

The MAX9617/MAX9618 are low-power, zero-drift operational amplifiers, designed for use in portable consumer, medical, and industrial applications.
The MAX9617/MAX9618 feature rail-to-rail CMOS inputs and outputs, a 1.5 MHz GBW at just $59 \mu \mathrm{~A}$ supply current and $10 \mu \mathrm{~V}$ (max) zero-drift input offset voltage over time and temperature. The zero-drift feature of the MAX9617/ MAX9618 reduces the high 1/f noise typically found in CMOS input operational amplifiers, making it useful for a wide variety of low-frequency measurement applications.
The MAX9617 is available in a space-saving, $2 \mathrm{~mm} \times$ 2 mm , 6-pin SC70 package. The MAX9618 is available in a $2 \mathrm{~mm} \times 2 \mathrm{~mm}$, 8-pin SC70 package. All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ automotive operating temperature range.

Applications
Sensor Interfaces
Loop-Powered Systems
Portable Medical Devices
Battery-Powered Devices
Cardiac Monitors

Features

- Low 59 AA Quiescent Current
- Very-Low 10 1 V (max) Input Offset Voltage
- Low Input Noise
$42 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 1 kHz
$1 \mu \mathrm{VP}-\mathrm{P}$ from 0.1 Hz to 10 Hz
- Rail-to-Rail Inputs and Outputs
- 1.5MHz GBW
- Ultra-Low 10pA Input Bias Current
- Single 1.8 V to 5.5 V Supply Voltage Range
- Unity-Gain Stable
- Available in Tiny 6-Pin SC70 (MAX9617) and 8-Pin SC70 (MAX9618) Packages

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9617AXT +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 SC 70
MAX9618AXA ${ }^{*}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SC 70

+Denotes a lead (Pb)-free/RoHS-compliant package.
*Future product-contact factory for availability.

Functional Diagrams

TOP VIEW

High-Efficiency, 1.5MHz Op Amps with RRIO

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VDD to GND).
...........................-0.3V to +6 V .. (GND - 0.3 V) to ($\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$)
All Other Pins, IN+ to IN-(GND Rail,
Short-Circuit Duration to Either Supply Rail
OUT, OUTA, OUTB
o
Continuous Input Current (any pins).............................. $\pm 20 \mathrm{~mA}$
\qquad10s

Continuous Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	
6 -Pin SC70 (derate $3.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	,
8 -Pin SC70 (derate $3.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).	245 mW
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Junction Temperature.	
Storage Temperature Range......................... $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temperature (soldering, 10s)	300

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{VIN}_{+}=\mathrm{V}_{\mathrm{I}}-=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega\right.$ to $\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
POWER SUPPLY							
Supply Voltage Range	VDD	Guaranteed by PSRR, $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$		1.6		5.5	V
		Guaranteed by PSRR, $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$		1.8		5.5	
Supply Current (per Amplifier)	IDD	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			59	78	$\mu \mathrm{A}$
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$		111			
Power-Supply Rejection Ratio (Note 2)	PSRR	$\mathrm{V} D \mathrm{D}=1.8 \mathrm{~V}$ to 5.5 V	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	119	135		dB
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	107			
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.6 \mathrm{~V}$ to 5.5 V		116	135		
Power-Up Time	ton	VDD $=0$ to 3 V step, $\mathrm{AV}=1 \mathrm{~V} / \mathrm{V}$			20		$\mu \mathrm{S}$

