## Features

- Processed with BCDMOS on SOI (Silicon On Insulator)
- DC to 10 MHz analog signal frequency
- Surface mount package available
- Low quiescent power dissipation (< $1 \mu \mathrm{~A}$ typical)
- Output on-resistance typically $20 \Omega$
- TTL I/O's for 3.3V interface
- Adjustable high voltage supplies


## Applications

- Ultrasound imaging
- Printers
- Industrial controls and measurement


## Block Diagram



## Description

The CPC7220 is a low charge injection 8-channel high-voltage analog switch integrated circuit (IC) for use in applications requiring high voltage switching. Control of the high voltage switching is via low voltage TTL logic level compatible inputs for direct connectivity to the system controller.

Switch manipulation is managed by an 8 -bit serial to parallel shift register whose outputs are buffered and stored by an 8 -bit transparent latch. Level shifters buffer the latch outputs and operate the high voltage switches.

Because the CPC7220 is capable of switching high load voltages and has a flexible load voltage range, e.g. $\mathrm{V}_{\mathrm{PP}} / \mathrm{V}_{\mathrm{NN}}:+40 \mathrm{~V} /-160 \mathrm{~V}$ or $+100 \mathrm{~V} /-100 \mathrm{~V}$, it is well suited for many medical and industrial applications such as medical ultrasound imaging, printers, and industrial measurement equipment.

Construction of the high voltage switches using Clare's reliable BCDMOS process technology on SOI (Silicon On Insulator) allow the switches to be organized as solid state switches with direct gate drive.

## Ordering Information

| Part Number | Description |
| :--- | :--- |
| CPC7220W | 28-Lead PLCC in Tubes (37/Tube) |
| CPC7220WTR | 28-Lead PLCC Tape \& Reel (500/Reel) |
| CPC7220K | 48-Lead LQFP in Trays (250/Tray) |
| CPC7220KTR | 48-Lead LQFP Tape \& Reel (1000/Reel) |



## PLCC Package Pinout



## Pin Descriptions

| CPC7220 | Name | Description |
| :---: | :---: | :--- |
| 1 | SW3 | SW3 output |
| 2 | SW3 | SW3 output |
| 3 | SW2 | SW2 output |
| 4 | SW2 | SW2 output |
| 5 | SW1 | SW1 output |
| 6 | SW1 | SW1 output |
| 7 | SW0 | SW0 output |
| 8 | SW0 | SW0 output |
| 10 | V $_{\text {PP }}$ | Switch positive high voltage supply |
| 12 | $\mathrm{~V}_{\text {NN }}$ | Switch negative high voltage supply |
| 13 | GND | Ground |
| 14 | $\mathrm{~V}_{\text {DD }}$ | Logic positive voltage supply |
| 16 | $\mathrm{D}_{\text {IN }}$ | Serial data input |
| 17 | CLK | Clock input, positive edge trigger |
| 18 | $\overline{\mathrm{LE}}$ | Latch enable, active low |
| 19 | CL | Latch clear, active high clears latches and opens switches |
| 20 | $\mathrm{D}_{\text {OUT }}$ | Serial data output |
| 21 | SW7 | SW7 output |
| 22 | SW7 | SW7 output |
| 23 | SW6 | SW6 output |
| 24 | SW6 | SW6 output |
| 25 | SW5 | SW5 output |
| 26 | SW5 | SW5 output |
| 27 | SW4 | SW4 output |
| 28 | SW4 | SW4 output |
| $9,11,15$ | N/C | No Connection |

