figure 3 (Figure 4 for $\left.\mathrm{V}_{\mathrm{IN}}>5.5 \mathrm{~V}\right)$, unless otherwise noted. $)$

100 $\mu \mathrm{s} / \mathrm{div}$

VOLTAGE DROP
vs. APD CURRENT

100 $\mu \mathrm{s} / \mathrm{div}$

SHORT-CIRCUIT RESPONSE

SWITCHING FREQUENCY
vs. TEMPERATURE

80V, 300mW Boost Converter and Current Monitor for APD Bias Applications

Typical Operating Characteristics (continued)

$\left(V_{P W R}=\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=70 \mathrm{~V}\right.$, circuit of Figure 3 (Figure 4 for $\left.\mathrm{V}_{\text {IN }}>5.5 \mathrm{~V}\right)$, unless otherwise noted. $)$

FB SET-POINT VARIATION vs. TEMPERATURE

APD OUTPUT RIPPLE VOLTAGE

APD OUTPUT RIPPLE VOLTAGE

80V, 300mW Boost Converter and Current Monitor for APD Bias Applications

Pin Description

PIN	NAME	FUNCTION
1	PWR	Boost Converter Input Voltage. PWR powers the switch driver and charge pump. Bypass PWR to PGND with a ceramic capacitor of $1 \mu \mathrm{~F}$ minimum value.
2	CP	Positive Terminal of the Charge-Pump Flying Capacitor for 2.7 V to 5.5 V Supply Voltage Operation. Connect CP to IN when the input voltage is in the 5.5 V to 11 V range.
3	CN	Negative Terminal of the Charge-Pump Flying Capacitor for 2.7 V to 5.5 V Supply Voltage Operation. Leave CN unconnected when the input voltage is in the 5.5 V to 11 V range.
4	IN	Input Supply Voltage. IN powers all blocks of the MAX15031 except the switch driver and charge pump. Bypass IN to PGND with a ceramic capacitor of $1 \mu \mathrm{~F}$ minimum value.
5	SGND	Signal Ground. Connect directly to the local ground plane. Connect SGND to PGND at a single point, typically near the return terminal of the output capacitor.
6	FB	Feedback Regulation Input. Connect FB to the center tap of a resistive voltage-divider from the output (VOUT) to SGND to set the output voltage. The FB voltage regulates to 1.245 V (typ) when $\mathrm{V}_{\text {CNTRL }}$ is above 1.5 V (typ) and to $\mathrm{V}_{\text {CNTRL }}$ voltage when $\mathrm{V}_{\text {CNTRL }}$ is below 1.245 V (typ).
7	CNTRL	Control Input for Boost Converter Output-Voltage Programmability. Allows the feedback set-point voltage to be set externally by CNTRL when $\mathrm{V}_{\text {CNTRL }}$ is less than 1.245 V . Pull CNTRL above 1.5 V (typ) to use the internal 1.245 V (typ) feedback set-point voltage.
8	$\overline{\text { IIM }}$	Open-Drain Current-Limit Indicator. $\overline{\text { ILIM }}$ asserts low when the APD current limit has been exceeded.
9	RLIM	Current-Limit Resistor Connection. Connect a resistor from RLIM to SGND to program the APD current-limit threshold.
10	MOUT	Current-Monitor Output. MOUT sources a current 1/10th of IAPD.
11	CLAMP	Clamp Voltage Input. CLAMP is the external potential used for voltage clamping of MOUT.
12	APD	Reference Current Output. APD provides the source current to the cathode of the photodiode.
13	BIAS	Bias Voltage Input. Connect BIAS to the boost converter output (VOUT) either directly or through a lowpass filter for ripple attenuation. BIAS provides the voltage bias for the current monitor and is the current source for APD.
14	$\overline{\text { SHDN }}$	Active-Low Shutdown Control Input. Apply a logic-low voltage to $\overline{\text { SHDN }}$ to shut down the device and reduce the supply current to $2 \mu \mathrm{~A}$ (max). Connect $\overline{\text { SHDN }}$ to IN for normal operation. Ensure that $\mathrm{V} \overline{\mathrm{SHDN}}$ is not greater than the input voltage, VIN.
15	PGND	Power Ground. Connect the negative terminals of the input and output capacitors to PGND. Connect PGND externally to SGND at a single point, typically at the return terminal of the output capacitor.
16	LX	Drain of Internal 80 V n-Channel DMOS. Connect inductor and diode to LX. Minimize the trace area at LX to reduce switching noise emission.
-	EP	Exposed Pad. Connect EP to a large contiguous copper plane at SGND potential to improve thermal dissipation. Do not use as the main SGND connection.

80V, 300mW Boost Converter and Current Monitor for APD Bias Applications

Functional Diagram

Detailed Description

The MAX15031 constant-frequency, current-mode, PWM boost converter is intended for low-voltage systems that require a locally generated high voltage. This device can generate a low-noise, high output voltage required for PIN and varactor diode biasing and LCD displays. The MAX15031 operates either from +2.7 V to +5.5 V or from +5.5 V to +11 V . For 2.7 V to 5.5 V operation, an internal charge pump with an external 10nF ceramic capacitor is used. For 5.5 V to 11 V operation, connect CP to IN and leave CN unconnected.
The MAX15031 operates in discontinuous mode in order to reduce the switching noise caused by reversevoltage recovery charge of the rectifier diode. Other continuous mode boost converters generate large voltage spikes at the output when the LX switch turns on
because there is a conduction path between the output, diode, and switch to ground during the time needed for the diode to turn off and reverse its bias voltage. To reduce the output noise even further, the LX switch turns off by taking 10ns typically to transition from ON to OFF. As a consequence, the positive slew rate of the LX node is reduced and the current from the inductor does not "force" the output voltage as hard as would be the case if the LX switch were to turn off faster.
The constant-frequency (400 kHz) PWM architecture generates an output voltage ripple that is easy to filter. An 80V vertical DMOS device used as the internal power switch is ideal for boost converters with output voltages up to 76V. The MAX15031 can also be used in other topologies where the PWM switch is grounded, like SEPIC and flyback converters.

80V, 300 mW Boost Converter and Current Monitor for APD Bias Applications

The MAX15031 includes a versatile current monitor intended for monitoring the APD, PIN, or varactor diode DC current in fiber and other applications. The MAX15031 features more than three decades of dynamic current ranging from 500nA to 4 mA and provides an output current accurately proportional to the APD current at MOUT.
The MAX15031 also features a shutdown logic input to disable the device and reduce its standby current to $2 \mu \mathrm{~A}$ (max).

Fixed-Frequency PWM Controller
The heart of the MAX15031 current-mode PWM controller is a BiCMOS multiple-input comparator that simultaneously processes the output-error signal and switch current signal. The main PWM comparator uses direct summing, lacking a traditional error amplifier and its associated phase shift. The direct summing configuration approaches ideal cycle-by-cycle control over the output voltage since there is no conventional error amplifier in the feedback path.
The device operates in PWM mode using a fixed-frequency, current-mode operation. The current-mode frequency loop regulates the peak inductor current as a function of the output error signal.
The current-mode PWM controller is intended for DCM (discontinuous conduction mode) operation. No internal slope compensation is added to the current signal.

Charge Pump

At low supply voltages (2.7 V to 5.5 V), internal chargepump circuitry and an external 10nF ceramic capacitor connected between CP and CN double the available internal supply voltage to drive the internal switch efficiently.
In the 5.5 V to 11 V supply voltage range, the charge pump is not required. In this configuration, disable the charge pump by connecting CP to IN and leaving CN unconnected.

Monitor Current Limit (RLIM)

The current limit of the current monitor is programmable from 1 mA to 5 mA . Connect a resistor from RLIM to ground to program the current-limit threshold up to 5 mA . The current monitor mirrors the current out of APD with a 1:10 ratio, and the MOUT current can be converted to a voltage signal by connecting a resistor from MOUT to SGND.