DC SPECIFICATIONS

Input Offset Voltage (Note 2)	Vos	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			0.8	10	$\mu \mathrm{V}$
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$				25	
Input Offset Voltage Drift (Note 2)	$\Delta \mathrm{V}$ OS				5	120	$n V /{ }^{\circ} \mathrm{C}$
Input Bias Current (Note 2)	IB	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			0.01	0.14	nA
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$				3.5	
Input Offset Current	Ios				0.005		
Input Common-Mode Range	VCM	Guaranteed by CMRR test	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.1		$\begin{gathered} \text { VDD }+ \\ 0.1 \end{gathered}$	V
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-0.1		$\begin{gathered} \text { VDD + } \\ 0.05 \end{gathered}$	
Common-Mode Rejection Ratio (Note 2)	CMRR	$-0.1 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{VDD}+0.1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		122	135		dB
		$\begin{aligned} & -0.1 \mathrm{~V} \leq V_{C M} \leq V_{D D}+0.05 V, \\ & -40^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C} \end{aligned}$		116			
Open-Loop Gain (Note 2)	AVOL	$\begin{aligned} & \hline 20 \mathrm{mV} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\mathrm{DD}}-20 \mathrm{mV}, \\ & R_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{DD}} / 2 \\ & \hline \end{aligned}$		120	138		dB
		$\begin{aligned} & 150 \mathrm{mV} \leq \mathrm{VOUT}^{\leq} \mathrm{V} \mathrm{DD}-150 \mathrm{mV}, \\ & R_{L}=5 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{DD}} / 2 \end{aligned}$		123	160		

High-Efficiency, 1.5MHz Op Amps with RRIO

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=+3.3 \mathrm{~V}, \mathrm{~V}_{G N D}=0 \mathrm{~V}, \mathrm{~V}_{I N+}=\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega\right.$ to $\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $+25^{\circ} \mathrm{C}$.) (Note 1)

Note 1: Specifications are 100% tested at $T_{A}=+25^{\circ} \mathrm{C}$ (exceptions noted). All temperature limits are guaranteed by design.
Note 2: Guaranteed by design.

Typical Operating Characteristics

($\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}$, outputs have $\mathrm{RL}=100 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{DD}} / 2 . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.)

High-Efficiency, 1.5MHz Op Amps with RRIO

Typical Operating Characteristics (continued)
($\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}$, outputs have $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{DD}} / 2 . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.)

INPUT OFFSET VOLTAGE vs. TEMPERATURE

COMMON-MODE REJECTION RATIO vs. TEMPERATURE

SUPPLY CURRENT
vs. TEMPERATURE

INPUT BIAS CURRENT
vs. INPUT COMMON MODE

POWER-SUPPLY REJECTION RATIO
vs. FREQUENCY

INPUT OFFSET VOLTAGE
vs. INPUT COMMON MODE

COMMON-MODE REJECTION RATIO vs. FREQUENCY

OUTPUT-VOLTAGE SWING HIGH
vs. TEMPERATURE

High-Efficiency, 1.5MHz Op Amps with RRIO

Typical Operating Characteristics (continued)
$\left(V_{D D}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}\right.$, outputs have $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{DD}} / 2 . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.)

High-Efficiency, 1.5MHz Op Amps with RRIO

Typical Operating Characteristics (continued)

($\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}$, outputs have $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{DD}} / 2 . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.)

LARGE-SIGNAL STEP RESPONSE

vs. TIME

CAPACITIVE LOAD
vs. ISOLATION RESISTOR

Pin Configurations
TOP VIEW

Pin Description

PIN		NAME	
MAX9617	MAX9618		
1	-	FUNCTION	
2	4	GND	Positive Input
3	-	IN-	Negative Input
4	-	OUT	Output
5,6	8	VDD	Positive Supply Voltage. Bypass to GND with a 0.1 μ F capacitor.
-	1	OUTA	Channel A Output
-	2	INA-	Channel A Negative Input
-	3	INA+	Channel A Positive Input
-	5	INB+	Channel B Positive Input
-	6	INB-	Channel B Negative Input
-	7	OUTB	Channel B Output

High-Efficiency, 1.5MHz Op Amps with RRIO

Figure 1. Typical Application Circuit: Sallen-Key Active Lowpass Filter

Detailed Description

The MAX9617 (single) and MAX9618 (dual) are precision, low-power op amps ideal for signal processing applications. These devices use an innovative autozero technique that allows precision and low noise with a minimum amount of power. The low input offset voltage, CMOS inputs, and the absence of $1 / f$ noise allows for optimization of active filter designs.
The MAX9617/MAX9618 achieve rail-to-rail performance at the input through the use of a low-noise charge pump. This ensures a glitch-free, common-mode input voltage range extending from the negative supply rail up to the positive supply rail, eliminating crossover distortion common to traditional n-channel/p-channel CMOS pair inputs, reducing harmonic distortion at the output.

Autozero

The MAX9617/MAX9618 feature an autozero circuit that allows the device to achieve less than $10 \mu \mathrm{~V}$ (max) of input offset voltage and eliminates the 1/f noise.

