

Stereo FM Receiver Radio-on-a-Chip™

KT0830E

Features

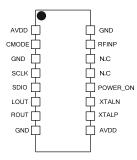
Low-cost true single-chip FM radio solution Single-Chip Low IF FM Receiver Direct band, volume, frequency selection Digital FM Demodulator Digital Stereo Processor Low-noise PLL with integrated VCO Extended FM band support (64-109MHz)

Extended FM band support (64-109MHz) Integrated Class AB headphone driver High Fidelity

SNR: 64dB THD: <0.3%

High Sensitivity: -106dBm

Low supply current


19.5mA (operating), <20uA (standby)

High Driving capability

Drive up to 16 ohm load (single-sided)
32.768kHz reference clock/crystal
Automatic Frequency Control (AFC)
Automatic gain control (AGC)
Anti-pop circuit
16-pin SOP package

Applications

Single chip FM radio used in PMP, boom box, sporting devices, medical devices and etc

Rev. 1.1

Information furnished by KT Micro is believed to be accurate and reliable. However, no responsibility is assumed by KT Micro for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of KT Micro, Inc.

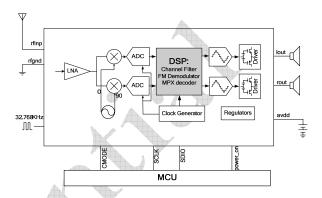


Figure 1: System Diagram

Description

The KT0830E is a high-quality Monolithic Digital FM Receiver designed to playback high-fidelity FM broadcasting signals under various conditions.

The KT0830E offers a true single-chip FM radio solution. There are no external filters or frequency-tuning devices thanks to a proprietary digital low-IF architecture, a fully-integrated LNA, automatic gain control (AGC), high-performance ADCs, high-quality analog and digital filters, and an on-chip low-noise self-tuning VCO. The on-chip high-fidelity Class-AB driver further eliminates the need for any external audio amplifiers and can drive stereo headphones directly

The on-chip LDO regulator allows the chip to operate with power supply ranging from 1.8 V to 3.6V consuming merely 19mA in full operation mode and less than 20uA when standby – greatly extending the battery life.

The small footprint, high integration level and great flexibility make KT0830E for any standalone FM radio applications.

KT Micro Inc., 22391 Gilberto, Suite D Rancho Santa Margarita, CA 92688

Tel: 949.713.4000 <u>http://www.ktmicro.com.cn</u>
Fax: 949.713.4004 Copyright ©2009, KT Micro, Inc.

Electrical specification

Table 1: FM Receiver Characteristics

(Unless otherwise noted Tj = $-20\sim110$ °C, AVDD =2.0V to 3.6V)

Parameter	Symbol	Test/Operating Condition	Min	Тур	Max	Units
FM Frequency Range	F_{rx}		64		109	MHz
Sensitivity ^{1,2,3}	Sen	(S+N)/N=26dB		2.2	3.5	uVemf
Input referred 3 rd Order Intermodulation Production ^{4,5}	IIP3			87		dBuVE MF
Adjacent Channel Selectivity		±200KHz	40		51	dB
Alternate Channel Selectivity		±400KHz	50		70	dB
Image Rejection Radio				35		dB
AM suppression				50		dB
RCLK frequency				32.768		kHz
RCLK frequency Tolerance			-150	A	150	ppm
Audio Output Voltage ^{1,2,3,4}		32ohm load	68	70	72	mV_{RMS}
Audio Band Limits ^{1,2,4}		$\pm 3dB$	30		15k	Hz
Audio Stereo Separation 1,4,6			35			dB
Audio Stereo S/N ^{1,4,6,7}				64		dB
Audio THD ^{1,2,4,6}		<i>P</i>		0.3		%
Audio Common Mode Voltage				0.7		V
Audio Output Load Resistance	R_{L}	Single-ended	16			Ω
Seek/Tune Time (effective channel)					50	ms/ch
Power-up Time					380	ms

Notes:

- 1. FMOD=1kHz, 75us de-emphasis
- 2. MONO=1
- 3. △F=22.5kHz
- 4. $V_{EMF}=1$ mV, Frx=70MHz~110MHz 5. AGCD=1
- △F=75kHz
- VOLUME<3:0>=1111

2 Pin List

A 16-pin SOP package is used. The chip IO pin-out is listed in Table 2.

