Features

- Floating channel designed for bootstrap operation

Fully operational to +600 V
Tolerant to negative transient voltage - dV/dt immune

- Gate drive supply range from 10 V to 20 V
- Undervoltage lockout for both channels
- $3.3 \mathrm{~V}, 5 \mathrm{~V}$ and 15 V input logic compatible
- Cross-conduction prevention logic
- Matched propagation delay for both channels
- High side output in phase with IN input
- Internal 530 ns dead-time
- Lower di/dt gate driver for better noise immunity
- Shut down input turns off both channels
- Integrated bootstrap diode
- RoHS compliant

Packages

Product Summary

VofFSET	600 V max.
$\mathrm{l}_{\mathrm{o}+/-}$	$120 \mathrm{~mA} / 250 \mathrm{~mA}$
$\mathrm{~V}_{\text {out }}$	$10 \mathrm{~V}-20 \mathrm{~V}$
$\mathrm{t}_{\text {onn/ff }}$ (typ.)	$750 \mathrm{~ns} \& 200 \mathrm{~ns}$
Dead Time	530 ns

Applications:

*Air Conditioner
*Micro/Mini Inverter Drives
*General Purpose Inverters
*Motor Control

Description

The IRS2609D is a high voltage, high speed power MOSFET and IGBT drivers with dependent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with Standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N -channel power MOSFET or IGBT in the high side configuration which operates up to 600 V .

(Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and Design Tips for proper circuit board layout.

International
IRS2609DSPbF
IER Rectifier
Qualification Information ${ }^{\dagger}$

Qualification Level		Industrial ${ }^{\text {T }}$
		Comments: This IC has passed JEDEC's Industrial qualification. IR's Consumer qualification level is granted by extension of the higher Industrial level.
Moisture Sensitivity Level		$\begin{gathered} \text { MSL2, } 260^{\circ} \mathrm{C} \\ \text { (per IPC/JEDEC J-STD-020) } \end{gathered}$
ESD	Human Body Model	Class 2 (per JEDEC standard JESD22-A114)
	Machine Model	Class B (per EIA/JEDEC standard EIA/JESD22-A115)
IC Latch-Up Test		Class I, Level A (per JESD78)
RoHS Compliant		Yes

\dagger Qualification standards can be found at International Rectifier's web site http://www.irf.com/
$\dagger \dagger$ Higher qualification ratings may be available should the user have such requirements.
Please contact your International Rectifier sales representative for further information.

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units
V_{B}	High side floating absolute voltage	-0.3	620	V
V_{S}	High side floating supply offset voltage	$\mathrm{V}_{\mathrm{B}}-20$	$V_{B}+0.3$	
V_{HO}	High side floating output voltage	$\mathrm{V}_{\mathrm{S}}-0.3$	$\mathrm{V}_{B}+0.3$	
$\mathrm{V}_{\text {cc }}$	Low side and logic fixed supply voltage	-0.3	20	
VLo	Low side output voltage	-0.3	$\mathrm{V}_{\mathrm{Cc}}+0.3$	
$\mathrm{V}_{\text {IN }}$	Logic input voltage (IN \& SD)	COM -0.3	$\mathrm{V}_{\mathrm{CC}}+0.3$	
COM	Logic ground	$\mathrm{V}_{\text {cc }}-20$	$\mathrm{V}_{\mathrm{CC}}+0.3$	
dV ${ }_{\text {S }} / \mathrm{dt}$	Allowable offset supply voltage transient	-	50	V / ns
P_{D}	Package power dissipation @ TA $\leq+25^{\circ} \mathrm{C}$	-	0.625	W
Rth JA	Thermal resistance, junction to ambient	-	200	${ }^{\circ} \mathrm{C} / \mathrm{W}$
TJ	Junction temperature	-	150	${ }^{\circ} \mathrm{C}$
Ts	Storage temperature	-50	150	
TL	Lead temperature (soldering, 10 seconds)	-	300	

Recommended Operating Conditions

For proper operation the device should be used within the recommended conditions. The V_{S} and COM offset rating are tested with all supplies biased at 15 V differential.

