

Vector Modulator, 1.94 to 2.24 GHz

Rev. V3

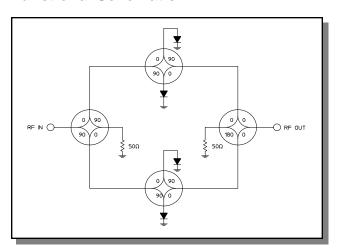
Features

- Operates 1.94 to 2.24 GHz
- Low Amplitude Ripple
- Linear Phase
- 50 Ohm nominal impedance
- Continuously Variable Across a Full 360 degree range
- Test Boards to be Available
- Lead-Free 4x6 mm PQFN Package
- 100% Matte Tin Plating over Copper
- Halogen-Free "Green" Mold Compound
- 260°C Reflow Compatible
- RoHS* Compliant Version of SA90-0001

Description

M/A-COM's MAIA-007150-000100 is a Vector Modulator that significantly reduces the required board space compared to hybrid solutions. The monolithic passive elements will lead to greater repeatability lot-to-lot. Low amplitude ripple will provide superior performance. High intercept and compression points will contribute to more linear system performance. MAIA-007150-000100 is ideally suited for wireless infrastructure applications.

M/A-COM's MADR-007131-000100 Dual Linearizer is designed to simplify the control of Vector Modulators. See Figure 1 and App Note AN3001.


Ordering Information

Part Number	Package
MAIA-007150-000100	Bulk Packaging
MAIA-007150-0001TR	1000 piece reel
MAIA-007150-0001TB	Sample Test Board

Note: Reference Application Note M513 for reel size information.

Commitment to produce in volume is not guaranteed.

Functional Schematic

Pin Configuration

Pin No.	Function	Pin No.	Function	
1	NC	17	17 NC	
2	NC	18	NC	
3	NC	19	NC	
4	NC	20	NC	
5	NC	21	NC	
6	NC	22 NC		
7	NC	23	NC	
8	NC	24	BIAS 2B	
9	BIAS 1A	25	NC	
10	NC	26	26 GND	
11	GND	27	RF OUT	
12	RF IN	28	GND	
13	GND	29	NC	
14	NC	30 BIAS 1B		
15	BIAS 2A	31	1 NC	
16	NC	32 NC		

The exposed pad centered on the package bottom must be connected to RF and DC ground. (For PQFN Packages)

^{*} Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

[•] North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400

[•] India Tel: +91.80.4155721 • China Tel: +86.21.2407.1588

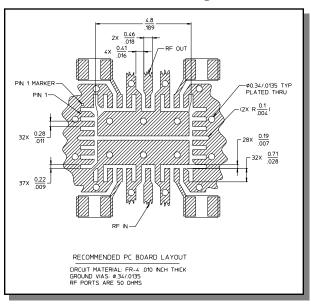
Visit www.macomtech.com for additional data sheets and product information.