Table 2 Pin-Out

Pin Index	Name	I/O Type	Function
1	AVDD	Power	Power supply
2	CMODE	Digital Input	High: 5767 Mode (Register map compatible
			with TEA5767 and has the same feature set as
			TEA5767)
			Low: Full Functional Mode (Register map is
			self-defined and provides full set of features)
3	GND	Ground	Ground
4	SCLK	Digital Input	I2C clock input.
5	SDIO	Digital IO	I2C data input/output
6	LOUT	Analog output	Left channel output with 16 ohm driving
			capability.
7	ROUT	Analog output	Right channel output with 16 ohm driving
			capability.
8	GND	Ground	Ground
9	AVDD	Power	2.0V - 3.6V power supply.
10	XTALP	Analog IO	32.768KHz crystal input or 32.768KHz
			reference clock input
11	XTALN	Analog IO	32.768KHz crystal input
12	POWER_ON	Digital Input	High for normal operating mode and low for
			standby mode.
13	N.C.	N.C.	No Connection
14	N.C.	N.C.	No Connection
15	RFINP	Analog Input	RF signal input. External AC coupling cap is
			not required
16	GND	Ground	Ground

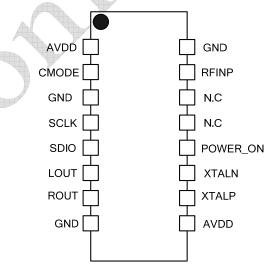
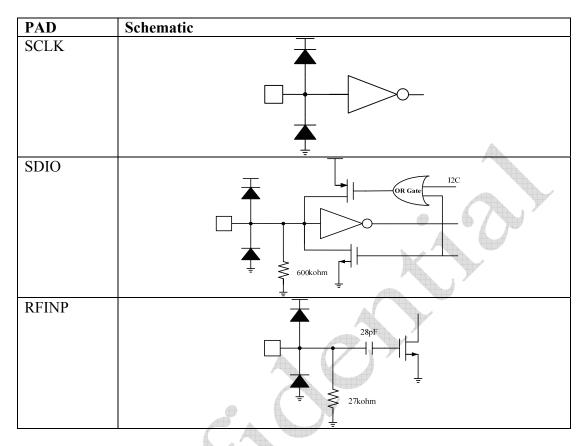



Figure 2: Pin out

Table 3: I/O Pin Configuration

3 Functional Description

3.1 Overview

The KT0830E offers a true single-chip FM radio solution by virtually eliminating all the external components. There are no external filters or frequency-tuning devices thanks to a proprietary digital low-IF architecture, a fully-integrated LNA, automatic gain control (AGC), high-performance ADCs, high-quality analog and digital filters, and an on-chip low-noise self-tuning VCO. The on-chip high-fidelity Class-AB driver further eliminates the need for any external audio amplifiers and can drive stereo headphones directly.

3.2 FM Receiver

A high performance digital-IF structure receiver is used in KT0830E to convert RF signal to IF signal. The received IF signal is digitized by a high resolution analog to digital converter (ADC) and all the following signal processing including channel filtering, FM demodulation, stereo decoding is performed digitally. In order to improve the dynamic range of the RF signal, an automatic gain control (AGC) loop is used together with the low noise amplifier (LNA). KT0830E also provides configurations for various types of antenna such as short antenna, long antenna or headphone (audio wire) antenna through register ANTTYP<1:0>.

3.3 Digital Signal Processing

3.3.1 Stereo Decoder

The digitized IF signal is fed to the FM demodulator which demodulates the signal and outputs a digital multiplexed (MPX) signal consisting of L+R audio, L-R audio, 19kHz pilot tone. The left channel signal and the right channel signal can be extracted from the MPX signal by simply adding and subtracting the L+R signal and L-R signal. The spectrum diagram is shown in Figure 3.

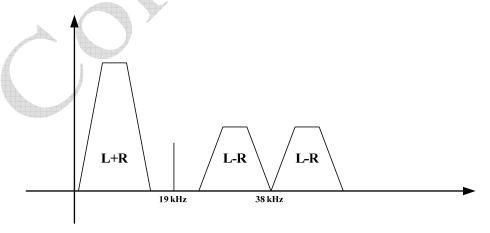


Figure 3: Spectrum diagram of the MPX signal

3.3.2 Mute

KT0830E can be hard muted by setting MUTE_B to 0 and the output of the audio signal is set to the common mode voltage.