Symbol	Definition	Min.	Max.	Units
V_{B}	High side floating supply absolute voltage	$\mathrm{V}_{\mathrm{S}}+10$	$\mathrm{V}_{\mathrm{S}}+20$	V
V_{S}	Static High side floating supply offset voltage	COM- 8(Note 1)	600	
$\mathrm{V}_{\text {St }}$	Transient High side floating supply offset voltage	-50 (Note2)	600	
V_{HO}	High side floating output voltage	V_{S}	V_{B}	
V_{CC}	Low side and logic fixed supply voltage	10	20	
VLO	Low side output voltage	0	V_{cc}	
$\mathrm{V}_{\text {IN }}$	Logic input voltage (IN \& SD)	V Ss	V_{Cc}	
T_{A}	Ambient temperature	-40	125	${ }^{\circ} \mathrm{C}$

Note 1: Logic operational for V_{S} of -8 V to +600 V . Logic state held for V_{S} of -8 V to $-\mathrm{V}_{\mathrm{BS}}$.
Note 2: Operational for transient negative VS of COM - 50 V with a 50 ns pulse width. Guaranteed by design. Refer to the Application Information section of this datasheet for more details.

Dynamic Electrical Characteristics

$\mathrm{V}_{\text {BIAS }}\left(\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{BS}}\right)=15 \mathrm{~V}, \mathrm{COM}=\mathrm{V}_{\mathrm{CC}}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{DT}=\mathrm{V}_{\mathrm{SS}}$ unless otherwise specified.

Symbol	Definition	Min	Typ	Max	Units	Test Conditions
ton	Turn-on propagation delay	-	750	1100	ns	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ or 600 V
$\mathrm{t}_{\text {off }}$	Turn-off propagation delay	-	250	400		$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ or 600 V
$\mathrm{t}_{\text {sd }}$	Shut-down propagation delay	-	250	400		
MT	Delay matching, HS \& LS turn-on/off	-	-	60		
t_{r}	Turn-on rise time	-	150	220		$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$
$t_{\text {f }}$	Turn-off fall time	-	50	80		$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$
DT	Deadtime: LO turn-off to HO turn-on(DTLo-Ho) \& HO turn-off to LO turn-on (DT Ho-LO $^{\text {) }}$	350	530	800		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \& 5 \mathrm{~V}$ Without external deadtime
MT	Delay matching time ($\mathrm{t}_{\text {on }}$, $\mathrm{t}_{\text {OFF }}$)	-	-	60		
MDT	Deadtime matching = DTLO-HO - DTHO-LO	-	-	60		

Static Electrical Characteristics

$\mathrm{V}_{\mathrm{BIAS}}\left(\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{BS}}\right)=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{COM}, \mathrm{DT}=\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified. The $\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{IH}}$ and I_{IN} parameters are referenced to $\mathrm{V}_{\mathrm{cc}} / \mathrm{COM}$ and are applicable to the respective input leads: IN and $\overline{\mathrm{SD}}$. The V_{O}, l_{0} and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO.