The APD current-monitor range is from 500 nA to 4 mA , and the MOUT current-mirror output accuracy is $\pm 10 \%$ from 500 nA to 1 mA of APD current and $\pm 3.5 \%$ from 1 mA to 4 mA of APD current.

Clamping the Monitor
 Output Voltage (CLAMP)

CLAMP provides a means for diode clamping the voltage at MOUT; thus VMOUT is limited to (VCLAMP + $0.6 \mathrm{~V})$. CLAMP can be connected to either an external supply or BIAS. CLAMP can be left unconnected if voltage clamping is not required.

Adjusting the Boost Converter Output Voltage (FB/CNTRL)

The boost converter output voltage can be set by connecting FB to a resistor-divider from VOUT to ground. The set-point feedback reference is the 1.245 V (typ) internal reference voltage when VCNTRL $>1.5 \mathrm{~V}$ and is equal to the CNTRL voltage when VCNTRL $<1.25 \mathrm{~V}$.
To change the converter output on the fly, apply a voltage lower than 1.25 V (typ) to the CNTRL input and adjust the CNTRL voltage, which is the reference input of the error amplifier when VCNTRL $<1.25 \mathrm{~V}$ (see the Functional Diagram). This feature can be used to adjust the APD voltage based on the APD mirror current, which compensates for the APD avalanche gain variation with temperature and manufacturing process. As shown in Figure 4, the voltage signal proportional to the MOUT current is connected to the ADC (analog to digital) input of the APD module, which then controls the reference voltage of the boost converter error amplifier through a DAC (digital to analog) block connected to the CNTRL input. The BIAS voltage and, therefore, the APD current, are controlled based on the MOUT mirror current, forming a negative feedback loop.

Shutdown (SHDN)

The MAX15031 features an active-low shutdown input (SHDN). Pull SHDN low to enter shutdown. During shutdown, the supply current drops to $2 \mu \mathrm{~A}$ ($30 \mu \mathrm{~A}$ from BIAS) (max). However, the output remains connected to the input through the inductor and the output diode, holding the output voltage to one diode drop below PWR when the MAX15031 shuts down. Connect SHDN to IN for always-on operation.

80V, 300mW Boost Converter and Current Monitor for APD Bias Applications

Figure 1. Adjustable Output Voltage

Design Procedure

Setting the Output Voltage
Set the MAX15031 output voltage by connecting a resistive divider from the output to FB to SGND (Figure 1). Select R1 (FB to SGND resistor) between $200 \mathrm{k} \Omega$ and $400 \mathrm{k} \Omega$. Calculate R2 (VOUT to FB resistor) using the following equation:

$$
R_{2}=R_{1}\left[\left(\frac{V_{\mathrm{OUT}}}{V_{\mathrm{REF}}}\right)-1\right]
$$

where Vout can range from (V IN +1 V) to 76 V and $\mathrm{V}_{\text {REF }}$ $=1.245 \mathrm{~V}$ or VCNTRL depending on the VCNTRL value. For VCNTRL $>1.5 \mathrm{~V}$, the internal 1.245 V (typ) reference voltage is used as the feedback set point (VREF = 1.245 V) and for $\mathrm{V}_{\mathrm{CNTRL}}<1.25 \mathrm{~V}$, $\mathrm{V}_{\text {REF }}=\mathrm{V}_{\mathrm{CNTRL}}$.

Determining Peak Inductor Current

If the boost converter remains in the discontinuous mode of operation, then the approximate peak inductor current, ILPEAK (in amperes), is represented by the formula below:

$$
\mathrm{L}_{\text {LPEAK }}=\sqrt{\frac{2 \times \mathrm{T}_{\mathrm{S}} \times\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN_MIN }}\right) \times \mathrm{l}_{\text {OUT_MAX }}}{\eta \times \mathrm{L}}}
$$

where Ts is the switching period in microseconds, VOUT is the output voltage in volts, VIN_MIN is the minimum input voltage in volts, IOUT_MAX is the maximum
output current in amperes, L is the inductor value in microhenrys, and η is the efficiency of the boost converter (see the Typical Operating Characteristics).

Determining the Inductor Value

Three key inductor parameters must be specified for operation with the MAX15031: inductance value (L), inductor saturation current (ISAT), and DC resistance (DCR). In general, the inductor should have a saturation current rating greater than the maximum switch peak current-limit value (ILIM_LX = 1.6A). Choose an inductor with a low-DCR resistance for reasonable efficiency.
Use the following formula to calculate the lower bound of the inductor value at different output voltages and output currents. This is the minimum inductance value for discontinuous mode operation for supplying full 300 mW of output power.

$$
\mathrm{L}_{\mathrm{MIN}}[\mu \mathrm{H}]=\frac{2 \times \mathrm{T}_{\mathrm{S}} \times \mathrm{I}_{\mathrm{OUT}} \times\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN_MIN }}\right)}{\eta \times\left.\right|_{\text {LIM_LX }} ^{2}}
$$

where Vin_MIN, VOUT (both in volts), and IOUT (in amperes) are typical values (so that efficiency is optimum for typical conditions), Ts (in microseconds) is the period, η is the efficiency, and ILIM_LX is the peak switch current in amperes (see the Electrical Characteristics table).
Calculate the optimum value of L (LOPTIMUM) to ensure the full output power without reaching the boundary between continuous conduction mode (CCM) and DCM using the following formula:

$$
\mathrm{L}_{\mathrm{OPTIMUM}}[\mu \mathrm{H}]=\frac{\mathrm{L}_{\mathrm{MAX}}[\mu \mathrm{H}]}{2.25}
$$

where $L_{\text {MAX }}[\mu H]=\frac{V_{\text {IN_MIN }}^{2}\left(V_{\text {OUT }}-V_{\text {IN_MIN }}\right) \times T_{S} \times \eta}{2 \times I_{\text {OUT }} \times V_{\text {OUT }}^{2}}$
For a design in which VIN $=3.3 \mathrm{~V}$, VOUT $=70 \mathrm{~V}$, IOUT $=$ $3 \mathrm{~mA}, \eta=45 \%$, $\operatorname{LLIM} _L X=1.3 \mathrm{~A}$, and TS $=2.5 \mu \mathrm{~s}: \operatorname{LMIN}=$ $1.3 \mu H$ and $L M A X=23 \mu H$.
For a worse-case scenario in which $\mathrm{V}_{\text {IN }}=2.9 \mathrm{~V}$, VOUT $=$ 70 V, IOUT $=4 \mathrm{~mA}, \eta=43 \%$, $\mathrm{ILIM} _L X=1.3 \mathrm{~A}$, and $T S=$ $2.5 \mu \mathrm{~s}: \mathrm{LMIN}_{\mathrm{MIN}}=1.8 \mu \mathrm{H}$ and $\mathrm{LMAX}_{\mathrm{MA}}=\overline{15} \mu \mathrm{H}$.
The choice of $4.7 \mu \mathrm{H}$ is reasonable given the worst-case scenario above. In general, the higher the inductance, the lower the switching noise. Load regulation is also better with higher inductance.

80V, 300mW Boost Converter and Current Monitor for APD Bias Applications

Diode Selection
The MAX15031's high switching frequency demands a high-speed rectifier. Schottky diodes are recommended for most applications because of their fast recovery time and low forward-voltage drop. Ensure that the diode's peak current rating is greater than the peak inductor current. Also the diode reverse-breakdown voltage must be greater than Vout. The output voltage of the boost converter.