There is also a Soft Mute feature that is enabled by setting SMUTE_B to 0. In this mode, the audio volume is gradually attenuated when the signal reception is bad (i.e. when the RSSI is below a certain level as defined by SMTH<1:0>.) The attenuation attack rate and depth can be configured through SMUTER<1:0> and SMUTEA<1:0>, respectively.

3.3.3 Stereo / Mono Blending

In order to provide a comfortable listening experience, KT0830E blends the stereo signal with mono signal gradually when in weak reception. The signal level range over which the blending occurs is set by BLNDADJ<1:0>. The blending is disabled when DBLND is set to 1. MONO playback mode can also be forced by setting the MONO to 1.

3.3.4 Bass Boosting

KT0830E provides a digital audio enhancement feature, bass boosting. The gain of the bass boost can be programmed through BASS<1:0> (Reg0x04<9:8>). With BASS<1:0>=00, this feature is disabled.

3.4 Stereo DAC, Audio Filter and Driver

Two high-quality single-bit $\Delta\Sigma$ audio digital to analog converters (DAC) are integrated along with high-fidelity analog audio filters and class AB drivers. Headphones and speakers with impedance as low as 160hms can be directly driven without external audio drivers. An integrated anti-pop circuit eliminates the click-and-pop sound during power up and power down.

3.5 SEEK/TUNE

The fully integrated LO synthesizer supports wide band operation from 64MHz to 110MHz. The reference clock is 32.768 kHz with frequency tolerance of ± 100 ppm. The chip begins to directly TUNE to a channel when the register TUNE is set to 1. The channel frequency can be programmed and tuned by setting CHAN<9:0> and can be defined as

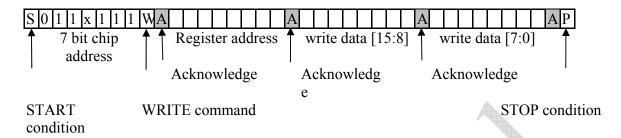
Freq(MHz) =
$$50 \text{ kHz} \times \text{CHAN} < 9:0 > +64 \text{ MHz}$$

The SEEK process is started by setting SEEK to "1". The seek direction is determined by SEEKUP. The band edges are determined by BAND<1:0> and the seek step is set by SPACE<1:0>. KT0830E automatically seeks and tunes to the first satisfying station. The seeking criterion is set by SEEKTH<3:0>. If no qualified channel is found, the FM receiver returns to the original channel and SF/BL bit is set to "1". When AUTOTUNE bit is set to 1, the chip will automatically tune to the found channel, otherwise, the chip will remain mute after seek is completed. During the seeking, the current channel can be read out from READCH<9:0> bits.

3.6 Power on Sequence

KT0830E is powered up by pulling the POWER_ON pin to high. One needs to wait for 400ms before he/she can configure the chip through the serial interface.

4 Control Interface- I2C


I2C bus mode uses SCLK and SDIO to transfer data. The device always drives data to SDIO at the falling edge of SCLK and captures data from SDIO at the rising edge of SCLK. The device acknowledges the external controller by driving SDIO low at the falling edge of SCLK. Data transfer always begins with START condition and ends with STOP condition. The external controller can read/write one 16-bits data at the specified address or read/write desired number of registers data continuously from the specified address till when STOP condition is occurred.

For write operations, external controller should send command & data in the following sequence: START condition -> 7 bit chip address and Write command ("0") -> 8 bit register address n -> write data n [15:8] -> write data n [7:0] -> write data n+1 [15:8] -> write data n+1 [7:0] -> -> STOP condition.