Symbol	Definition	Min	Typ	Max	Units	Test Conditions
V_{IH}	logic "1" input voltage for HO \& logic "0" for LO	2.2	-	-	V	
$\mathrm{V}_{\text {IL }}$	logic "0" input voltage for HO \& logic "1" for LO	-	-	0.8		
V_{OH}	High level output voltage, $\mathrm{V}_{\text {BIAS }}-\mathrm{V}_{\mathrm{O}}$	-	0.8	1.4		$\mathrm{l}_{0}=20 \mathrm{~mA}$
Vol	Low level output voltage, V_{O}	-	0.3	0.6		l O $=20 \mathrm{~mA}$
ILK	Offset supply leakage current	-	-	50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{S}}=600 \mathrm{~V}$
$\mathrm{l}_{\text {QBS }}$	Quiescent $\mathrm{V}_{\text {BS }}$ supply current	-	45	70		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or 4 V
lacc	Quiescent $\mathrm{V}_{\text {cc }}$ supply current	1000	2000	3000		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or 4 V
$\mathrm{l}_{1 \mathrm{~N}_{+}}$	Logic "1" input bias current	-	5	20		$\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}$
1 N -	Logic "0" input bias current	-	-	2		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$
$\mathrm{I}_{\mathrm{SD}, \mathrm{TH}+}$	$\overline{\mathrm{SD}}$ input positive going threshold	-	15	30		
$\mathrm{I}_{\text {SD, TH- }}$	$\overline{\mathrm{SD}}$ input negative going threshold	-	10	20		
$\mathrm{V}_{\mathrm{cCuV}+}$ $\mathrm{V}_{\text {BSUV }+}$	V_{CC} and V_{BS} supply undervoltage positive going Threshold	8.0	8.9	9.8	V	
$\mathrm{V}_{\text {ccuv- }}$ $V_{\text {BSUV- }}$	V_{CC} and V_{BS} supply undervoltage negative going Threshold	7.4	8.2	9.0		
Vccuve $V_{\text {BSUVH }}$	Hysteresis	-	0.7	-		
l^{+}	Output high short circuit pulsed current	120	200	-	mA	$\begin{aligned} \mathrm{V}_{\mathrm{O}} & =0 \mathrm{~V}, \\ \mathrm{PW} & \leq 10 \text { us } \end{aligned}$
lo.	Output low short circuit pulsed current	250	350	-		$\begin{aligned} \mathrm{V}_{\mathrm{O}} & =15 \mathrm{~V}, \\ \mathrm{PW} & \leq 10 \mathrm{us} \end{aligned}$
Rbs	Bootstrap resistance	-	200	-	Ohm	

Functional Block Diagrams

Lead Definitions

Symbol	Description
$\mathbf{I N}$	Logic input for high and low side gate driver outputs (HO and LO), in phase
$\overline{\mathbf{S D}}$	Logic input for shutdown
$\mathbf{V}_{\mathbf{B}}$	High side floating supply
$\mathbf{H O}$	High side gate drive output
$\mathbf{V}_{\mathbf{S}}$	High side floating supply return
$\mathbf{V}_{\mathbf{C C}}$	Low side and logic fixed supply
$\mathbf{L O}$	Low side gate drive output
$\mathbf{C O M}$	Low side return

Lead Assignments

International

Application Information and Additional Details

Informations regarding the following topics are included as subsections within this section of the datasheet.

- IGBT/MOSFET Gate Drive
- Switching and Timing Relationships
- Deadtime
- Matched Propagation Delays
- Shut down Input
- Input Logic Compatibility
- Undervoltage Lockout Protection
- Shoot-Through Protection
- Integrated Bootstrap Functionality
- Negative V V Transient SOA $^{\text {P }}$
- PCB Layout Tips
- Additional Documentation

IGBT/MOSFET Gate Drive

The IRS2609D HVICs are designed to drive MOSFET or IGBT power devices. Figures 1 and 2 illustrate several parameters associated with the gate drive functionality of the HVIC. The output current of the HVIC, used to drive the gate of the power switch, is defined as I_{O}. The voltage that drives the gate of the external power switch is defined as V_{HO} for the high-side power switch and V_{LO} for the low-side power switch; this parameter is sometimes generically called $V_{\text {out }}$ and in this case does not differentiate between the high-side or low-side output voltage.

Figure 1: HVIC sourcing current

Figure 2: HVIC sinking current

International

Switching and Timing Relationships

The relationships between the input and output signals of the IRS2609D are illustrated below in Figures 3, 4. From these figures, we can see the definitions of several timing parameters (i.e. ton, $t_{\text {off }}, t_{R}$, and t_{F}) associated with this device.