Output Filter Capacitor Selection

For most applications, use a small output capacitor of $0.1 \mu \mathrm{~F}$ or greater. To achieve low output ripple, a capacitor with low ESR, low ESL, and high capacitance value should be selected. If tantalum or electrolytic capacitors are used to achieve high capacitance values, always add a smaller ceramic capacitor in parallel to bypass the high-frequency components of the diode current. The higher ESR and ESL of electrolytic capacitors increase the output ripple and peak-to-peak transient voltage. Assuming the contribution from the ESR and capacitor discharge equals 50% (proportions may vary), calculate the output capacitance and ESR required for a specified ripple using the following equations:

$$
\begin{aligned}
\operatorname{Cout~}_{\text {OUF }}[\mu \mathrm{F}]= & \frac{\mathrm{I}_{\text {OUT }}}{0.5 \times \Delta \mathrm{V}_{\text {OUT }}}\left[T_{S}-\frac{\mathrm{IPPAK} \times \mathrm{L}_{\text {OPTIMUM }}}{\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN_MIN }}\right)}\right] \\
& \operatorname{ESR}[\mathrm{m} \Omega]=\frac{0.5 \times \Delta \mathrm{V}_{\text {OUT }}}{\mathrm{l}_{\text {OUT }}}
\end{aligned}
$$

For very low output ripple applications, the output of the boost converter can be followed by an RC filter to further reduce the ripple. Figure 2 shows a 100Ω (RF), $0.1 \mu \mathrm{~F}$ (CF) filter used to reduce the switching output ripple to $1 \mathrm{mVP}-\mathrm{p}$ with a 0.1 mA load or $2 \mathrm{mVP}-\mathrm{p}$ with a 4 mA load. The output-voltage regulation resistor-divider must remain connected to the diode and output capacitor node.
Use X7R ceramic capacitors for more stability over the full temperature range. Use an X5R capacitor for $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ applications.

Input Capacitor Selection

Bypass PWR to PGND with a $1 \mu \mathrm{~F}$ (min) ceramic capacitor and bypass IN to PGND with a $1 \mu \mathrm{~F}(\mathrm{~min})$ ceramic capacitor. Depending on the supply source impedance, higher values may be needed. Make sure that the input capacitors are close enough to the IC to provide adequate decoupling at IN and PWR as well. If the layout cannot achieve this, add another $0.1 \mu \mathrm{~F}$ ceramic capacitor between IN and PGND (or PWR and PGND) in the immediate vicinity of the IC. Bulk aluminum electrolytic capacitors may be needed to avoid chattering at low input voltage. In case of aluminum electrolytic capacitors, calculate the capacitor value and ESR of the input capacitor using the following equations:

$$
\begin{gathered}
\mathrm{C}_{\text {IN }}[\mu \mathrm{F}]=\frac{\mathrm{V}_{\text {OUT }} \times \text { IOUT }}{\eta \times \mathrm{V}_{\text {IN_MIN }} \times 0.5 \times \Delta V_{\text {IN }}}\left[T_{S}-\frac{\mathrm{L}_{\text {LPEAK }} \times \text { LOPTIMUM } \times V_{\text {OUT }}}{V_{\text {IN_MIN }}\left(V_{\text {OUT }}-V_{I N _M I N ~}\right)}\right] \\
E S R[\mathrm{~m} \Omega]=\frac{0.5 \times \Delta V_{\text {IN }} \times \eta \times \mathrm{V}_{\text {IN_MIN }}}{V_{\text {OUT }} \times \text { I OUT }}
\end{gathered}
$$

Figure 2. Typical Operating Circuit with RC Filter

80V, 300mW Boost Converter and Current Monitor for APD Bias Applications

Determining Monitor Current Limit
Calculate the value of the monitor current-limit resistor, RLIM, for a given APD current limit, ILIMIT, using the following equation:

$$
R_{\text {LIM }}=10 \times \frac{1.245 \mathrm{~V}}{\operatorname{LIMIT}(\mathrm{~mA})}
$$

The RLIM resistor, RLIM, ranges from $12.45 \mathrm{k} \Omega$ to 2.5Ω for APD currents from 1 mA to 5 mA .

