

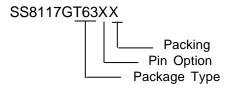
1A Adjustable Low-Dropout Regulator

FEATURES

Dropout voltage typically $1.2V @ I_0 = 800$ mA Output current in excess of 1A Adjustable output voltage Space-saving SOT-223 package Internal short circuit current limit Internal over temperature protection

APPLICATIONS

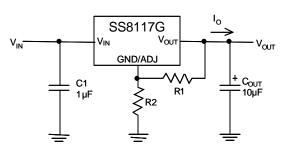
Post-regulation for switching DC/DC converters. High-efficiency linear regulator Battery charger Battery-powered instrumentation Motherboards

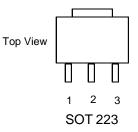

DESCRIPTION

The SS8117G is a low dropout linear regulator with a max. dropout voltage of 1.4V at a load current of 1A. Available only in adjustable form, the output voltage can be set from 1.25V to 5V with only two external resistors.

The SS8117G provides over-temperature and overcurrent protection circuits to prevent it from being damaged by abnormal operating conditions.

The SS8117G is available in a SOT-223 package. A tantalum electrolytic capacitor of at least 10μ F is required at the output to improve the transient response and stability.


ORDERING INFORMATION


PACKAGE TYPE	PIN	OPTION		PACKING
GT6 : SOT-223 Pb-free	1	2	3	TR : Tape & Reel
	3 : GND/ADJ	Vout	Vin	TB: Tubes

Pb-free, RoHS compliant

TYPICAL APPLICATION

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS	(Note 1)	
Input Voltage		7V
Power Dissipation Internally Limited	(Note 2)	
Maximum Junction Temperature		150°C
Storage Temperature Range		65°C ≤ T _J ≤+150°C
Reflow Temperature (soldering, 10secs)		
SOT 223 Package		260°C
Continuous Power Dissipation ($T_A = +25^{\circ}C$)		
SOT 223 ⁽¹⁾		0.8W
Note (1): See Recommended Minimum Footprint		
OPERATING CONDITIONS	(Note 1)	
(V _{IN} -V _{ADJ}) Voltage	••••••	2.5V~6.5V

(IN ADJ) CONS	
Temperature Range	$\dots -40^{\circ}C \leq T_{J} \leq 85^{\circ}C$

ELECTRICAL CHARACTERISTICS

Operating Conditions: $V_{IN} \le 6.5V$, TJ = 25°C unless otherwise specified. [Note3]

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Reference Voltage	$V_{IN} - V_{OUT} = 2V, I_{OUT} = 10mA$	1.225	1.250	1.275	V
Line Regulation	$(V_{OUT} + 1.5V) < V_{IN} < 6.5V, I_{OUT} = 10mA$		1.32		%
Load Regulation	$(V_{IN} - V_{OUT}) = 2V, 10mA < I_{OUT} < 800mA$		0.04		%
	$\Delta V_{OUT} = 2\%$, $I_{OUT} = 800$ mA		1.2	1.3	V
Dropout Voltage			1.3	1.4	V
Current Limit	$(V_{IN} - V_{OUT}) = 2V$	1000	1200		mA
Adjust Pin Current Change	V _{IN} - V _{OUT} = 2V, 10mA < I _{OUT} < 1mA		0.15		μA
Minimum Load Current	1.5V < (V _{IN} - V _{OUT}) < 5.25V	10			mA
Quiescent Current	$V_{IN} - V_{OUT} = 2V$		80		μA
Ripple Rejection			50		dB
11	$(V_{IN} - V_{OUT}) = 3V, I_{OUT} = 800mA$	1.32 0.04 1.2 1.3 1000 1200 0.15 10 80			
Thermal Regulation	$T_A = 25^{\circ}C$, 30ms pulse		0.004	0.02	%/W
Temperature Stability	V _{IN} = 4V, Io =10mA		0.3		%
RMS Output Noise (% of V _{OUT})	T _A = 25°C, 10Hz < f < 10kHz, I _{LOAD} = 10mA		0.007		%
Thermal Resistance, Junction-to-Ambient	SOT 222: Decommended Minimum Festerint		150		°CAN
(No heat sink; No air flow)	SOT-223; Recommended Minimum Footprint		100		°C/W
Thermal Shutdown	Junction Temperature		150		°C
Thermal Shutdown Hysteresis			10		°C