Figure 3: Switching time waveforms

Figure 4: Input/output timing diagram

Deadtime

This family of HVICs features integrated deadtime protection circuitry. The deadtime for these ICs is fixed; other ICs within IR's HVIC portfolio feature programmable deadtime for greater design flexibility. The deadtime feature inserts a time period (a minimum deadtime) in which both the high- and low-side power switches are held off; this is done to ensure that the power switch being turned off has fully turned off before the second power switch is turned on. This minimum deadtime is automatically inserter whenever the external deadtime is shorter than DT; external deadtimes larger than DT are not modified by the gate driver. Figure 5 illustrates the deadtime period and the relationship between the output gate signals.

The deadtime circuitry of the IRS2609D is matched with respect to the high- and low-side outputs. Figure 6 defines the two deadtime parameters (i.e., $\mathrm{DT}_{\text {LO-но }}$ and $\mathrm{DT}_{\text {но-Lо }}$); the deadtime matching parameter (MDT) associated with the IRS2609D specifies the maximum difference between DT Lо-но and $\mathrm{DT}_{\text {но-ьо. }}$

Matched Propagation Delays

The IRS2609D family of HVICs is designed with propagation delay matching circuitry. With this feature, the IC's response at the output to a signal at the input requires approximately the same time duration (i.e., ton, toff) for both the low-side channels and the high-side channels; the maximum difference is specified by the delay matching parameter (MT). The propagation turn-on delay (ton) of the IRS2609D is matched to the propagation turn-on delay (toff).

Shut down Input

The IRS2609D family of HVICs is equipped with a shut down (/SD) input pin that is used to shutdown or enable the HVIC. When the /SD pin is in the high state the HVIC is able to operate normally. When the /SD pin is in low state the HVIC is tristated.

Figure 5: Shut down

Figure 6: Dead time Definition

Figure 7: Delay Matching waveform Definition

Input Logic Compatibility

The inputs of this IC are compatible with standard CMOS and TTL outputs. The IRS2609D has been designed to be compatible with 3.3 V and 5 V logic-level signals. The IRS2609D features an integrated 5.2 V Zener clamp on the /SD. Figure 8 illustrates an input signal to the IRS2609D, its input threshold values, and the logic state of the IC as a result of the input signal.

Figure 8: HIN \& LIN input thresholds

Undervoltage Lockout Protection

This family of ICs provides undervoltage lockout protection on both the V_{CC} (logic and low-side circuitry) power supply and the V_{BS} (high-side circuitry) power supply. Figure 9 is used to illustrate this concept; V_{CC} (or V_{BS}) is plotted over time and as the waveform crosses the UVLO threshold ($\mathrm{V}_{\mathrm{CCUV}+/-}$ or $\mathrm{V}_{\mathrm{BSUV}+/-}$) the undervoltage protection is enabled or disabled.

Upon power-up, should the V_{CC} voltage fail to reach the $\mathrm{V}_{\mathrm{CCUV}}$ threshold, the IC will not turn-on. Additionally, if the V_{CC} voltage decreases below the $V_{\text {ccuv }}$ threshold during operation, the undervoltage lockout circuitry will recognize a fault condition and shutdown the high- and low-side gate drive outputs, and the FAULT pin will transition to the low state to inform the controller of the fault condition.

Upon power-up, should the V_{BS} voltage fail to reach the $\mathrm{V}_{\text {BSUV }}$ threshold, the IC will not turn-on. Additionally, if the V_{BS} voltage decreases below the $\mathrm{V}_{\text {BSU }}$ threshold during operation, the undervoltage lockout circuitry will recognize a fault condition, and shutdown the high-side gate drive outputs of the IC.

