

UPDATED: 07/12/2007

17.3–18.1 GHz 4-Watt Internally-Matched Power FET

FEATURES

- 17.3-18.1 GHz Bandwidth
- Input/Output Impedance Matched to 50 Ohms
- +36.0 dBm Output Power at 1dB Compression
- 6.0 dB Power Gain at 1dB Compression
- 25% Power Added Efficiency
- Hermetic Metal Flange Package
- 100% Tested for DC, RF, and R_{TH}

ELECTRICAL CHARACTERISTICS (T_a = 25°C)

Caution! ESD sensitive device.

EID1718A1-4

SYMBOL	PARAMETERS/TEST CONDITIONS ¹	MIN	TYP	MAX	UNITS
P _{1dB}	Output Power at 1dB Compression $f = 17.3-18.1GHz$ $V_{DS} = 10 V$, $I_{DSQ} \approx 1200mA$	35.5	36.0		dBm
G _{1dB}	Gain at 1dB Compression $f = 17.3-18.1GHz$ $V_{DS} = 10 V$, $I_{DSQ} \approx 1200mA$	5.0	6.0		dB
∆G	Gain Flatness $f = 17.3-18.1 \text{GHz}$ $V_{DS} = 10 \text{ V}, I_{DSQ} \approx 1200 \text{mA}$			±0.6	dB
PAE	Power Added Efficiency at 1dB Compression V_{DS} = 10 V, $I_{DSQ} \approx 1200$ mAf = 17.3-18.1GHz		25		%
\mathbf{Id}_{1dB}	Drain Current at 1dB Compression f = 17.3-18.1GHz		1300	1800	mA
I _{DSS}	Saturated Drain Current V_{DS} = 3 V, V_{GS} = 0 V		2080	2880	mA
VP	Pinch-off Voltage V_{DS} = 3 V, I_{DS} = 20 mA		-2.5	-4.0	V
R _{TH}	Thermal Resistance ²		4.5	5.5	°C/W

Notes: 1. Tested with 100 Ohm gate resistor.

2. Overall Rth depends on case mounting.

ABSOLUTE MAXIMUM RATINGS FOR CONTINUOUS OPERATION^{1,2}

SYMBOL	CHARACTERISTIC	VALUE	
V _{DS}	Drain to Source Voltage	10 V	
V _{GS}	Gate to Source Voltage	-4.5 V	
I _{DS}	Drain Current	IDSS	
I _{GSF}	Forward Gate Current	40 mA	
P _{IN}	Input Power	@ 3dB compression	
PT	Total Power Dissipation	23 W	
Тсн	Channel Temperature	150°C	
T _{STG}	Storage Temperature	-65/+150°C	

Note: 1. Exceeding any of the above ratings may result in permanent damage.

2. Exceeding any of the above ratings may reduce MTTF below design goals.

UPDATED: 07/12/2007

17.3–18.1 GHz 4-Watt Internally-Matched Power FET

EID1718A1-4

DISCLAIMER

EXCELICS SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. EXCELICS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

LIFE SUPPORT POLICY

EXCELICS SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF EXCELICS SEMICONDUCTOR, INC. AS HERE IN:

 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness