

Preliminary 10G 1310nm LRM SFP+ Transceiver

(Linear optical receiver, up to 220m transmission)

Features

- 10GBASE-LRM application
- Support 10.3125Gbps data-rate
- Up to 220m transmission in MMF
- 1310nm DFB or FP laser
- PIN receiver with linear amplifier
- SFI electrical interface
- 2-wire interface for integrated Digital Diagnostic monitoring
- SFP+ MSA package with duplex LC connector
- Hot pluggable
- Single +3.3V power supply
- Power consumption less than 1.5 W
- Operating case temperature: 0~+70°C

Applications

10GBASE-LRM at 10.3125Gbps

Members of Flexon[™] Family

Standard

- Compliant with SFF-8431
- Compliant with SFF-8472 Rev 10.1
- Compliant with IEEE 802.3aq-2006 10GBASE-LRM
- Compliant with FCC 47 CFR Part 15, Class B
- Compliant with FDA 21 CFR 1040.10 and 1040.11, Class I
- Compliant with Telcordia GR-468-CORE
- RoHS compliance

Description

FTM-311XC-L03G is a high performance, cost effective module, which is applied in 10GBASE-LRM, supporting data-rate of 10.3125Gbps and transmission distance up to 220m in MMF.

The transceiver consists of two sections: The transmitter section incorporates a 1310nm DFB or FP Laser, and laser driver. The receiver section consists of a PIN photodiode integrated with a linear amplifier.

The module is hot pluggable into the 20-pin connector. The high-speed electrical interface is based on low voltage logic, with nominal 100 Ohms differential impedance and AC coupled in the module. The optical output can be disabled by LVTTL logic high-level input of TX_Disable.

Regulatory Compliance

The transceivers are tested according to American and European product safety and electromagnetic compatibility regulations (See Table 1). For further information regarding regulatory certification, please refer to Source Photonics regulatory specification and safety guidelines, or contact with Source Photonics, Inc. America sales office listed at the end of the documentation.

Feature	Standard	Performance	
Electrostatic Discharge	MIL-STD-883E		
(ESD) to the Electrical Pins	Method 3015.7		
Electrostatic Discharge (ESD)	IEC 61000-4-2		
to the Duplex LC Receptacle	GR-1089-CORE	Compliant with standards	
	FCC Part 15 Class B		
	EN55022 Class B (CISPR 22B)	Compliant with standards	
	VCCI Class B		
Immunity	IEC 61000-4-3	Compliant with standards	
Leser Eve Sefety	FDA 21CFR 1040.10 and 1040.11	Compliant with Class 1 laser	
Laser Eye Salety	EN60950, EN (IEC) 60825-1,2	product.	
Component Recognition	UL and CSA	Compliant with standards	

Table 1- Regulatory Compliance

Absolute Maximum Ratings

Stress in excess of the maximum absolute ratings can cause permanent damage to the module.

Table 2 - Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	Ts	-40	+85	°C
Supply Voltage	V _{CC}	-0.5	4.0	V
Operating Relative Humidity	RH		85	%

Recommended Operating Conditions

Table 3 - Recommended Operating Conditions

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Operating Case Temperature	Tc	0		+70	°C	
Power Supply Voltage	V _{cc}	3.15	3.3	3.45		
Power Supply Current	I _{CC}			450	mA	
Power Dissipation	PD			1.5	W	
Data Rate			10.3125		Gbps	
Transmission Distance				220	m	1

Note 1: See Table 68-2, IEEE P802aq-2006.