CPC7220

## LQFP Package Pinout



## Pin Descriptions

| CPC7220 | Name | Description |
| :---: | :---: | :---: |
| 1 | SW5 | SW5 output |
| 2 | N/C | No Connection |
| 3 | SW4 | SW4 output |
| 4 | N/C | No Connection |
| 5 | SW4 | SW4 output |
| 6 | N/C | No Connection |
| 7 | N/C | No Connection |
| 8 | SW3 | SW3 output |
| 9 | N/C | No Connection |
| 10 | SW3 | SW3 output |
| 11 | N/C | No Connection |
| 12 | SW2 | SW2 output |
| 13 | N/C | No Connection |
| 14 | SW2 | SW2 output |
| 15 | N/C | No Connection |
| 16 | SW1 | SW1 output |
| 17 | N/C | No Connection |
| 18 | SW1 | SW1 output |
| 19 | N/C | No Connection |
| 20 | SW0 | SW0 output |
| 21 | N/C | No Connection |
| 22 | SW0 | SW0 output |
| 23 | N/C | No Connection |
| 24 | $\mathrm{V}_{\text {PP }}$ | Switch positive high voltage supply |
| 25 | $\mathrm{V}_{\mathrm{NN}}$ | Switch negative high voltage supply |
| 26 | N/C | No Connection |
| 27 | N/C | No Connection |
| 28 | GND | Ground |
| 29 | $V_{D D}$ | Logic positive voltage supply |
| 30 | N/C | No Connection |
| 31 | N/C | No Connection |
| 32 | N/C | No Connection |
| 33 | $\mathrm{D}_{\text {IN }}$ | Serial data input |
| 34 | CLK | Clock input, positive edge trigger |
| 35 | $\overline{\text { LE }}$ | Latch enable, active low |
| 36 | CL | Latch clear, active high clears latches and opens switches |
| 37 | $\mathrm{D}_{\text {OUT }}$ | Serial data output |
| 38 | N/C | No Connection |
| 39 | SW7 | SW7 output |
| 40 | N/C | No Connection |
| 41 | SW7 | SW7 output |
| 42 | N/C | No Connection |
| 43 | SW6 | SW6 output |
| 44 | N/C | No Connection |
| 45 | SW6 | SW6 output |
| 46 | N/C | No Connection |
| 47 | SW5 | SW5 output |
| 48 | N/C | No Connection |

Absolute Maximum Ratings (@ $25^{\circ}$ C)

| Parameter | Ratings | Units |
| :--- | :---: | :---: |
| $\mathrm{V}_{\mathrm{DD}}$ logic power supply voltage | -0.5 to +6 | V |
| $\mathrm{~V}_{\mathrm{PP}}-\mathrm{V}_{\mathrm{NN}}$ supply voltage | 220 | V |
| $\mathrm{~V}_{\mathrm{PP}}$ positive high voltage supply | -0.5 to $\mathrm{V}_{\mathrm{NN}}+200$ | V |
| $\mathrm{~V}_{\mathrm{NN}}$ negative high voltage supply | +0.5 to $\mathrm{V}_{\mathrm{PP}}-200$ | V |
| Logic input voltages | -0.5 to $\mathrm{V}_{\mathrm{DD}}+0.3$ | V |
| Analog signal range | $\mathrm{V}_{\mathrm{NN}}$ to $\mathrm{V}_{\mathrm{PP}}$ | - |
| Peak analog signal current/channel | 1 | A |
| Power dissipation | 1.2 | W |
| Storage Temperature | -60 to +150 | ${ }^{\circ} \mathrm{C}$ |

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.

## Operating Conditions

| Parameter | Symbol | Value |
| :--- | :---: | :---: |
| Logic power supply voltage 1,3 | $\mathrm{~V}_{\mathrm{DD}}$ | 4.5 V to 6 V |
| Positive high voltage supply ${ }^{1,3}$ | $\mathrm{~V}_{\mathrm{PP}}$ | 40 V to $\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}$ |
| Negative high voltage supply 1,3 | $\mathrm{~V}_{\mathrm{NN}}$ | -40 V to -160 V |
| Analog signal voltage peak to peak ${ }^{2}$ | $\mathrm{~V}_{\text {SIG }}$ | $\mathrm{V}_{\mathrm{NN}}+10 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}$ |
| Operating temperature | $\mathrm{T}_{\mathrm{A}}$ | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ |

## NOTES

${ }^{1}$ Power up/down sequence is arbitrary except GND must be powered-up first and powered-down last.
${ }^{2} \mathrm{~V}_{\text {SIG }}$ must be $\mathrm{V}_{\mathrm{NN}} \leq \mathrm{V}_{\mathrm{SIG}} \leq \mathrm{V}_{\text {PP }}$ or floating during power up/down transition.
Rise and fall times of power supplies $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{PP}}$ and $\mathrm{V}_{\mathrm{NN}}$ should not be less than 1 msec