Internal Charge Pump

An internal charge pump provides an internal supply typically 1 V beyond the upper rail. This internal rail allows the MAX9617/MAX9618 to achieve true rail-to-rail inputs and outputs, while providing excellent common-mode rejection, power-supply rejection ratios, and gain linearity.
The charge pump requires no external components, and in most applications is entirely transparent to the user. The operating frequency is well beyond the unity-gain frequency of the amplifier, avoiding aliasing or other signal integrity issues in sensitive applications.

Applications Information

The MAX9617/MAX9618 low-power, low-noise, and precision operational amplifiers are designed for applications in the portable medical, such as ECG and pulse oximetry, portable consumer, and industrial markets.
The MAX9617/MAX9618 are also ideal for loop-powered systems that interface with pressure sensors or strain gauges.

Capacitive-Load Stability

Driving large capacitive loads can cause instability in many op amps. The MAX9617/MAX9618 are stable with capacitive loads up to 400pF. Stability with higher capacitive loads can be improved by adding an isolation resistor in series with the op-amp output. This resistor improves the circuit's phase margin by isolating the load capacitor from the amplifier's output. The graph in the Typical Operating Characteristics gives the stable operation region for capacitive load versus isolation resistors.

Power Supplies and Layout The MAX9617/MAX9618 operate either with a single supply from +1.6 V to +5.5 V with respect to ground or with dual supplies from $\pm 0.8 \mathrm{~V}$ to $\pm 2.75 \mathrm{~V}$. When used with dual supplies, bypass both supplies with their own $0.1 \mu \mathrm{~F}$ capacitor to ground. When used with a single supply, bypass VDD with a $0.1 \mu \mathrm{~F}$ capacitor to ground.
Careful layout technique helps optimize performance by decreasing the amount of stray capacitance at the op amp's inputs and outputs. To decrease stray capacitance, minimize trace lengths by placing external components close to the op amp's pins.

High-Efficiency, 1.5MHz
 Op Amps with RRIO

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
6 SC70	$\times 6 \mathrm{SN}-1$	$\underline{\mathbf{2 1 - 0 0 7 7}}$
8 SC 70	$\mathrm{X8C}+1$	$\underline{\mathbf{2 1 - 0 4 6 0}}$

High-Efficiency, 1.5MHz Op Amps with RRIO

Package Information (continued)
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

TロP VIEW

SIDE VIEW

CDMMIN DIMENSIDNS			
SYMBLL	MIN	NDM	MAX
A	0.80	0.95	1.10
A1	0.00	0.07	0.10
A2	0.80	0.90	1.00
A3	0.40	0.47	0.55
b	0.15	0.21	0.27
c	0.10	0.14	0.18
D	1.80	2.00	2.20
e	0.50 BSC.		
E	1.15	1.25	1.35
HE	1.80	2.20	2.40
L	0.26	0.34	0.46
L1	0.425 TYP.		
$\begin{aligned} & \hline \text { PKG. } \\ & \text { CDDE } \end{aligned}$	X8C-1		

SIDE VIEW

1. ALL DIMENSIINS ARE IN MILLIMETERS,
2. DIMENSIINS ARE INCLUSIVE DF PLATING.
3. DIMENSIINS ARE EXCLUSIVE $\square F$ MILD FLASH \& METAL BURR.
4. CDPLANARITY 4 MILS. MAX.
5. FIUT LENGTH MEASURED AT intercept paint between datum "A" and lead surface.
6. MARKING IS FZR PACKAGE DRIENTATIUN REFERENCE $\square N L Y$.
7. LEAD CENTERLINES TI BE AT TRUE PUSITION AS DEFINED BY BASIC DIMENSION " e ", ± 0.05.
8. ALL DIMENSIUNS CDMPLY TD JEDEC MD-203.
9. ALL DIMENSIINS APPLY TO BITH LEADED (-) AND LEAD FREE (+) PACKAGE CDDES.

High-Efficiency, 1.5MHz
 Op Amps with RRIO

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$7 / 09$	Initial release	-
1	$9 / 09$	Removed references to MAX9617 shutdown functionality	$1,2,3,6,7$

