

Features

General Description

The MAX9617/MAX9618 are low-power, zero-drift operational amplifiers, designed for use in portable consumer, medical, and industrial applications.

The MAX9617/MAX9618 feature rail-to-rail CMOS inputs and outputs, a 1.5MHz GBW at just 59µA supply current and 10µV (max) zero-drift input offset voltage over time and temperature. The zero-drift feature of the MAX9617/ MAX9618 reduces the high 1/f noise typically found in CMOS input operational amplifiers, making it useful for a wide variety of low-frequency measurement applications.

The MAX9617 is available in a space-saving, 2mm x 2mm, 6-pin SC70 package. The MAX9618 is available in a 2mm x 2mm, 8-pin SC70 package. All devices are specified over the -40°C to +125°C automotive operating temperature range.

Applications

Sensor Interfaces Loop-Powered Systems Portable Medical Devices Battery-Powered Devices Cardiac Monitors

- ♦ Low 59uA Quiescent Current
- ♦ Very-Low 10µV (max) Input Offset Voltage
- **♦ Low Input Noise** 42nV/√Hz at 1kHz 1µVp-p from 0.1Hz to 10Hz
- ♦ Rail-to-Rail Inputs and Outputs
- 1.5MHz GBW
- ♦ Ultra-Low 10pA Input Bias Current
- ♦ Single 1.8V to 5.5V Supply Voltage Range
- ♦ Unity-Gain Stable
- ♦ Available in Tiny 6-Pin SC70 (MAX9617) and 8-Pin SC70 (MAX9618) Packages

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE		
MAX9617AXT+	-40°C to +125°C	6 SC70		
MAX9618 AXA+*	-40°C to +125°C	8 SC70		

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

Functional Diagrams

^{*}Future product—contact factory for availability.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VDD to GND)	0.3V to +6V
All Other Pins, IN+ to IN(GND - 0.3	$V) to (V_{DD} + 0.3V)$
Short-Circuit Duration to Either Supply Rail,	
OUT, OUTA, OUTB	10s
Continuous Input Current (any pins)	±20mA

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = +3.3V, V_{GND} = 0V, V_{IN+} = V_{IN-} = V_{DD}/2, R_L = 100k\Omega$ to $V_{DD}/2, T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted. Typical values are at $+25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
POWER SUPPLY			•				
Supply Voltage Range	V _{DD}	Guaranteed by PSRR, 0°C ≤ T _A ≤ +70°C		1.6		5.5	V
		Guaranteed by PSRR, -40°C ≤ TA ≤ +125°C		1.8		5.5	
Supply Current	1	T _A = +25°C			59	78	μA
(per Amplifier)	IDD	-40°C ≤ T _A ≤ +125°C	C			111	μΑ
Davis Commistry Daily at the Datie		Vpp - 1 9V/ to 5 5V/	$T_A = +25^{\circ}C$ $-40^{\circ}C \le T_A \le +125^{\circ}C$	119	135		dB
Power-Supply Rejection Ratio (Note 2)	PSRR	VDD = 1.6V to 5.5V	-40°C ≤ T _A ≤ +125°C	107			
(Note 2)		$0^{\circ}C \le T_A \le +70^{\circ}C, V$	$I_{DD} = 1.6V \text{ to } 5.5V$	116	135		
Power-Up Time	ton	$V_{DD} = 0$ to 3V step,	$A_V = 1V/V$		20		μs
DC SPECIFICATIONS							
Input Offset Voltage (Note 2)	Vos	TA = +25°C			0.8	10	μV
		-40°C ≤ T _A ≤ +125°C				25	μν
Input Offset Voltage Drift (Note 2)	ΔVos				5	120	nV/°C
		T _A =+25°C			0.01	0.14	
Input Bias Current (Note 2)	IB	-40°C ≤ T _A ≤ +125°C				3.5	nA
Input Offset Current	los				0.005		
Input Common-Mode Range	VCM	Guaranteed by CMRR test	TA = +25°C	-0.1		V _{DD} + 0.1	V
			-40°C ≤ T _A ≤ +125°C	-0.1		V _{DD} + 0.05	V
O-mana Maria Daiartian Datia		-0.1V ≤ VCM ≤ VDD	+ 0.1V, $TA = +25$ °C	122	135		
Common-Mode Rejection Ratio (Note 2)	CMRR	-0.1V ≤ V _{CM} ≤ V _{DD} + 0.05V, -40°C ≤ T _A ≤ +125°C		116			dB
Open-Loop Gain (Note 2)		$20\text{mV} \le \text{V}_{\text{OUT}} \le \text{V}_{\text{DD}}$ - 20mV , $R_{\text{L}} = 100\text{k}\Omega$ to $\text{V}_{\text{DD}}/2$		120	138		-ID
	AVOL	$150 \text{mV} \le \text{V}_{\text{OUT}} \le \text{V}_{\text{E}}$ $R_{\text{L}} = 5 \text{k}\Omega \text{ to V}_{\text{DD}}/2$	DD - 150mV,	123	160	dB	