CPC7220

Electrical Characteristcs
DC Characteristics (over recommended operating conditions unless otherwise noted)

| Parameter | Symbol | Test Conditions |  | $0^{\circ} \mathrm{C}$ |  | $+25^{\circ} \mathrm{C}$ |  |  | $+70^{\circ} \mathrm{C}$ |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | min | max | min | typ | max | min | max |  |
| Small Signal Switch On-resistance | $\mathrm{R}_{\text {ONS }}$ | $\mathrm{V}_{\mathrm{PP}}=40 \mathrm{~V}$, | $\mathrm{I}_{\text {SIG }}=5 \mathrm{~mA}$ | - | 30 | - | 26 | 38 | - | 48 | $\Omega$ |
|  |  | $\mathrm{V}_{\text {NN }}=-160 \mathrm{~V}$ | $\mathrm{I}_{\text {SIG }}=200 \mathrm{~mA}$ | - | 25 | - | 22 | 27 | - | 32 |  |
|  |  | $\begin{aligned} & V_{P P}=100 \mathrm{~V}, \\ & V_{N N}=-100 \mathrm{~V} \end{aligned}$ | $\mathrm{I}_{\text {SIG }}=5 \mathrm{~mA}$ | - | 25 | - | 22 | 27 | - | 33 |  |
|  |  |  | $\mathrm{I}_{\text {SIG }}=200 \mathrm{~mA}$ | - | 18 | - | 18 | 24 | - | 27 |  |
|  |  | $\begin{aligned} & V_{P P}=160 \mathrm{~V}, \\ & V_{\mathrm{NN}}=-40 \mathrm{~V} \end{aligned}$ | $\mathrm{I}_{\text {SIG }}=5 \mathrm{~mA}$ | - | 23 | - | 20 | 25 | - | 30 |  |
|  |  |  | $\mathrm{I}_{\text {SIG }}=200 \mathrm{~mA}$ | - | 22 | - | 16 | 25 | - | 27 |  |
| Small Signal Switch On-resistance Matching | $\Delta \mathrm{R}_{\text {ONS }}$ | $\begin{aligned} & I_{S W}=5 \mathrm{~mA}, V_{P P}=100 \mathrm{~V}, \\ & V_{N N}=-100 \mathrm{~V} \end{aligned}$ |  | - | 20 | - | 5 | 20 | - | 20 | \% |
| Large Signal Switch On-resistance | $\mathrm{R}_{\text {ONL }}$ | $\mathrm{V}_{\text {SIG }}=\mathrm{V}_{\text {PP }}-10 \mathrm{~V}, \mathrm{I}_{\text {SIG }}=0.8 \mathrm{~A}$ |  | - | - | - | 15 | - | - | - | $\Omega$ |
| Switch Off Leakage Per Switch | $\mathrm{I}_{\text {SOL }}$ | $\mathrm{V}_{\text {SIG }}=\mathrm{V}_{\text {PP }}-10 \mathrm{~V}$ and $\mathrm{V}_{\text {NN }}+10 \mathrm{~V}$ |  | - | 5 | - | 0.4 | 10 | - | 15 | $\mu \mathrm{A}$ |
| DC Offset Switch Off | - | $\mathrm{R}_{\mathrm{L}}=100 \mathrm{~K} \Omega$ |  | - | 100 | - | 0 | 100 | - | 100 | mV |
| DC Offset Switch On | - | $\mathrm{R}_{\mathrm{L}}=100 \mathrm{~K} \Omega$ |  | - | 100 | - | 0 | 100 | - | 100 | mV |
| $V_{\text {PP }}$ Quiescent Supply Current | $\mathrm{I}_{\text {PPQ }}$ | ALL SWs OFF |  |  |  | - | 0.1 | 10 | - | - |  |
