MOSFET Driver Hvbrid

The DRF1201 hybrid includes a high power gate driver and the power MOSFET. The driver output can be configured as Inverting and NonInverting. It was designed to provide the system designer increased flexibility and lowered cost over a non-integrated solution.

Driver Output Characteristics
DRF1201

Symbol	Parameter	Min	Typ
$\mathrm{C}_{\text {out }}$	Output Capacitance	Max	Unit
$\mathrm{R}_{\text {out }}$	Output Resistance	2500	
$\mathrm{~L}_{\text {out }}$	Output Inductance	pF	
$\mathrm{F}_{\text {MAX }}$	Operating Frequency $\mathrm{CL}=3000 \mathrm{nF}+50 \Omega$	8	
$\mathrm{~F}_{\text {MAX }}$	Operating Frequency $R L=50 \Omega$		Ω

Driver Thermal Characteristics

Symbol	Parameter	Min	Typ
$R_{\theta J C}$	Thermal Resistance Junction to Case		Max
$R_{\theta J H S}$	Unermal Resistance Junction to Heat Sink	1.5	
$T_{\text {JSTG }}$	Storage Temperature		${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{P}_{\text {DJHS }}$	Maximum Power Dissipation @ $T_{\text {SINK }}=25^{\circ} \mathrm{C}$	2.5	-55 to 150
$\mathrm{P}_{\text {DJC }}$	Total Power Dissipation @ $T_{C}=25^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{C}$

MOSFET Absolute Maximum Ratings

Symbol	Parameter	Min	Typ
$\mathrm{BV}_{\mathrm{DSS}}$	Drain Source Voltage	Max	Unit
I_{D}	Continuous Drain Current $\mathrm{T}_{\mathrm{HS}}=25^{\circ} \mathrm{C}$	1000	
$\mathrm{R}_{\mathrm{DS}(\text { on) }}$	Drain-Source On State Resistance		
$\mathrm{T}_{\mathrm{jmax}}$	Operating Temperature	V	

MOSFET Dynamic Characteristics

Symbol	Parameter	Min	Typ
$\mathrm{C}_{\text {iss }}$	Input Capacitance	Max	Unit
$\mathrm{C}_{\text {oss }}$	Output Capacitance	2000	
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance	pF	

MOSFET Thermal Characteristics

Symbol	Parameter	Min	Typ
$R_{\theta J C}$	Thermal Resistance Junction to Case		0.53
$R_{\theta J H S}$	Thermal Resistance Junction to Heat Sink		
$T_{\text {JSTG }}$	Storage Temperature	0.141	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{P}_{\mathrm{DHS}}$	Maximum Power Dissipation @ $T_{\text {SINK }}=25^{\circ} \mathrm{C}$	-55 to 150	
P_{DC}	Total Power Dissipation @ $T_{C}=25^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	

Microsemi reserves the right to change, without notice, the specifications and information contained herein.

Figure 1, DRF1201 Simplified Circuit Diagram
The Simplified DRF1201 Circuit Diagram is illustrated above. By including the driver high speed by-pass capacitor (C1), the contribution to the internal parasitic loop inductance of the driver output is greatly reduced. This, coupled with the tight geometry of the hybrid, allows optimal gate drive to the MOSFET. This low parasitic approach, coupled with the Schmitt trigger input (IN), Kelvin signal ground (SG) and the AntiRing Function, provide improved stability and control in Kilowatt to Multi-Kilowatt, high Frequency applications. Both the FN and IN pins are referenced to the Kelvin ground (SG.) The signal is then applied to the intermediate drivers and level shifters; this section contains proprietary circuitry designed specifically for the ring abatement. The power drivers provide high current to the gate of the MOSFETS.

The Function (FN, pin 3) is the invert or non-invert select Pin, it is Internally held high.

Truth Table *Referenced to SG		
FN (pin 3)*	IN (pin 4)*	MOSFET
HIGH	HIGH	ON
HIGH	LOW	OFF
LOW	HIGH	OFF
LOW	LOW	ON

Figure 2, DRF1201 Test Circuit

The Test Circuit illustrated above was used to evaluate the DRF1201 (available as an evaluation Board DRF12XX / EVALSW.) The input control signal is applied to the DRF1201 via $\operatorname{IN}(4)$ and $S G(5)$ pins using RG188. This provides excellent noise immunity and control of the signal ground currents.

The $+V_{D D}$ inputs $(2,6)$ are by-passed (C1, C2, C4-C9), this is in addition to the internal by-passing mentioned previously. The capacitors used for this function must be capable of supporting the RMS currents and frequency of the gate load. R_{L} set for $I_{D M}$ at $V_{D S}$ max this load is used to evaluate the output performance of the DRF1201.

Pin Assignments	
Pin 1	Ground
Pin 2	+Vdd
Pin 3	FN
Pin 4	IN
Pin 5	SG
Pin 6	+Vdd
Pin 7	Ground
Pin 8	Source
Pin 9	Drain
Pin 10	Source

All dimensions are $\pm .005$

Figure 3, DRF1201 Mechanical Outline