Vector Modulator, 1.94 to 2.24 GHz

Rev. V3

Electrical Specifications: $T_A = 25$ °C, $Z_0 = 50\Omega$

Parameter	Test Conditions	Frequency	Units	Min	Тур	Max
Impedance	_	_	Ω	_	50	_
Reference Loss	Z = 50Ω	1.94—2.34 GHz	dB	-13.5	_	-10.0
Attenuation Range	$Z = 50\Omega$ Above Reference Loss	1.94—2.34 GHz	dB	10	_	_
Phase Shift Range	$Z = 50\Omega$, Over minimum Attenuation Range	1.94—2.34 GHz	deg	0	_	360
Amplitude Ripple	$Z=50\Omega$, Ref Loss $Z=50\Omega$, 5 dB above Ref Loss $Z=50\Omega$, 10 dB above Ref Loss $Z=50\Omega$, Ref Loss $Z=50\Omega$, 5 dB above Ref Loss $Z=50\Omega$, 10 dB above Ref Loss	2.08—2.20 GHz 2.08—2.20 GHz 2.08—2.20 GHz 2.04—2.24 GHz 2.04—2.24 GHz 2.04—2.24 GHz	dB dB dB dB dB		- - - -	±0.2 ±0.25 ±0.3 ±0.35 ±0.4 ±0.5
Deviation from Linear Phase	$Z=50\Omega$, Ref Loss $Z=50\Omega$, 5 dB above Ref Loss $Z=50\Omega$, 10 dB above Ref Loss $Z=50\Omega$, Ref Loss $Z=50\Omega$, 5 dB above Ref Loss $Z=50\Omega$, 10 dB above Ref Loss $Z=50\Omega$, 10 dB above Ref Loss	2.08—2.20 GHz 2.08—2.20 GHz 2.08—2.20 GHz 2.04—2.24 GHz 2.04—2.24 GHz 2.04—2.24 GHz	deg deg deg deg deg deg	_ _ _ _ _	_ _ _ _ _	±0.5 ±1.0 ±1.5 ±1.0 ±1.5 ±2.0
Return Loss	Over 10 dB Attenuation Range	2.04—2.24 GHz	dB	15	_	_
Input IP ₃	Over 10 dB Attenuation Range	2.04—2.24 GHz	dBm	_	+41	_
Input P _{1dB}	Over 10 dB Attenuation Range	2.04—2.24 GHz	dBm	_	+29	_
Noise Figure	Over 10 dB Attenuation Range	2.04—2.24 GHz	dB	_	_	Note 1
Switching Speed	50% Control to 10%/90% RF	_	ns	_	500	_
I Supply	_	_	mA	_	_	100


^{1.} Noise figure is approximately equal to the absolute attenuation.

Absolute Maximum Ratings^{2,3}

Parameter	Absolute Maximum			
Max. Input Power 1.5 t6 2.0 GHz Other Frequencies	+34 dBm +24 dBm			
DC Voltages ⁴ Vbias1 or Vbasis2	+1.0V			
DC Current	50 mA Max per Bias			
Operating Temperature	-40°C to +85°C			
Storage Temperature	-65°C to +125°C			

- 2. Exceeding any one or combination of these limits may cause permanent damage to this device.
- M/A-COM does not recommend sustained operation near these survivability limits.
- 4. Note that external dropping resistors are required to limit the current and voltage on the PIN diodes.

Recommended PCB Configuration

[•] India Tel: +91.80.4155721 • China Tel: +86.21.2407.1588

Visit www.macomtech.com for additional data sheets and product information.

Vector Modulator, 1.94 to 2.24 GHz

Rev. V3

Phase and Attenuation of MAIA-007150-000100, Vector Modulator Linearized with MADR-007131-000100 Dual Linearizer^{5,6,7,8}

Figure 1A

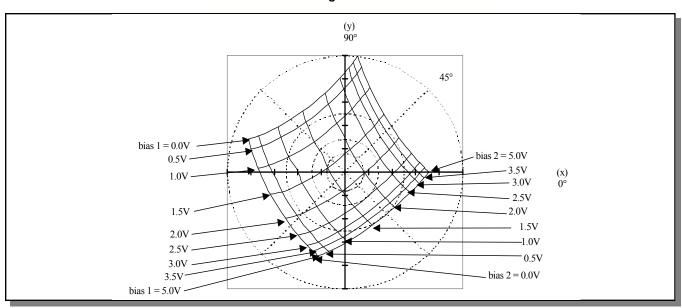
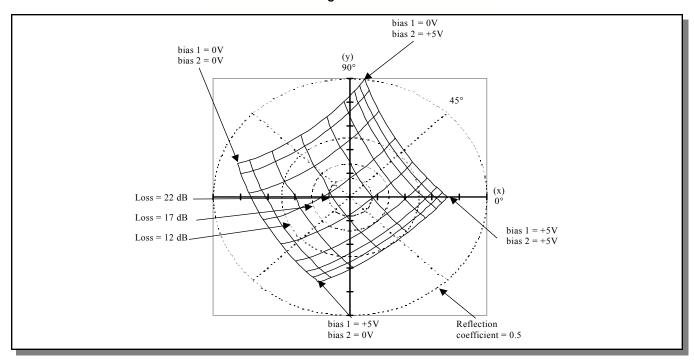



Figure 1B

- 5. Tic marks on x,y axes refer to reflection coefficient in increments of 0.1V. Reflection coefficients vary from -0.5 to +0.5 on both the x and y axes.
- 6. Data is for vector modulators driven by linearizers per attached schematic.
- 7. Inputs to the linearizers vary from 0 to 5V.
- 8. The phase with the inputs to both linearizers set to +5V is arbitrarily called zero degrees.