|  |  | ALL SWs ON $\mathrm{I}_{\text {SW }}=5 \mathrm{~mA}$ |  |  |  |  | 0.1 | 10 | - |  | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\text {NN }}$ Quiescent Supply Current | $\mathrm{I}_{\mathrm{NNQ}}$ | ALL SWs OFF |  |  | - | - | -0.1 | -10 | - | - | $\mu \mathrm{A}$ |
|  |  | ALL SWs ON ISW $=5 \mathrm{~mA}$ |  |  |  |  | -0.1 | -10 | - | - | $\mu \mathrm{A}$ |
| Switch Output Peak Current | - | $\mathrm{V}_{\text {SIG }}$ duty cycle $0.1 \%$ |  | - | - | - | - | 0.8 | - | - | A |
| Output Switch Frequency | $\mathrm{f}_{\text {sw }}$ | Duty Cycle $=50 \%$ |  | - | - | - | - | 50 | - | - | KHz |
| $\mathrm{V}_{\mathrm{PP}}$ Operating Supply Current | $l_{\text {PP }}$ | $\begin{aligned} & V_{P P}=40 \mathrm{~V}, \\ & V_{\mathrm{NN}}=-160 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{PP}}=100 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V} \end{aligned}$ | 50 kHz Output Switching Frequency with no load | - | 6.5 | - | - | 7 | - | 8 |  |
|  |  |  |  | - | 5 | - | - | 5.5 | - | 5.5 | mA |
| $\mathrm{V}_{\mathrm{NN}}$ Operating Supply Current | $\mathrm{I}_{\mathrm{NN}}$ | $V_{\text {NP }}=160 \mathrm{~V}$, no load <br> $V_{\text {NN }}=-40 \mathrm{~V}$  |  | - | 5 | - | - | 5 | - | 5.5 |  |
| $\mathrm{V}_{\text {DD }}$ Average Supply Current | $I_{\text {D }}$ | $\mathrm{f}_{\text {CLK }}=5 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ |  | - | 4 | - | - | 4 | - | 4 | mA |
| $\mathrm{V}_{\mathrm{DD}}$ Quiescent Supply Current | $\mathrm{I}_{\text {DD }}$ | - |  | - | 10 | - | 1 | 10 | - | 10 | $\mu \mathrm{A}$ |
| $\mathrm{D}_{\text {OUT }}$ Source Capability | $V_{\mathrm{OH}}$ | $\mathrm{l}_{\text {OUT }}=-400 \mu \mathrm{~A}$ |  | - | - | $\begin{array}{\|l\|} \hline V_{D D} \\ -0.7 \end{array}$ | - | - | - | - | V |
| $\mathrm{D}_{\text {Out }}$ Sink Capability | $\mathrm{V}_{0}$ | $\mathrm{I}_{\text {OUT }}=+400 \mu \mathrm{~A}$ |  | - | - | - | - | 0.7 | - | - | V |
| Logic Input Capacitance | $\mathrm{C}_{1 \text { N }}$ |  |  | - | 10 | - | - | 10 | - | 10 | pF |
| Logic Input High | $\mathrm{V}_{\mathrm{IH}}$ | $4.75 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<5.25 \mathrm{~V}$ |  | 2 | - | 2 | - | - | 2 | - | V |
| Logic Input Low | $\mathrm{V}_{\text {IL }}$ | $4.75 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<5.25 \mathrm{~V}$ |  | - | 0.8 | - | - | 0.8 | - | 0.8 | V |

