
MMBTSC5084

NPN Silicon Epitaxial Planar Transistor

for low noise, high gain amplifier at VHF~UHF band.

The transistor is subdivided into two groups O and Y, according to its DC current gain.

1. Base 2. Emitter 3. Collector

SOT-23 Plastic Package

Absolute Maximum Ratings (T_a = 25 °C)

	Symbol	Value	Unit
Collector Base Voltage	V _{CBO}	20	V
Collector Emitter Voltage	V _{CEO}	12	V
Emitter Base Voltage	V_{EBO}	3	V
Base Current	I _B	40	mA
Collector Current	Ic	80	mA
Power Dissipation	P _{tot}	200	mW
Junction Temperature	T _j	125	°C
Storage Temperature Range	Ts	-55 to +125	°C

MMBTSC5084

Characteristics at T_{amb}=25 °C

	Symbol	Min.	Тур.	Max.	Unit
DC Current Gain					
at V _{CE} =10V, I _C =20mA					
Current Gain Group O	h _{FE}	80	-	160	-
Υ	h _{FE}	120	-	240	-
Collector Cutoff Current					
at V _{CB} =10V	I _{CBO}	-	-	1	μA
Emitter Cutoff Current					
at V _{EB} =1.0V	I _{EBO}	-	-	1	μA
Transition Frequency					
at V _{CE} =10V, I _C =20mA	f_{T}	5	7	-	GHz
Reverse Transfer Capacitance					
at V _{CB} =10V, f=1MHz ¹⁾	C_{re}	-	0.65	1.15	pF
Output Capacitance					
at V _{CB} =10V, f=1MHz ¹⁾	C_ob	-	1	-	pF
Insertion Gain					
at V _{CE} =10V, I _C =20mA, f=500MHz	$\left S_{21e} \right ^2_1$	-	16.5	-	dB
Insertion Gain					
at V _{CE} =10V, I _C =20mA, f=1.0GHz	$\left S_{21e} \right _{2}^{2}$	7.5	11	-	dB
Noise Figure					
at V _{CE} =10V, I _C =5mA, f=500MHz	NF_1	-	1	-	dB
Noise Figure					
at V_{CE} =10V, I_{C} =5mA, f=1.0GHz	NF_2		1.1	2	dB

 $^{^{1)}}$ $C_{\text{re}}\!$ is measured by 3 terminal method with capacitance bridge.