- North America Tel: 800.366.2266 Europe Tel: +353.21.244.6400
- India Tel: +91.80.4155721
- China Tel: +86.21.2407.1588 Visit www.macomtech.com for additional data sheets and product information.

Vector Modulator, 1.94 to 2.24 GHz

Rev. V3

Phase and Attenuation of MAIA-007150-000100 vs. Bias Current^{9,10}

Figure 2A

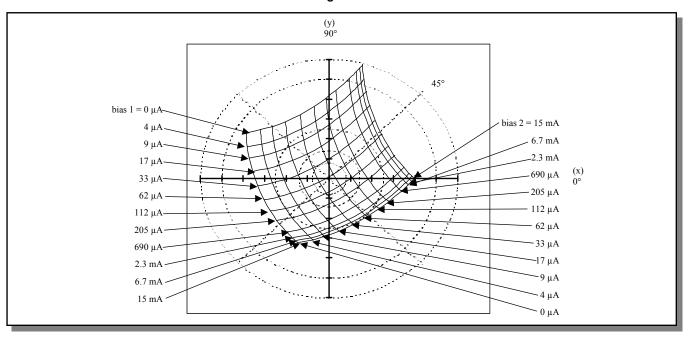
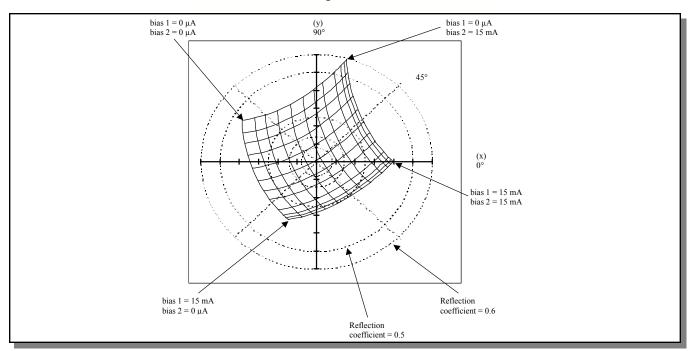



Figure 2B

9. Tic marks on x,y axes refer to reflection coefficient in increments of 0.1. Reflection coefficients vary from -0.6 to +0.6 on both the x and y axes. 10. The phase with the inputs to both linearizers set to +15mA is arbitrarily called zero degrees.

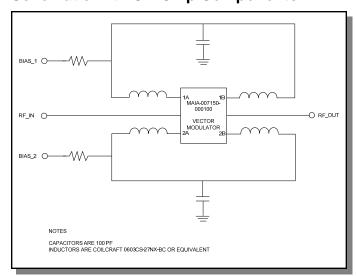
[•] India Tel: +91.80.4155721

Vector Modulator, 1.94 to 2.24 GHz

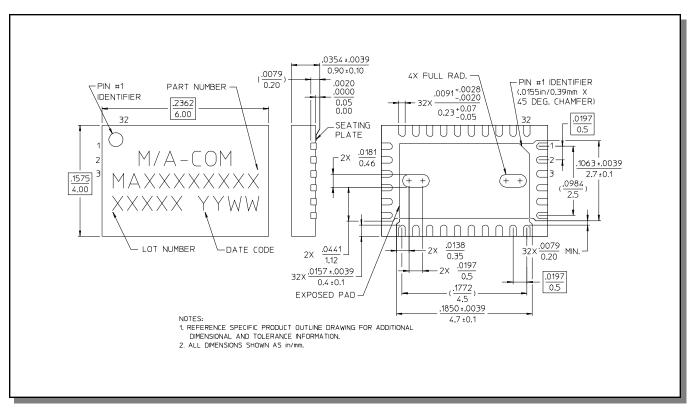
Rev. V3

Handling Procedures

Please observe the following precautions to avoid damage:


Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.


Moisture Sensitivity

The MSL rating for this part is defined as Level 2 per IPC/JEDEC J-STD-020. Parts shall be stored and/or baked as required for MSL Level 2 parts.

Schematic with Off-Chip Components

CSP-6, Lead-Free, 4 x 6 mm, 32-lead, PQFN[†]

Reference Application Note M538 for lead-free solder reflow recommendations.