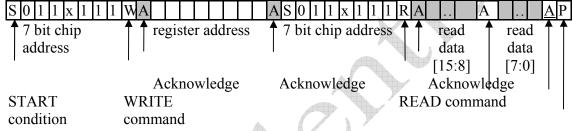
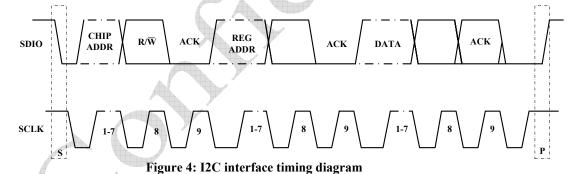

For read operations, external controller should send command & data in the following sequence: START condition -> 7 bit chip address and Write command ("0") -> 8 bit register address n -> 7 bit chip address and Read command ("1"), then device will send read data n [15:8] -> read data n [7:0] -> read data n+1 [15:8] -> read data n+1 [7:0] -> till STOP condition.

Table 4: 12C Interface Protocol RANDOM REGISTER WRITE PROCEDURE



RANDOM REGISTER READ PROCEDURE

NO Acknowledge STOP condition

Note: The data bits in gray color are sent by KT0830E

5 Register Map

Reg No	00h DEVICE	01h CHIPID	02h SEEK	03h TUNE	04h VOLUME	05h DSPCFGA	09h RFCFG	0Ah LOCFGA	0Fh SYSCFG	12h STATUSA	13h STATUSB	14h STATUSC
Name	E	a					7.5	3A	5		SB	SC
DIS			SEEK	TUNE	SMUTE_B	MONO				XTAL_OK		
DI4	PN<3:0		SEEKDIR		MUTE_B			AF	SFTRST	STC		
DI3	3:0>	RE V<		AUTOVOL AUTOTUN _EN E	SMUTER<1:0>			AFCRANGE<2:0>	STCIEN	SF		
DIZ		REV<5:0>		AUTOTUN	R<1:0>			<0				
DI 1					SMUTE	DE						
D10			01		SMUTEA<1:0>				SEEKMD			
6Q			SEEKTH<4:0>		BASS	BLNDA	ANTIY			>LS		
D8					BASS<1:0>	BLNDADJ<1:0>	ANTTYP<1:0>	AFCD		ST<1:0>		
D7												
9Q	MFID							ISTH				
SO	MFID<11:0>		FM_BAN	CHAN<9>0>	SMTH<1:0>	DBLND				RSSI<4:0>	RDCHAN<9:0>	
D4			FM_BAND<1:0>	<0<6>	<[:0>						<0:6>N	
D3			SPACE<1:0>									AFC DELTAF<5:0>
D2			<0:1>		VOLUME<3:0>							AF<5:0>
DI					3<3:0>							
2												

The register bank stores channel frequency codes, calibration parameters, operation status, mode and power controls, which can be accessed by the internal digital controller, state machines and external micro controllers through the serial interface.

All registers are 16 bits wide. Control logics are active high unless specifically noted. All the registers are automatically set to default values after the chip is powered-on or reset.

5.1 Device ID Register (Reg 0x00)

Bit	Symbol	Access	Default	Functional Description
15:12	PN<3:0>	R		Part Number
				1011=FM Receiver
11:0	MFGID<11:0>	R		Manufacturer ID

5.2 CHIP ID (Reg 0x01)

Bit	Symbol	Access	Default	Functional Description
15:10	REV<5:0>	R		Reserved
9	Reserved	R		Reserved
8:6	Reserved	R		Reserved
5:0	Reserved	R		Reserved

5.3 Seek Configuration (Reg 0x02)

Bit	Symbol	Access	Default	Functional Description
15	SEEK	RW	0	Seek enable
		A		0 = Disable
				1 = Enable
14	SEEKDIR	RW	0	Seek direction
				0 = Seek down
				1 = Seek up
13:12	Reserved		10	
11:7	SEEKTH<4:0>	RW	00110	Seek Threshold
	A ()			00000 = most sensitive
				11111 = least sensitive
6	Reserved		0	
5:4	FM_Band<1:0>	RW	00	Band Selection (For seek operation)
				00 = 87-108MHz (USA, Europe)
				01 = 76-108MHz (Japan wide band)
				10 = 76-90MHz (Japan).
				11 = reserved
3:2	SPACE<1:0>	RW	00	Channel spacing
				00 = 200KHz (US, Europe)
				01 = 100KHz (Europe, Japan)
				10 = 50 KHz
1:0	Reserved		11	