The UVLO protection ensures that the IC drives the external power devices only when the gate supply voltage is sufficient to fully enhance the power devices. Without this feature, the gates of the external power switch could be driven with a low voltage, resulting in the power switch conducting current while the channel impedance is high; this could result in very high conduction losses within the power device and could lead to power device failure.

Figure 9: UVLO protection

Shoot-Through Protection

The IRS2609D high-voltage ICs is equipped with shoot-through protection circuitry (also known as cross-conduction prevention circuitry).

International

Integrated Bootstrap Functionality

The IRS2609D embeds an integrated bootstrap FET that allows an alternative drive of the bootstrap supply for a wide range of applications. A bootstrap FET is connected between the floating supply V_{B} and V_{CC} (see Fig. 10).

Figure 10: Semplified BootFET connection
The integrated bootstrap feature can be used either in parallel with the external bootstrap network (diode and resistor) or as a replacement of it. The use of the integrated bootstrap as a replacement of the external bootstrap network may have some limitations at very high PWM duty cycle, corresponding to very short LIN pulses, due to the bootstrap FET equivalent resistance RBS.

The summary for the bootstrap state follows:

- Bootstrap turns-off (immediately) or stays off when at least one of the following conditions are met:

1- /SD is low
2- /SD is high, IN is low and V_{B} is high ($>1.1^{*} V_{C C}$)
$3-/ S D$ is high, $I N$ is high (DT period excluded)
4- /SD is high, $I N$ is high and V_{B} is high $\left(>1.1^{*} V_{C C}\right)$ (during DT period)

- Bootstrap turns-on when:

1 - /SD in high, IN is low and V_{B} is low $\left(<1.1\left(\mathrm{~V}_{C C}\right)\right)$
2- /SD in high, IN is high and V_{B} is low $\left(<1.1\left(V_{C C}\right)\right)$ (during the $D T$ period). Please refer to the BootFET timing diagram for more details.

Figure 11: BootFET timing diagram

International
IRS2609DSPbF
Igr Rectifier

Negative $V_{\text {S }}$ Transient SOA

A common problem in today's high-power switching converters is the transient response of the switch node's voltage as the power switches transition on and off quickly while carrying a large current. A typical 3-phase inverter circuit is shown in Figure 12; here we define the power switches and diodes of the inverter.

If the high-side switch (e.g., the IGBT Q1 in Figures 13 and 14) switches off, while the U phase current is flowing to an inductive load, a current commutation occurs from high-side switch (Q1) to the diode (D2) in parallel with the low-side switch of the same inverter leg. At the same instance, the voltage node $\mathrm{V}_{\mathrm{S} 1}$, swings from the positive DC bus voltage to the negative DC bus voltage.

Figure 12: Three phase inverter

Figure 13: Q1 conducting

Figure 14: D2 conducting

Also when the V phase current flows from the inductive load back to the inverter (see Figures 15 and 16), and Q4 IGBT switches on, the current commutation occurs from D3 to Q4. At the same instance, the voltage node, $\mathrm{V}_{\mathrm{S} 2}$, swings from the positive DC bus voltage to the negative DC bus voltage.

Figure 15: D3 conducting

Figure 16: Q4 conducting

International

However, in a real inverter circuit, the V_{S} voltage swing does not stop at the level of the negative $D C$ bus, rather it swings below the level of the negative DC bus. This undershoot voltage is called "negative V_{S} transient".

The circuit shown in Figure 17 depicts one leg of the three phase inverter; Figures 18 and 19 show a simplified illustration of the commutation of the current between Q1 and D2. The parasitic inductances in the power circuit from the die bonding to the PCB tracks are lumped together in L_{C} and L_{E} for each IGBT. When the high-side switch is on, $\mathrm{V}_{\mathrm{S} 1}$ is below the $\mathrm{DC}+$ voltage by the voltage drops associated with the power switch and the parasitic elements of the circuit. When the high-side power switch turns off, the load current momentarily flows in the low-side freewheeling diode due to the inductive load connected to $\mathrm{V}_{\mathrm{S} 1}$ (the load is not shown in these figures). This current flows from the DC- bus (which is connected to the COM pin of the HVIC) to the load and a negative voltage between $\mathrm{V}_{\mathrm{S} 1}$ and the DC- Bus is induced (i.e., the COM pin of the HVIC is at a higher potential than the V_{S} pin).