Preliminary Datasheet

Optical Characteristics

Table 4 - Optical Characteristics

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
		Transmitte	er			
Operating Data Rate			10.3125		Gbps	
Centre Wavelength	λ_{C}	1260		1355	nm	
Launch Power in OMA	P _{0UT-OMA}	-4.5		+1.5	dBm	1
Average Launch Power	P _{OUT}	-6.5		+0.5	dBm	1
Average Launch Power of off transmitter	P _{0UT-OFF}			-30	dBm	1
Peak Launch Power	P _{OUT-PEAK}			3.0	dBm	1
Spectral Width	$ riangle \lambda$	2.4		4	nm	2
Side Mode Suppression Ratio	SMSR	30			dB	
Extinction Ratio	ER	3.5			dB	3
Transmitter Waveform and Dispersion Penalty	TWDP			4.7	dB	4
Optical Eye Mask	Compliant with IEEE P802aq-2006					
		Receiver				
Operating Data Rate			10.3125		Gbps	
Centre Wavelength	λ_{C}	1260		1355	nm	
Stressed Sensitivity in OMA	P _{IN}			-6.5	dBm	5
Stressed Sensitivity in OMA for symmetrical test	P _{IN}			-6.0	dBm	5
Overload in OMA	P _{IN}	1.5			dBm	5
Receiver Reflectacne				-12	dB	

Notes:

- 1. Measured at TP2, after MMF patch code.
- 2. See Figure 68-3, IEEE P802aq-2006.
- 3. Measured with a PRBS 2³¹-1 test pattern @10.3125Gbps.
- 4. Measured with a PRBS 2^9 -1 test pattern @10.3125Gbps, BER $\leq 10^{-12}$.
- 5. Measured with a PRBS 2^{31} -1 test pattern @10.3125Gbps, ER=3.5dB, BER $\leq 10^{-12}$.

Preliminary Datasheet

Electrical Characteristics

Table 5 - Electrical Characteristics

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes		
High-speed Signal Interface Specification								
Differential Data Input Amplitude		400		1600	mVpp			
Input Differential Impedance			100		Ω			
Differential Date Output Amplitude		250		580	mVpp			
Output Differential Impedance			100		Ω			
Low-speed Signal (LVTTL) Interfac	Low-speed Signal (LVTTL) Interface Specification							
Input High Voltage		2.0		3.3	V			
Input Low Voltage		GND		0.8	V			
Output High Voltage		2.4		3.3	V			
Output Low Voltage		GND		0.4	V			
2 Wire Serial Interface (LVTTL) Spe	ecification		•					
Clock Frequency	f_{SCL}			100	KHz			

EEPROM Information.

EEPROM describing the transceiver's capabilities, standard interfaces, manufacturer, and other information, which is accessible over a 2 wire serial interface at the 8-bit address 1010000X (A0h). The memory contents refer to Table 6.

Table 6 - Digital Diagnostic Memory Map

Table 7 - EEPROM Serial ID Memory Contents (A0h)

Addr.	(Bytes)	Name of Field	Hex	Description
0	1	Identifier	03	SFP
1	1	Ext. Identifier	04	SFP with Serial ID
2	1	Connector	07	LC
3-10	8	Transceiver	40 00 00 00 00 00 00 00 00	10GBASE-LRM
11	1	Encoding	06	64B/66B
12	1	BR, nominal	67	10.3G
13	1	Rate identifier	00	unspecified
14	1	Length (9um)-km	00	
15	1	Length (9um)	00	
		Length		
16	1	(50um,OM2)	16	220m
		Length		
17	1	(62.5um,OM1)	16	220m

10G 1310nm SFP+ Transceiver

Up to 220m transmission

Preliminary Datasheet

Nov. 14, 2007

18	1	Length (copper)	00	
		Length (50um,		
19	1	OM3)	16	220m
			53 4F 55 52 43 45 50 48	
			4F 54 4F 4E 49 43 53 20	SOURCEPHOTONICS (ASCII)
20-35	16	Vendor name		
36	1	Reserved	00	
37-39	3	Vendor OUI	00 00 00	
			46 54 4D 2D 33 31 31 58	
40-55	16	Vendor PN	43 2D 4C 30 33 47 20 20	"FTM-311XC-L03G" (ASCⅡ)
56-59	4	Vendor rev	xx xx xx xx	ASC II ("31 30 20 20" means 1.0 revision)
60-61	2	Wavelength	05 1E	1310nm
62	1	Reserved	00	
63	1	CC BASE	ХХ	Check sum of bytes 0-62
64-65	2	Options	02 18	TX_FAULT and TX_DISABLE, see notes 2
66	1	BR, max	00	
67	1	BR, min	00	
68-83	16	Vendor SN	xx xx xx xx xx xx xx xx xx	ASC II
84-91	8	Vendor date code	xx xx xx xx xx xx 20 20	Year (2 bytes), Month (2 bytes), Day (2 bytes)
92	1	Diagnostic type	68	Diagnostics (Int.Cal)
93	1	Enhanced option	E0	Alarm/warning flags, TX_FAULT and TX_DISABLE
94	1	SFF-8472	03	Diagnostics (SFF-8472 Rev 10.0)
95	1	CC_EXT	XX	Check sum of bytes 64-94
96-255	160	Vendor specific		Source Photonics specific EEPROM