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +3.3V, V_{GND} = 0V, V_{IN+} = V_{IN-} = V_{DD}/2, R_L = 100k\Omega$ to $V_{DD}/2, T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted. Typical values are at $+25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Input Posistanas	Du	Differential			50		MΩ
Input Resistance	RIN	Common mode			200		10122
		V _{DD} - V _{OUT}	$R_L = 100k\Omega$ to $V_{DD}/2$			12	mV
	Voн		$R_L = 5k\Omega$ to $V_{DD}/2$			22	
Output Voltage Swing			$R_L = 600\Omega$ to $V_{DD}/2$		50		
Output-Voltage Swing		Vout	$R_L = 100k\Omega$ to $V_{DD}/2$			11	
	Vol		$R_L = 5k\Omega$ to $V_{DD}/2$			18	
			$R_L = 600\Omega$ to $V_{DD}/2$		50		
Short-Circuit Current	Isc				150		mA
AC SPECIFICATIONS	•						
Gain-Bandwidth Product	GBWP				1.5		MHz
Slew Rate	SR	$0V \le V_{OUT} \le 2V$			0.7		V/µs
Input Voltage-Noise Density	en	f = 1kHz			42		nV/√Hz
Input Voltage Noise		$0.1Hz \le f \le 10Hz$			1		μV _{P-P}
Input Current-Noise Density	in	f = 1kHz			100		fA/√Hz
Phase Margin		C _L = 20pF			60		Degrees
Capacitive Loading	CL	No sustained oscillation, A _V = 1V/V			400		рF
Crosstalk		f = 10kHz (MAX96	18)		-100		dB

Note 1: Specifications are 100% tested at TA = +25°C (exceptions noted). All temperature limits are guaranteed by design.

Note 2: Guaranteed by design.

Typical Operating Characteristics

 $(V_{DD} = +3.3V, V_{GND} = 0V, outputs have R_L = 100k\Omega connected to V_{DD}/2. T_A = +25^{\circ}C, unless otherwise specified.)$

Typical Operating Characteristics (continued)

 $(V_{DD} = +3.3V, V_{GND} = 0V, outputs have R_L = 100k\Omega connected to V_{DD}/2. T_A = +25^{\circ}C, unless otherwise specified.)$

Typical Operating Characteristics (continued)

 $(V_{DD} = +3.3V, V_{GND} = 0V, outputs have R_L = 100k\Omega connected to V_{DD}/2$. $T_A = +25$ °C, unless otherwise specified.)

Typical Operating Characteristics (continued)

 $(V_{DD} = +3.3V, V_{GND} = 0V, outputs have R_L = 100k\Omega connected to V_{DD}/2. T_A = +25^{\circ}C, unless otherwise specified.)$

Pin Configurations

Pin Description

P	IN	NAME	FUNCTION		
MAX9617	MAX9618	NAIVIE			
1	_	IN+	Positive Input		
2	4	GND	Ground		
3	_	IN-	Negative Input		
4	_	OUT	Output		
5, 6	8	V _{DD}	Positive Supply Voltage. Bypass to GND with a 0.1µF capacitor.		
_	1	OUTA	Channel A Output		
_	2	INA-	Channel A Negative Input		
_	3	INA+	Channel A Positive Input		
_	5	INB+	Channel B Positive Input		
_	6	INB-	Channel B Negative Input		
_	7	OUTB	Channel B Output		

MIXIM

Figure 1. Typical Application Circuit: Sallen-Key Active Lowpass Filter

Detailed Description

The MAX9617 (single) and MAX9618 (dual) are precision, low-power op amps ideal for signal processing applications. These devices use an innovative autozero technique that allows precision and low noise with a minimum amount of power. The low input offset voltage, CMOS inputs, and the absence of 1/f noise allows for optimization of active filter designs.

The MAX9617/MAX9618 achieve rail-to-rail performance at the input through the use of a low-noise charge pump. This ensures a glitch-free, common-mode input voltage range extending from the negative supply rail up to the positive supply rail, eliminating crossover distortion common to traditional n-channel/p-channel CMOS pair inputs, reducing harmonic distortion at the output.

Autozero

The MAX9617/MAX9618 feature an autozero circuit that allows the device to achieve less than 10 μ V (max) of input offset voltage and eliminates the 1/f noise.

Internal Charge Pump

An internal charge pump provides an internal supply typically 1V beyond the upper rail. This internal rail allows the MAX9617/MAX9618 to achieve true rail-to-rail inputs and outputs, while providing excellent common-mode rejection, power-supply rejection ratios, and gain linearity.

The charge pump requires no external components, and in most applications is entirely transparent to the user. The operating frequency is well beyond the unity-gain frequency of the amplifier, avoiding aliasing or other signal integrity issues in sensitive applications.

Applications Information

The MAX9617/MAX9618 low-power, low-noise, and precision operational amplifiers are designed for applications in the portable medical, such as ECG and pulse oximetry, portable consumer, and industrial markets.

The MAX9617/MAX9618 are also ideal for loop-powered systems that interface with pressure sensors or strain gauges.

Capacitive-Load Stability

Driving large capacitive loads can cause instability in many op amps. The MAX9617/MAX9618 are stable with capacitive loads up to 400pF. Stability with higher capacitive loads can be improved by adding an isolation resistor in series with the op-amp output. This resistor improves the circuit's phase margin by isolating the load capacitor from the amplifier's output. The graph in the *Typical Operating Characteristics* gives the stable operation region for capacitive load versus isolation resistors.

Power Supplies and Layout

The MAX9617/MAX9618 operate either with a single supply from +1.6V to +5.5V with respect to ground or with dual supplies from ±0.8V to ±2.75V. When used with dual supplies, bypass both supplies with their own 0.1 μ C capacitor to ground. When used with a single supply, bypass V_{DD} with a 0.1 μ C capacitor to ground.

Careful layout technique helps optimize performance by decreasing the amount of stray capacitance at the op amp's inputs and outputs. To decrease stray capacitance, minimize trace lengths by placing external components close to the op amp's pins.

_____Chip Information

PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
6 SC70	X6SN-1	<u>21-0077</u>
8 SC70	X8C+1	<u>21-0460</u>

Package Information (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

-DRAWING NOT TO SCALE-

21-0460

Α

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	7/09	Initial release	_
1	9/09	Removed references to MAX9617 shutdown functionality	1, 2, 3, 6, 7

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.