Figure 17: Parasitic Elements

Figure 18: V_{s} positive

Figure 19: V_{s} negative

In a typical motor drive system, $\mathrm{dV} / \mathrm{dt}$ is typically designed to be in the range of $3-5 \mathrm{~V} / \mathrm{ns}$. The negative V_{S} transient voltage can exceed this range during some events such as short circuit and over-current shutdown, when di/dt is greater than in normal operation.

International Rectifier's HVICs have been designed for the robustness required in many of today's demanding applications. An indication of the IRS2609D's robustness can be seen in Figure 20, where there is represented the IRS2609D Safe Operating Area at $\mathrm{V}_{\mathrm{BS}}=15 \mathrm{~V}$ based on repetitive negative V_{S} spikes. A negative V_{S} transient voltage falling in the grey area (outside SOA) may lead to IC permanent damage; viceversa unwanted functional anomalies or permanent damage to the IC do not appear if negative Vs transients fall inside SOA.
At $\mathrm{V}_{\mathrm{BS}}=15 \mathrm{~V}$ in case of $-\mathrm{V}_{S}$ transients greater than -16.5 V for a period of time greater than 50 ns ; the HVIC will hold by design the high-side outputs in the off state for $4.5 \mu \mathrm{~s}$.

Figure 20: Negative V_{s} transient SOA for IRS2608D @ VBS=15V
Even though the IRS2609D has been shown able to handle these large negative V_{S} transient conditions, it is highly recommended that the circuit designer always limit the negative V_{S} transients as much as possible by careful PCB layout and component use.

PCB Layout Tips

Distance between high and low voltage components: It's strongly recommended to place the components tied to the floating voltage pins (V_{B} and V_{S}) near the respective high voltage portions of the device. Please see the Case Outline information in this datasheet for the details.

Ground Plane: In order to minimize noise coupling, the ground plane should not be placed under or near the high voltage floating side.

Gate Drive Loops: Current loops behave like antennas and are able to receive and transmit EM noise (see Figure 21). In order to reduce the EM coupling and improve the power switch turn on/off performance, the gate drive loops must be reduced as much as possible. Moreover, current can be injected inside the gate drive loop via the IGBT collector-to-gate parasitic capacitance. The parasitic auto-inductance of the gate loop contributes to developing a voltage across the gate-emitter, thus increasing the possibility of a self turn-on effect.

Figure 21: Antenna Loops

Supply Capacitor: It is recommended to place a bypass capacitor $\left(\mathrm{C}_{\mathrm{IN}}\right)$ between the V_{cc} and COM pins. A ceramic $1 \mu \mathrm{~F}$ ceramic capacitor is suitable for most applications. This component should be placed as close as possible to the pins in order to reduce parasitic elements.

Routing and Placement: Power stage PCB parasitic elements can contribute to large negative voltage transients at the switch node; it is recommended to limit the phase voltage negative transients. In order to avoid such conditions, it is recommended to 1) minimize the high-side emitter to low-side collector distance, and 2) minimize the low-side emitter to negative bus rail stray inductance. However, where negative V_{S} spikes remain excessive, further steps may be taken to reduce the spike. This includes placing a resistor (5Ω or less) between the V_{S} pin and the switch node (see Figure 22), and in some cases using a clamping diode between COM and V_{S} (see Figure 23). See DT04-4 at www.irf.com for more detailed information.

Figure 22: V_{s} resistor

Figure 23: V_{s} clamping diode

Additional Documentation

Several technical documents related to the use of HVICs are available at www.irf.com; use the Site Search function and the document number to quickly locate them. Below is a short list of some of these documents.