Note:

1. The "xx" byte should be filled in according to practical case.

2. The module only supports class2 level.

Table 8 - EEPROM Diagnostics Data Map (A2h)

Addr.	(Bytes)	Name of Field	Description
0-1	2	Temp High Alarm	MSB at low address
2-3	2	Temp Low Alarm	MSB at low address
4-5	2	Temp High Warning	MSB at low address
6-7	2	Temp Low Warning	MSB at low address
8-9	2	Voltage High Alarm	MSB at low address
10-11	2	Voltage Low Alarm	MSB at low address
12-13	2	Voltage High Warning	MSB at low address
14-15	2	Voltage Low Warning	MSB at low address
16-17	2	Bias High Alarm	MSB at low address
18-19	2	Bias Low Alarm	MSB at low address
20-21	2	Bias High Warning	MSB at low address
22-23	2	Bias Low Warning	MSB at low address
24-25	2	TX Power High Alarm	MSB at low address
26-27	2	TX Power Low Alarm	MSB at low address
28-29	2	TX Power High Warning	MSB at low address
30-31	2	TX Power Low Warning	MSB at low address
32-33	2	RX Power High Alarm	MSB at low address
34-35	2	RX Power Low Alarm	MSB at low address
36-37	2	RX Power High Warning	MSB at low address
38-39	2	RX Power Low Warning	MSB at low address
40-55	16	Reserved	For future definition
56-59	4	Rx_PWR(4)	External calibration constant
60-63	4	Rx_PWR(3)	External calibration constant
64-67	4	Rx_PWR(2)	External calibration constant
68-71	4	Rx_PWR(1)	External calibration constant
72-75	4	Rx_PWR(0)	External calibration constant
76-77	2	Tx_I(Slope)	External calibration constant
78-79	2	Tx_I(Offset)	External calibration constant
80-81	2	Tx_PWR(Slope)	External calibration constant
82-83	2	Tx_PWR(Offset)	External calibration constant
84-85	2	T(Slope)	External calibration constant
86-87	2	T(Offset)	External calibration constant
88-89	2	V(Slope)	External calibration constant
90-91	2	V(Offset)	External calibration constant
92-94	3	Reserved	
95	1	Checksum	Low order 8 bits of sum from 0-94
96	1	Temperature MSB	Internal temperature AD values
97	1	Temperature LSB	

98	1	Vcc MSB	Internally measured supply voltage AD values
99	1	Vcc LSB	
100	1	TX Bias MSB	TX bias current AD values
101	1	TX Bias LSB	
102	1	TX Power MSB	Measured TX output power AD values
103	1	TX Power LSB	
104	1	RX Power MSB	Measured RX input power AD values
105	1	RX Power LSB	
106-109	4	Reserved	For future definition
110-7		TX Disable State	Digital state of Tx disable Pin
			Writing "1" disables laser, this is OR'd with
110-6		Soft TX Disable Control	Tx_Dissable pin
110-5		RS(1) State	Digital state of input pin RS(1) per SFF-8431
110-4		Rate Select State	Digital State of Rate Select Pin RS(0)
110-3		Soft Rate Select Control	
110-2		TX Fault State	Digital state
110-1		LOS State	Digital state
110-0		Data Ready State	Digital state; "1" until transceiver is ready
111	1	Reserved	Reserved
112-117	8	Optional alarm & warning flag bit	Refer to SFF-8472 rev 10.1
118	1	Extended module control/status	Refer to SFF-8472 rev 10.1
119	1	unallocated	
120-127	8	Vendor specific	Vendor specific
128-247	16	User/Customer EEPROM	Field writeable EEPROM
248-255	8	Vendor specific	Vendor specific

Recommended Host Board Power Supply Circuit

Recommended Interface Circuit

Figure 2, Recommended Interface Circuit

Pin Definitions

Figure 3 below shows the pin numbering of SFP+ electrical interface. The pin functions are described in Table 7 with some accompanying notes. SFP+ module pins make contact to the host in the order of ground, power, and followed by signal as given by Figure 4.