5.4 TUNE Register (Reg 0x03)

Bit	Symbol	Access	Default	Functional Description
15	Tune	RW	0	Tune Enable
				0 = Disable
				1 = Enable
14	Reserved		0	
13	AUTOVOL_EN	RW	0	Automatic Volume Control
				1 = enable
12	AUTOTUNE	RW	1	Automatic tune control
				0 = Will NOT tune after a successful
				seek until a separated Tune command is
				received from the control interface
				1 = Automatically starts Tune process
				after Seek
11:10	Reserved		10	
9:0	Chan<9:0>	RW	1CC	Tune Channel Value

5.5 VOLUME Control Register (Reg 0x04)

Bit	Symbol	Access	Default	Functional Description
15	SMUTE_B	RW	1	Softmute Disable
				0 = Softmute enable
				1 = Softmute disable
14	MUTE_B	RW	0	Hard Mute Disable
	4			0 = Mute enable
				1 = Mute disable
13:12	SMUTER<1:0>	RW	00	Softmute Attack/Recover Rate
		7		0 = Slow
				01 = Slowest
				10 = Fastest
A				11 = Fast
11:10	SMUTEA<1:0>	RW	00	Softmute Attenuation
				00 = Strong
				01 = Strongest
				10 = Weak
				11 = Weakest
9:8	BASS<1:0>	RW	00	Bass boost effect mode selection
				00 = Disable
				01 = Low
				10 = Med
				11 = High
7:6	Reserved		00	

5:4	SMTH<1:0>	RW	10	Soft mute start level 00 = Highest 01 = High 10 = Low 11 = Lowest
3:0	VOLUME<3:0>	RW	0111	Volume Control 0000 = mute 0001 = -42dBFS 0010 = -39dBFS 1110 = -3dBFS 1111 = FS

5.6 DSP Configuration Register A (Reg 0x05)

Bit	Symbol	Access	Default	Functional Description
15	MONO	RW	0	Mono Select
				0 = Stereo
				1 = Force mono
14:12	Reserved		101	
11	DE	RW	0	De-emphasis
		/	7	0 = 75us. Used in USA.
				1 = 50us. Used in Europe, Australia,
				Japan.
10	Reserved	TA	0	
9:8	BLNDADJ<1:0>	RW	10	Stereo/Mono Blend Start Level
	4			00 = High
				01 = Highest
				10 = Lowest
				11 = Low
7:6	Reserved		0	
5	DBLND	RW	0	Blend disable
4				0 = blend enable
				1 = blend disable
4:0	Reserved		0	

5.7 RF Configuration (Reg 0x09)

Bit	Symbol	Access	Default	Functional Description
15:10	Reserved		000001	
9:8	ANTTYP<1:0>	RW	01	Antenna type selection
				00 = Long antenna
				01 = earphone/short antenna
				10 = Reserved
				11 = Reserved
7:0	Reserved		00000000	

5.8 LO Synthesizer Configuration A (Reg 0x0A)

Bit	Symbol	Access	Default	Functional Description
15	Reserved		0	_
14:12	AFCRANGE<2:0>	RW	000	AFC correction range
				000 = 12KHz
				001 = 15 KHz
				010 = 14KHz
				011 = 17KHz
				100 = 16 KHz
				101 = 19KHz
				110 = 22KHz
				111 = 25KHz
11:9	Reserved		000	
8	AFCD	RW	1	AFC disable control bit
				0 = AFC enable
				1 = AFC disable
7	Reserved		0	
6	HLSI	RW	0	High side or low side injection
				1 = high side injection
				0 = low side injection
5:0	Reserved		000000	

5.9 Misc Reg (Reg 0x0D)

Bit	Symbol	Access	Default	Functional Description
15:1	Reserved		0x0	
0	Reserved	TA	1	

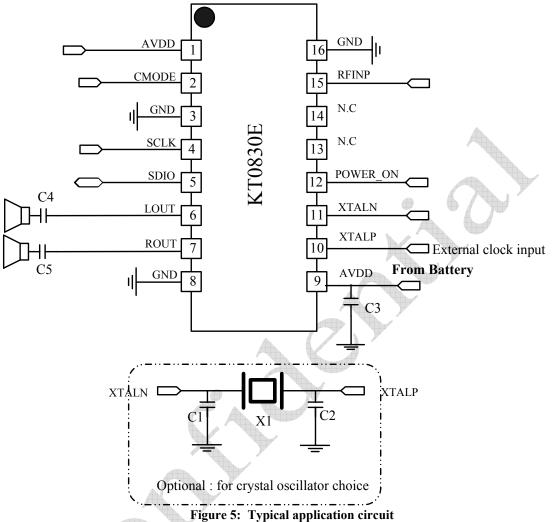
5.10 System Configuration Register (Reg 0x0F)