## Electrical Characteristcs

AC Characteristics (over recommended operating conditions unless otherwise noted)

| Parameter | Symbol | Test Conditions | $0^{\circ} \mathrm{C}$ |  | $+25^{\circ} \mathrm{C}$ |  |  | $+70^{\circ} \mathrm{C}$ |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | min | max | min | typ | max | min | max |  |
| Set Up Time before $\overline{\mathrm{LE}}$ rises | $\mathrm{t}_{\text {SD }}$ |  | 150 | - | 150 | - | - | 150 | - | ns |
| Time Width of $\overline{\mathrm{LE}}$ | $\mathrm{t}_{\text {WLE }}$ |  | 150 | - | 150 | - | - | 150 | - | ns |
| Clock Delay time to Data Out | $t_{\text {Do }}$ |  | - | 150 | - | - | 150 | - | 150 | ns |
| Time Width of CL | $\mathrm{t}_{\text {wCL }}$ |  | 150 | - | 150 | - | - | 150 | - | ns |
| Set Up Time Data to Clock | $\mathrm{t}_{\text {SU }}$ |  | 15 | - | 15 | 8 | - | 20 | - | ns |
| Hold Time Data from Clock | $\mathrm{t}_{\mathrm{H}}$ |  | 35 | - | 35 | - | - | 35 | - | ns |
| Clock Freq | $\mathrm{f}_{\text {CLK }}$ | $50 \%$ duty cycle $\mathrm{f}_{\text {DATA }}=\mathrm{f}_{\text {CLK }} / 2$ | - | 5 | - | - | 5 | - | 5 | MHz |
| Clock Rise and Fall Times | $\mathrm{t}_{\mathrm{r}} \mathrm{t}_{\text {f }}$ |  | - | 50 | - | - | 50 | - | 50 | ns |
| Turn On Time | $\mathrm{t}_{\mathrm{ON}}$ |  | - | 5 |  |  | 5 | - | 5 | $\mu \mathrm{s}$ |
| Turn Off Time | $\mathrm{t}_{\text {OFF }}$ | $V_{S I G}=V_{P P}-10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega$ | - | 5 |  |  | 5 |  | 5 | $\mu s$ |
| Maximum $\mathrm{V}_{\text {SIG }}$ Slew Rate | dv/dt | $\mathrm{V}_{\mathrm{PP}}=160 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V}$ | - | 20 | - |  | 20 | $\checkmark$ | 20 | V/ns |
|  |  | $\mathrm{V}_{\mathrm{PP}}=100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}$ |  |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{PP}}=40 \mathrm{~V}, \mathrm{~V}_{\text {NN }}=-160 \mathrm{~V}$ |  |  |  |  |  |  |  |  |
| Off Isolation | KO | $\mathrm{f}=5 \mathrm{MHz}, 1 \mathrm{~K} \Omega / 15 \mathrm{pF}$ load | -30 | - | -30 | -33 | - | -30 | - | dB |
|  |  | $\mathrm{f}=5 \mathrm{MHz}, 50 \Omega$ load | -58 | - | -58 | - | - | -58 | - |  |
| Switch Crosstalk | $\mathrm{K}_{\mathrm{CR}}$ | $f=5 \mathrm{MHz}, 50 \Omega$ load | -60 | - | -60 | - | - | -60 | - | dB |
| Output Switch Isolation Diode Current | $1{ }_{\text {ID }}$ | 300ns Pulse Width, 2.0\% Duty Cycle |  | 300 |  |  | 300 |  | 300 | mA |
| Off Capacitance SW to GND | $\mathrm{C}_{\text {SG(OFF) }}$ | OV, 1MHz | 5 | 17 | 5 | 21 | 25 | 5 | 20 | pF |
| On Capacitance SW to GND | $\mathrm{C}_{\text {SG(ON) }}$ | OV, 1MHz | 25 | 40 | 20 | 30 | 40 | 25 | 50 | pF |
| Output Voltage Spike | $\frac{+V_{\text {SPK }}}{-V_{\text {SPK }}}$ | $V_{P P}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-160 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ | - | - | - | -- | 150 | - | - | mV |
|  | $+\mathrm{V}_{\text {SPK }}$ |  |  |  |  |  |  |  |  |  |
|  |  | $V_{P P}=100 \mathrm{~V}, \mathrm{~V}_{\text {NN }}=-100 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ |  |  |  |  |  |  |  |  |
|  | $\frac{+V_{S P K}}{-V_{S P K}}$ | $V_{P P}=160 \mathrm{~V}, \mathrm{~V}_{\text {NN }}=-40 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ |  |  |  |  |  |  |  |  |
| Charge Injection | Q | $\mathrm{V}_{P P}=100 \mathrm{~V}, \mathrm{~V}_{\text {NN }}=-100 \mathrm{~V}, \mathrm{~V}_{\text {SIG }}=0 \mathrm{~V}$ |  |  | - | 880 | - |  |  | pC |

CPC7220

## Logic Timing Waveforms



## CPC7220 Description

The CPC7220 takes a serial stream of input data along with a synchronous clock signal. As the clock transits from low to high, the data at the input of each shift register is shifted through from $\operatorname{SR}(\mathrm{n})$ to $S R(n+1)$. A high data bit, a "1," represents an ON switch; a low data bit, a "0," represents an OFF switch. Data is input and shifted through the internal shift register until all eight shift register positions, SRO through SR7, are in the desired state.
$\mathrm{D}_{\text {1s }}$ : The data-in line presents data bits to the CPC7220 to be shifted through the internal shift register.

CLK: The clock signal's rising edge is associated only with shifting data into and through the shift register.

CL: The clear line overrides all other inputs. When CL is high, the shift register is cleared to all 0 s and all latches are set low, which causes all output switches to be turned OFF immediately. When CL is low, all output switches remain in whatever state they are in, ON or OFF, in response to CLK, latch inputs, and the $\overline{\mathrm{LE}}$ signal.
$\overline{\mathrm{LE}}$ : latch enable controls the state of the latches and thus the state of the eight switches. If $\overline{\mathrm{LE}}$ is high, then the latches do not change states, but retain their most recent status: either ON or OFF. With $\overline{\text { LE }}$ high, input data and CLK have no effect on the state of the output switches. If $\overline{\mathrm{LE}}$ is low, then all latch outputs and their switch states follow the inputs from the shift register. $\overline{\text { LE }}$ is overridden by CL: no matter what state $\overline{\mathrm{LE}}$ is in, CL clears the latches. See table on page 10.
$\mathrm{D}_{\text {out }}$ : The data-out pin is the output of SR7. After eight clock pulses, the first bit of eight input data bits is shifted to SR7 and appears on D Dut

SW0 - SW7: The CPC7220 provides eight highvoltage SPST output switches with a typical onresistance of $20 \Omega$. The two connections of each switch are not polarity-sensitive.
$\mathrm{V}_{\mathrm{PP}}$ and $\mathrm{V}_{\mathrm{NN}}$ : Voltage inputs to the level shifters for each switch channel that translate the voltage level of the latch output signals to an appropriate level for the voltages being switched.