DT97-3: Managing Transients in Control IC Driven Power Stages
AN-1123: Bootstrap Network Analysis: Focusing on the Integrated Bootstrap Functionality
DT04-4: Using Monolithic High Voltage Gate Drivers
AN-978: HV Floating MOS-Gate Driver ICs

International

IER Rectifier

Figures 24-47 provide information on the experimental performance of the IRS2609D(S) HVIC. The line plotted in each figure is generated from actual lab data. A large number of individual samples from multiple wafer lots were tested at three temperatures ($-40^{\circ} \mathrm{C}, 25{ }^{\circ} \mathrm{C}$, and $125{ }^{\circ} \mathrm{C}$) in order to generate the experimental (Exp.) curve. The line labeled Exp. consist of three data points (one data point at each of the tested temperatures) that have been connected together to illustrate the understood trend. The individual data points on the curve were determined by calculating the averaged experimental value of the parameter (for a given temperature).

Fig. 24. Turn-on Propagation Delay vs.
Temperature

Fig. 26. Turn-on Rise Time vs. Temperature

Fig. 25. Turn-off Propagation Delay vs.
Temperature

Fig. 27. Turn-off Rise Time vs. Temperature

Fig. 28. V_{CC} Supply UV Hysteresis vs. Temperature

Fig. 30. V_{CC} Quiescent Supply Current vs. Temperature

Fig. 32. $\mathrm{V}_{\mathrm{Ccuv}+}$ Threshold vs. Temperature

Fig. 29. VBS Supply UV Hysteresis vs. Temperature

Fig. 31. V_{BS} Quiescent Supply Current vs.
Temperature

Fig. 33. $\mathrm{V}_{\text {ccuv. }}$ Threshold vs. Temperature

Fig. 34. $\mathrm{VBSUV}+$ Threshold vs. Temperature

Fig. 36. Low Level Output Voltage vs. Temperature

Fig. 38. Bootstrap Resistance vs. Temperature

Fig. 35. VBSuv. Threshold vs. Temperature

Fig. 37. High Level Output Voltage vs. Temperature

Fig. 39. IN $\mathrm{V}_{\mathrm{TH}}+\mathrm{vs}$. Temperature

Fig. 41. $\mathrm{HIN}_{\mathrm{V}_{\mathrm{TH}+}}$ vs. Temperature

Fig. 43. Tbson_VccTYP vs. Temperature

Fig. 45. Deadtime vs. Temperature

Fig. 46. Delay Matching vs. Temperature

Fig. 47. Deadtime Matching vs. Temperature

Case Outlines

Tape and Reel Details: 8L-SOIC

CARRIER TAPE DIMENSION FOR 8SOICN

Code	Metric		Imperial	
	Min	Max	Min	Max
A	7.90	8.10	0.311	0.318
B	3.90	4.10	0.153	0.161
C	11.70	12.30	0.46	0.484
D	5.45	5.55	0.214	0.218
E	6.30	6.50	0.248	0.255
F	5.10	5.30	0.200	0.208
G	1.50	n / a	0.059	n / a
H	1.50	1.60	0.059	0.062

REEL DIMENSIONS FOR 8SOICN

Code	Metric		Imperial	
	Min	Max	Min	Max
A	329.60	330.25	12.976	13.001
B	20.95	21.45	0.824	0.844
C	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
E	98.00	102.00	3.858	4.015
F	n/a	18.40	n/a	0.724
G	14.50	17.10	0.570	0.673
H	12.40	14.40	0.488	0.566

LEAD-FREE PART MARKING INFORMATION

ORDER INFORMATION

8-Lead SOIC IRS2609DSPbF
8-Lead SOIC Tape \& Reel IRS2609DSTRPbF

The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

WORLD HEADQUARTERS:
233 Kansas St., El Segundo, California 90245
Tel: (310) 252-7105