- **Note 1:** Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Conditions are conditions under which the device functions but the specifications might not be guaranteed. For guaranteed specifications and test conditions see the Electrical Characteristics.
- **Note 2:** The maximum power dissipation is a function of the maximum junction temperature, T_{Jmax}, total thermal resistance, θ_{JA}, and ambient temperature T_A. The maximum allowable power dissipation at any ambient temperature is T_{jmax}T_A/θ_{JA}. If this dissipation is exceeded, the die temperature will rise above 150°C and the IC will go into thermal shutdown. For the SS8117G in SOT 223 package, θ_{JA} is 156°C/W (See recommended minimum footprint). For safe operation in SOT 223 package, see "Typical Performance Characteristics" (Safe Operating Area).
- **Note3:** Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.
- **Note4:** The output capacitor should be tantalum or aluminum.

DEFINITIONS

Output Voltage

The SS8117G provides an adjustable output voltage from 1.25V to 5V with two external resistors. It can be calculated from:

$$V_{OUT} = 1.25V \times (1 + \frac{R_2}{R_1}) + I_{ADJ} \times R_2$$

 $I_{ADJ} = 80\mu A (typ.)$

Dropout Voltage

The input/output voltage differential at which the regulator output no longer maintains regulation against further reductions in input voltage. It is measured when the output drops 20% below its nominal value. Dropout voltage is affected by junction temperature, load current and minimum input supply requirements.

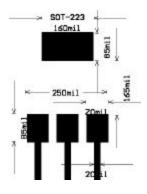
Line Regulation

The change in output voltage for a change in input volt-

voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly **a**fected.

Load Regulation

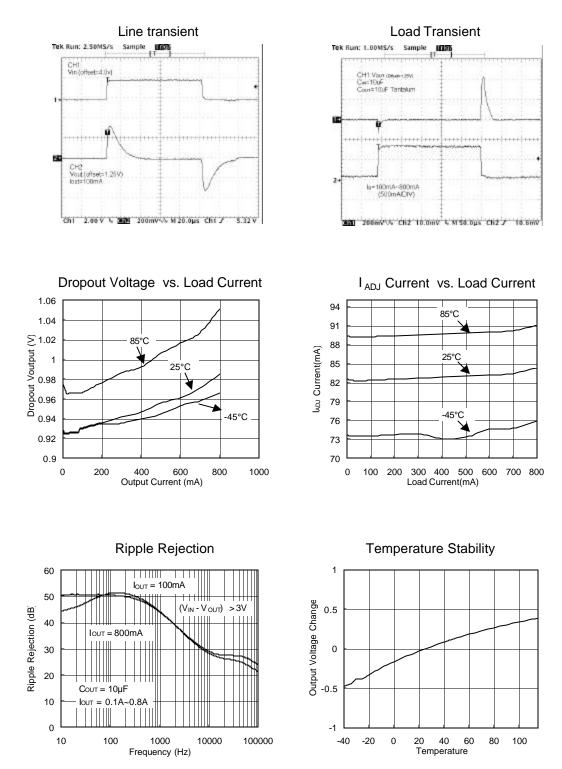
The change in output voltage for a change in load current at constant chip temperature. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