The high-voltage output switches are turned on and off in response to the data sent into the latches from the shift register: data 0 turns a switch OFF, data 1
turns a switch ON.
Two or more CPC7220 devices can be cascaded to form an $n$-switch arrangement. The $D_{\text {out }}$ pin of the first is connected to the $D_{\text {IN }}$ pin of the next in the series. All devices are connected to the same clock (CLK) signal. $\overline{\text { LE }}$ of all devices would normally be connected, as would CL, but this is not necessary.

The first data bit applied to $\mathrm{D}_{\text {IN }}$ of the CPC7220, whether it's a single device or several cascaded devices, ripples through to the last switch output in line after the application of a full clocking sequence of 8 clock pulses per CPC7220. Setting the serial I/O device to output the most significant bit (MSB) first, results in the MSB appearing on SW7 of the last device in line after a full clocking sequence.


## Truth Table

| D0 | D1 | D2 | D3 | D4 | D5 | D6 | D7 | LE | CL | SW0 | SW1 | SW2 | SW3 | SW4 | SW5 | SW6 | SW7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L |  |  |  |  |  |  |  | L | L | OFF |  |  |  |  |  |  |  |
| H |  |  |  |  |  |  |  | L | L | ON |  |  |  |  |  |  |  |
|  | L |  |  |  |  |  |  | L | L |  | OFF |  |  |  |  |  |  |
|  | H |  |  |  |  |  |  | L | L |  | ON |  |  |  |  |  |  |
|  |  | L |  |  |  |  |  | L | L |  |  | OFF |  |  |  |  |  |
|  |  | H |  |  |  |  |  | L | L |  |  | ON |  |  |  |  |  |
|  |  |  | L |  |  |  |  | L | L |  |  |  | OFF |  |  |  |  |
|  |  |  | H |  |  |  |  | L | L |  |  |  | ON |  |  |  |  |
|  |  |  |  | L |  |  |  | L | L |  |  |  |  | OFF |  |  |  |
|  |  |  |  | H |  |  |  | L | L |  |  |  |  | ON |  |  |  |
|  |  |  |  |  | L |  |  | L | L |  |  |  |  |  | OFF |  |  |
|  |  |  |  |  | H |  |  | L | L |  |  |  |  |  | ON |  |  |
|  |  |  |  |  |  | L |  | L | L |  |  |  |  |  |  | OFF |  |
|  |  |  |  |  |  | H |  | L | L |  |  |  |  |  |  | ON |  |
|  |  |  |  |  |  |  | L | L | L |  |  |  |  |  |  |  | OFF |
|  |  |  |  |  |  |  | H | L | L |  |  |  |  |  |  |  | ON |
| X | X | X | X | X | X | X | X | H | L |  |  |  | HOLD PREVIOUS STATE |  |  |  |  |
| X | X | X | X | X | X | X | X | X | H | OFF |

## Notes

1. The eight switches operate independently
2. Serial data is clocked in on the $\mathrm{L} \rightarrow \mathrm{H}$ transition CLK
3. The switches go to a state retaining their present condition at the rising edge of $\overline{\mathrm{LE}}$. When $\overline{\mathrm{LE}}$ is low the shift register data flows through the latch
4. $D_{\text {OUT }}$ is high when switch 7 is on.
5. Shift register clocking has no effect on the switch states if $\overline{\mathrm{LE}}$ is H .
6. The clear input overrides all other inputs.

## Manufacturing Information

## Soldering

For proper assembly, the component must be processed in accordance with the current revision of IPC/JEDEC standard J-STD-020. Failure to follow the recommended guidelines may cause permanent damage to the device resulting in impaired performance and/or a reduced lifetime expectancy.

## Washing

Clare does not recommend ultrasonic cleaning or the use of chlorinated solvents.


## MECHANICAL DIMENSIONS

## 28-Pin PLCC Package




Recommended PCB Land Pattern


Dimensions mm (Max)/mm(Min) (inches(Max/inches(Min))

48-Pin LQFP Package
Recommended PCB Land Pattern
 product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in Clare's Standard Terms and Conditions of Sale, Clare, Inc. assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or where malfunction of Clare's product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. Clare, Inc. reserves the right to discontinue or make changes to its products at any time without notice.