Figure 4, SFP+ module PCB Pinout Fiberxon Proprietary and Confidential, Do Not Copy or Distribute

Table 7 – Pin Function Definitions

Pin	Logic	Symbol	Name/Description	Note
1		VeeT	Module Transmitter Ground	1
2	LVTTL-O	TX_Fault	Module Transmitter Fault	2
3	LVTTL-I	TX_DISABLE	Transmitter Disable; Turns off transmitter laser output	3
4	LVTTL-I/O	SDL	2-Wire Serial Interface Data Line (MOD-DEF2)	
5	LVTTL-I/O	SCL	2-Wire Serial Interface Clock (MOD-DEF1)	
6		MOD_ABS	Module Absent, connected to VeeT or VeeR in the module	3
			Rate Select 0, optionally controls SFP+ module receiver as the	
7	LVTTL-I	RS0	following when HIGH input data rate>4.25 Gb/s and when LOW	
			input data rate ≤4.25 Gb/s.	
			Receiver Loss of Signal Indication (in FC designated as RX_LOS,	
8	LVTTL-O	RX_LOS	in SONET designated as LOS, and in Ethernet designated as	2
			NOT Signal Detect)	
			Rate Select 1, optionally controls SFP+ module transmitter as the	
9	LVTTL-I	RS1	following when HIGH input data rate>4.25 Gb/s and when LOW	
			input data rate ≤4.25 Gb/s.	
10		VeeR	Module Receiver Ground	1
11		VeeR	Module Receiver Ground	1
12	CML-O	RD-	Receiver Inverted Data Output	
13	CML-O	RD+	Receiver Non-Inverted Data Output	
14		VeeR	Module Receiver Ground	1
15		VccR	Module Receiver 3.3 V Supply	
16		VccT	Module Transmitter 3.3 V Supply	
17		VeeT	Module Transmitter Ground	1
18	CML-I	TD+	Transmitter Non-Inverted Data Input	
19	CML-I	TD-	Transmitter Inverted Data Input	
20		VeeT	Module Transmitter Ground	1

Notes:

1. The module ground pins, VeeR and VeeT, shall be isolated from the module case.

2. RX_LOS is not available.

3. Shall be pulled up with 4.7K-10Kohms to VccT in the module.

4. This pin is an open collector/drain input pin and shall be pulled up with 4.7K-10Kohms to VccT in the module.

Mechanical Design Diagram

Part No.	Product Description
FTM-311XC-L03G	1310nm FP, 10GBASE-LRM, 220m, SFP+, RoHS compliance

Ordering information

Related Documents

SFF-8431 (Specifications for Enhanced 8.5 and 10 Gigabit Small Form Factor Pluggable Module "SFP+"), Revision 1.3 February 16, 2007.

SFF-8432 (Specifications for Improved Pluggable Form factor), Revision 3.6 October 25, 2006.

SFF-8083 (Specifications for 0.8 mm SFP+ Card Edge Connector Dimensioning), Rev 0.9 January 2, 2007

Revision History

Revision	Initiate	Review	Approve	Subject	Release Date
Rev. 1a	Andy Xiao	Tripper Huang	Alain Shang	Initial datasheet	2007-11-14

© Copyright Source Photonics Inc. 2007

All Rights Reserved.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons.

The information contained in this document does not affect or change Source Photonics product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Source Photonics or third parties. All information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environment may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will Source Photonics be liable for damages arising directly from any use of the information contained in this document.

Contact

U.S.A. Headquarters 20550 Nordhoff Street Chatsworth, CA91311 Tel: 818.773.9044 Fax: 818.773.0261 M-S@sourcephotonics.com.cn