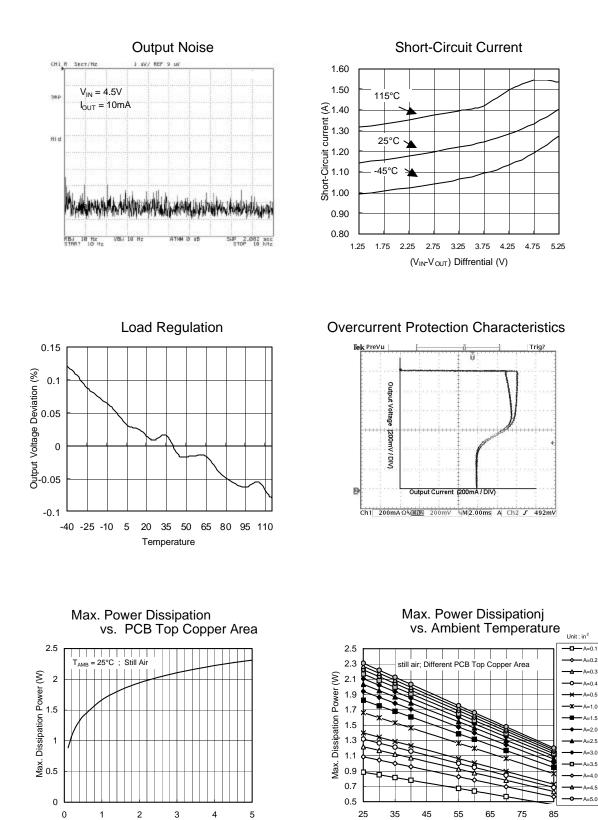

Maximum Power Dissipation

The maximum total device dissipation with which the regulator will still operate within specifications.

Quiescent Bias Current

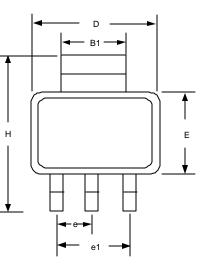
Current which is used to operate the regulator chip and is not delivered to the load.

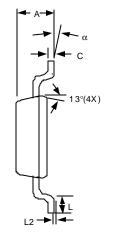

Recommended Minimum Footprint

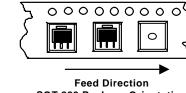

TYPICAL PERFORMANCE CHARACTERISTICS

(V_{IN}= 4V, C_{IN}=10 \mu F, C_{OUT}=10 \mu F, T_A=25^{\circ}C, unless otherwise noted.

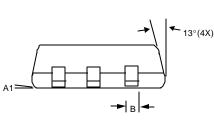
TYPICAL PERFORMANCE CHARACTERISTICS (continued)


1


T_{AMB} (°C)


4

PCB Top Copper Area (in²)



SOT 223 Package Orientation

SOT-223 (GT6) Package

SYMBOLS	MILLIMETERS		INCHES		
	MIN	MAX	MIN	MAX	
А	1.55	1.80	0.061	0.071	
A1	0.02	0.12	0.0008	0.0047	
В	0.60	0.80	0.024	0.031	
B1	2.90	3.10	0.114	0.122	
С	0.24	0.32	0.009	0.013	
D	6.30	6.70	0.248	0.264	
E	3.30	3.70	0.130	0.146	
е	2.30 BSC		0.090 BSC		
e1	4.60 BSC		0.181 BSC		
Н	6.70	7.30	0.264	0.287	
L	0.90	0.036 MIN		MIN	
L2	0.06 BSC		0.0024 BSC		
а	0°	10°	0°	10º	

Information furnished by Silicon Standard Corporation is believed to be accurate and reliable. However, Silicon Standard Corporation makes no guarantee or warranty, express or implied, as to the reliability, accuracy, timeliness or completeness of such information and assumes no responsibility for its use, or for infringement of any patent or other intellectual property rights of third parties that may result from its use. Silicon Standard reserves the right to make changes as it deems necessary to any products described herein for any reason, including without limitation enhancement in reliability, functionality or design. No license is granted, whether expressly or by implication, in relation to the use of any products described herein or to the use of any information provided herein, under any patent or other intellectual property rights of Silicon Standard Corporation or any third parties.