Applications Information

Using APD or PIN Photodiodes

 in Fiber ApplicationsWhen using the MAX15031 to monitor APD or PIN photodiode currents in fiber applications, several issues must be addressed. In applications where the photodiode must be fully depleted, keep track of voltages budgeted for each component with respect to the available supply voltage(s). The current monitors require as much as 1.1 V between BIAS and APD, which must be considered part of the overall voltage budget.
Additional voltage margin can be created if a negative supply is used in place of a ground connection, as long as the overall voltage drop experienced by the MAX15031 is less than or equal to 76V. For this type of application, the MAX15031 is suggested so the output can be referenced to "true" ground and not the negative supply. The MAX15031's output current can be referenced as desired with either a resistor to ground or a transimpedance amplifier. Take care to ensure that output voltage excursions do not interfere with the required margin between BIAS and MOUT. In many fiber applications, MOUT is connected directly to an ADC that operates from a supply voltage that is less than the voltage at BIAS. Connecting the MAX15031's clamping diode output, CLAMP, to the ADC power supply helps avoid damage to the ADC. Without this protection, voltages can develop at MOUT that might destroy the ADC. This
protection is less critical when MOUT is connected directly to subsequent transimpedance amplifiers (linear or logarithmic) that have low-impedance, near-groundreferenced inputs. If a transimpedance amplfier is used on the low side of the photodiode, its voltage drop must also be considered. Leakage from the clamping diode is most often insignificant over nominal operating conditions, but grows with temperature.
To maintain low levels of wideband noise, lowpass filtering the output signal is suggested in applications where only DC measurements are required. Connect the filter capacitor at MOUT. Determining the required filtering components is straightforward, as the MAX15031 exhibits a very high output impedance of $890 \mathrm{M} \Omega$.
In some applications where pilot tones are used to identify specific fiber channels, higher bandwidths are desired at MOUT to detect these tones. Consider the minimum and maximum currents to be detected, then consult the frequency response and noise typical operating curves. If the minimum current is too small, insufficient bandwidth could result, while too high a current could result in excessive noise across the desired bandwidth.

Layout Considerations

Careful PCB layout is critical to achieve low switching losses and clean and stable operation. Protect sensitive analog grounds by using a star ground configuration. Connect SGND and PGND together close to the device at the return terminal of the output bypass capacitor. Do not connect them together anywhere else. Keep all PCB traces as short as possible to reduce stray capacitance, trace resistance, and radiated noise. Ensure that the feedback connection to FB is short and direct. Route high-speed switching nodes away from the sensitive analog areas. Use an internal PCB layer for SGND as an EMI shield to keep radiated noise away from the device, feedback dividers, and analog bypass capacitors. Refer to the MAX15031 evaluation kit data sheet for a layout example.

80V, 300 mW Boost Converter and Current Monitor for APD Bias Applications

Typical Operating Circuits

-EOSトXVW

Figure 3. Typical Operating Circuit for VIN $=2.7 \mathrm{~V}$ to 5.5 V

80V, 300mW Boost Converter and Current Monitor for APD Bias Applications

Typical Operating Circuits (continued)

Figure 4. Typical Operating Circuit for $V I N=5.5 \mathrm{~V}$ to 11 V

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
16 TQFN	T1644-4	$\underline{\mathbf{2 1 - 0 1 3 9}}$

80V, 300mW Boost Converter and Current Monitor for APD Bias Applications

| REVISION
 NUMBER | REVISION
 DATE | DESCRIPTION | PAGES
 CHANGED |
| :---: | :---: | :--- | :---: | :---: |
| 0 | $10 / 08$ | Initial release. | - |
| 1 | $3 / 09$ | Updated Electrical Characteristics and added new Note 3. | 3 |
| 2 | $6 / 09$ | - Changed "Shutdown Input Bias Current" to "BIAS Current During Shutdown" in
 the Electrical Characteristics table.
 - Changed minimum value for the Current Gain (IAPD $=2 m A) ~ s p e c i f i c a t i o n ~ t o ~$
 $0.0965 ~ i n ~ t h e ~ E l e c t r i c a l ~ C h a r a c t e r i s t i c s ~ t a b l e . ~$ | 2,3 | implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