Bit	Symbol	Access	Default	Functional Description
15	Reserved		0	
14	SFTRST	RW	0	Soft reset bit
				0 = normal operation
		*		1 = soft reset
13	STCIEN	RW	0	Seek/Tune Complete Interrupt
4	1			Enable
				0 = Disable Interrupt
\				1 = Enable Interrupt
12:11	Reserved		01	
10	SEEKMD	RW	0	Seek mode selection
				0 = cycling seek
				1 = stop at the band edge.
9	Reserved		1	
8:0	Reserved		0	

5.11 Status Register A (Reg 0x12)

Bit	Symbol	Access	Default	Functional Description
15:	Reserved	R	0	
14	STC	RW	0	Seek/Tune Complete
				0 = Not Complete
				1 = Complete
				This bit can be cleared manually
13	SF	R	0	Seek Fail
				0 = Seek successful
				1 = Seek failure
12:10	Reserved		000	
9:8	ST<1:0>	R	0	Stereo indicator
				11 = Stereo
				Other= Mono
7:3	RSSI<4:0>	R	00000	RSSI value indicator
				RSSI indication range is from -
				100dBm to -7dBm with 3dB
				resolution, where 00000 means
				minimum level and 11111 means
			A (maximum level.
2:0	Reserved		0	

5.12 Status Register B (Reg 0x13)


Bit	Symbol	Access	Default	Functional Description
15:10	Reserved		000000	
9:0	READCHAN<9:0>	R	0	The current Channel
				READCHAN<9:0> provides the
	A			current channel during seek or after a
		7		seek or tune operation is completed

5.13 Status Register C (Reg 0x14)

Bit	Symbol	Access	Default	Functional Description	
15:6	Reserved	R	0		
5:0	AFC_DELTAF<5:0>	R	000000	Frequency difference between CHAN and	
4				received signal, calculated by AFC block	
				in two's complement format. Range is -	
				31 to +31. Unit is KHz. This register is	
	valid when STC=1		valid when STC=1		

Application circuit

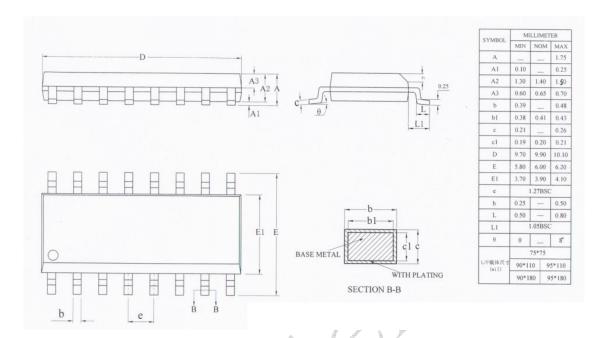

Note: The decoupling C5 should be closed to Pin 8 and Pin 9.

Table 5: Bill of Material

VIII VIII VIII VIII VIII VIII VIII VII	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Components	Value/Description	Suppliers
C1,C2	Crystal load capacitor, 20pF	
C3	Supply decoupling	
	capacitor, 0.1uF	
C4,C5	AC decoupling capacitor,	
	100uF	
X1	32.768kHz crystal	

7 Package

8 Order Information

Part Number	Description	Package	MOQ
KT0830	Single-chip stereo FM receiver	SOP-16	5000

9 Revision History

V1.0 Official ReleaseV1.1 Update the first page

10 Contact Information

KT Micro, Inc.

22391 Gilberto, Suite D Rancho Santa Margarita, CA 92688 USA

Tel: 949-713-4000 Fax: 949-713-4004

Email: sales@ktmicro.com

北京昆腾微电子有限公司

北京市海淀区蓝靛厂东路 2 号金源时代商务中心

2号楼 B座 8层 (100089) 电话: 8610-88891955 传真: 8610-88891977

电子邮件: <u>sales@ktmicro.com</u> 网站: http://www.ktmicro.com.cn