Schottky Rectifier, 300 A

TO-244

PRODUCT SUMMARY	
$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	300 A
$\mathrm{~V}_{\mathrm{R}}$	$40 / 45 \mathrm{~V}$

FEATURES

- $175{ }^{\circ} \mathrm{C} \mathrm{T}_{\jmath}$ operation
- Center tap module
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- Lead (Pb)-free
- Designed and qualified for industrial level

DESCRIPTION

The 301CNQ... center tap Schottky rectifier module series has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to $175^{\circ} \mathrm{C}$ junction temperature. Typical applications are in high current switching power supplies, plating power supplies, UPS systems, converters, freewheeling diodes, welding, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS					
SYMBOL	CHARACTERISTICS	VALUES	UNITS		
$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	Rectangular waveform	300	A		
$\mathrm{~V}_{\text {RRM }}$	Range	$40 / 45$	V		
$\mathrm{I}_{\mathrm{FSM}}$	$\mathrm{t}_{\mathrm{p}}=5 \mu \mathrm{~s}$ sine	16000	A		
$\mathrm{~V}_{\mathrm{F}}$	$150 \mathrm{Apk}, \mathrm{T}_{J}=125^{\circ} \mathrm{C}$ (per leg)	0.59	V		
$\mathrm{~T}_{J}$	Range	-55 to 175	${ }^{\circ} \mathrm{C}$		

VOLTAGE RATINGS				
PARAMETER	SYMBOL	301CNQ040PbF	301CNQ045PbF	UNITS
Maximum DC reverse voltage	V_{R}	40	45	V
Maximum working peak reverse voltage	$\mathrm{V}_{\mathrm{RWM}}$			

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum average forward current See fig. 5 \quad per leg	$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	50% duty cycle at $\mathrm{T}_{\mathrm{C}}=132{ }^{\circ} \mathrm{C}$, rectangular waveform		150 300	A
Maximum peak one cycle non-repetitive surge current per leg See fig. 7	$\mathrm{I}_{\text {FSM }}$	$5 \mu \mathrm{~s}$ sine or $3 \mu \mathrm{~s}$ rect. pulse 10 ms sine or $6 \mathrm{~ms} \mathrm{rect}$.pulse	Following any rated load condition and with rated $V_{\text {RRM }}$ applied	16000 3200	
Non-repetitive avalanche energy per leg	$\mathrm{E}_{\text {AS }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{AS}}=21 \mathrm{~A}, \mathrm{~L}=1 \mathrm{mH}$		202	mJ
Repetitive avalanche current per leg	$\mathrm{I}_{\text {AR }}$	Current decaying linearly to zero in $1 \mu \mathrm{~s}$ Frequency limited by T_{J} maximum $\mathrm{V}_{\mathrm{A}}=1.5 \times \mathrm{V}_{\mathrm{R}}$ typical		30	A

301CNQ...PbF Series

Vishay High Power Products Schottky Rectifier, 300 A

ELECTRICAL SPECIFICATIONS

PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum forward voltage drop per leg See fig. 1	$\mathrm{V}_{\mathrm{FM}}{ }^{(1)}$	150 A	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	0.69	V
		300 A		0.90	
		150 A	$\mathrm{T}_{J}=100^{\circ} \mathrm{C}$	0.59	
		300 A		0.76	
Maximum reverse leakage current per leg See fig. 2	$\mathrm{I}_{\mathrm{RM}}{ }^{(1)}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{R}}=$ Rated V_{R}	10	mA
		$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$		90	
Maximum junction capacitance per leg	$\mathrm{C}_{\text {T }}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}_{\mathrm{DC}}$ (test signal range 100 kHz to 1 MHz) $25^{\circ} \mathrm{C}$		5200	pF
Typical series inductance per leg	L_{s}	From top of terminal hole to mounting plane		7.0	nH
Maximum voltage rate of change	dV/dt	Rated $\mathrm{V}_{\text {R }}$		10000	V/ $/ \mathrm{s}$

Note
${ }^{(1)}$ Pulse width $<300 \mu$ s, duty cycle $<2 \%$

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS
Maximum junction and storage temperature range	$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {Stg }}$	-55	-	175	${ }^{\circ} \mathrm{C}$
Thermal resistance, junction to case per leg	$\mathrm{R}_{\text {thJc }}$	-	-	0.28	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal resistance, junction to case per module		-	-	0.14	
Thermal resistance, case to heatsink	$\mathrm{R}_{\mathrm{th} \mathrm{Cs}}$	-	0.10	-	
Weight		-	68	-	g
		-	2.4	-	oz.
Mounting torque		35.4 (4)	-	53.1 (6)	$\begin{aligned} & \mathrm{lbf} \cdot \text { in } \\ & (\mathrm{N} \cdot \mathrm{~m}) \end{aligned}$
Mounting torque center hole		30 (3.4)	-	40 (4.6)	
Terminal torque		30 (3.4)	-	44.2 (5)	
Vertical pull		-	-	80	lbf • in
2" lever pull		-	-	35	

Fig. 1 - Maximum Forward Voltage Drop Characteristics (Per Leg)

Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage (Per Leg)

Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)

Fig. 4 - Maximum Thermal Impedance $\mathrm{Z}_{\text {thJc }}$ Characteristics (Per Leg)

Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current (Per Leg)

Fig. 6 - Forward Power Loss Characteristics (Per Leg)

Fig. 7 - Maximum Non-Repetitive Surge Current (Per Leg)

Fig. 8 - Unclamped Inductive Test Circuit

Note

(1) Formula used: $T_{C}=T_{J}-\left(P d+P d_{R E V}\right) \times R_{\text {thJC }}$;
$\mathrm{Pd}=$ Forward power loss $=\mathrm{I}_{\mathrm{F}(\mathrm{AV})} \times \mathrm{V}_{\mathrm{FM}}$ at $\left(\mathrm{I}_{\mathrm{F}(\mathrm{AV})} / \mathrm{D}\right)$ (see fig. 6);
$\mathrm{Pd}_{\mathrm{REV}}=$ Inverse power loss $=\mathrm{V}_{\mathrm{R} 1} \times \mathrm{I}_{\mathrm{R}}(1-\mathrm{D}) ; \mathrm{I}_{\mathrm{R}}$ at $\mathrm{V}_{\mathrm{R} 1}=80 \%$ rated V_{R}

ORDERING INFORMATION TABLE

1	-	Average current rating $(\times 10)$
2	-	Product silicon identification
3	-	C = Circuit configuration
4	$-\quad N=$ Not isolated	
5	$-\quad Q=$ Schottky rectifier diode	$040=40 \mathrm{~V}$
6	$-\quad$ Voltage ratings	$045=45 \mathrm{~V}$
7	$-\quad$ Lead $($ Pb $)$-free	

LINKS TO RELATED DOCUMENTS	
Dimensions	http://www.vishay.com/doc?95021

Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

