## 512K x 8 Static RAM

## Features

- High speed
$-\mathrm{t}_{\mathrm{AA}}=12 \mathrm{~ns}$
- Low active power
- 1320 mW (max.)
- Low CMOS standby power (Commercial L version) - 2.75 mW (max.)
- 2.0V Data Retention ( $400 \mu \mathrm{~W}$ at 2.0 V retention)
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with $\overline{C E}$ and $\overline{O E}$ features


## Functional Description ${ }^{[1]}$

The CY7C1049BN is a high-performance CMOS static RAM organized as 524,288 words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable ( $\overline{\mathrm{CE}}$ ), an active LOW Output Enable ( $\overline{\mathrm{OE}}$ ), and three-state drivers. Writing to the device is accomplished by taking Chip Enable ( $\overline{\mathrm{CE}}$ ) and Write Enable ( $\overline{\mathrm{WE}}$ ) inputs LOW. Data on the eight I/O pins $\left(I / O_{0}\right.$ through $\left.I / \mathrm{O}_{7}\right)$ is then written into the location specified on the address pins ( $\mathrm{A}_{0}$ through $\mathrm{A}_{18}$ ).
Reading from the device is accomplished by taking Chip Enable ( $\overline{\mathrm{CE}})$ and Output Enable ( $\overline{\mathrm{OE}}$ ) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.
The eight input/output pins ( $\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$ ) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled ( $\overline{\mathrm{OE}}$ HIGH), or during a write operation (CE LOW, and WE LOW).
The CY7C1049BN is available in a standard 400-mil-wide 36-pin SOJ package with center power and ground (revolutionary) pinout.


Selection Guide

|  |  | 7C1049BN-12 | 7C1049BN-15 | 7C1049BN-17 | 7C1049BN-20 | 7C1049BN-25 |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Maximum Access Time (ns) | 12 | 15 | 17 | 20 | 25 |  |  |
| Maximum Operating Current (mA) | 240 | 220 | 195 | 185 | 180 |  |  |
| Maximum CMOS Standby <br> Current (mA) | Com'l | 8 | 8 | 8 | 8 | 8 |  |
|  | Com'I/Ind'I | L | - | - | 0.5 | 0.5 | 0.5 |
|  | Ind'I | - | - | - | 9 | 9 |  |

Note:

1. For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com.

## Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $\qquad$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on $\mathrm{V}_{\mathrm{CC}}$ to Relative $\mathrm{GND}^{[2]} \ldots .-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State ${ }^{2]}$ $\qquad$ -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage ${ }^{[2]}$ $\qquad$ -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$

Current into Outputs (LOW)......................................... 20 mA
Static Discharge Voltage
>2001V
(per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$
Operating Range

| Range | Ambient <br> Temperature | $\mathbf{V}_{\mathbf{C C}}$ |
| :--- | :---: | :---: |
| Commercial | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $4.5 \mathrm{~V}-5.5 \mathrm{~V}$ |
| Industrial | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |

Electrical Characteristics Over the Operating Range


Note:
2. Minimum voltage is -2.0 V for pulse durations of less than 20 ns .

CY7C1049BN
Electrical Characteristics Over the Operating Range (continued)


## Capacitance ${ }^{[3]}$

| Parameter | Description | Test Conditions | Max. | Unit |
| :--- | :--- | :--- | :---: | :---: |
| $\mathrm{C}_{\mathrm{IN}}$ | Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, | 8 | pF |
| $\mathrm{C}_{\text {OUT }}$ | I/O Capacitance | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ | 8 | pF |

## AC Test Loads and Waveforms



Equivalent to: THÉVENIN EQUIVALENT

$$
\text { OUTPUT O- } \underbrace{167 \Omega} \text { O } 1.73 \mathrm{~V}
$$

Note:
3. Tested initially and after any design or process changes that may affect these parameters.

CY7C1049BN

## Switching Characteristics ${ }^{[4]}$ Over the Operating Range

| Parameter | Description | 7C1049B-12 |  | 7C1049B-15 |  | 7C1049B-17 |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. | Min. | Max. | Min. | Max. |  |
| Read Cycle |  |  |  |  |  |  |  |  |
| $\mathrm{t}_{\text {power }}$ | $\mathrm{V}_{\mathrm{CC}}$ (typical) to the First Access ${ }^{[5]}$ | 1 |  | 1 |  | 1 |  | ms |
| $\mathrm{t}_{\mathrm{RC}}$ | Read Cycle Time | 12 |  | 15 |  | 17 |  | ns |
| $\mathrm{t}_{\text {AA }}$ | Address to Data Valid |  | 12 |  | 15 |  | 17 | ns |
| $\mathrm{t}_{\text {OHA }}$ | Data Hold from Address Change | 3 |  | 3 |  | 3 |  | ns |
| $\mathrm{t}_{\text {ACE }}$ | $\overline{\mathrm{CE}}$ LOW to Data Valid |  | 12 |  | 15 |  | 17 | ns |
| $\mathrm{t}_{\text {doe }}$ | $\overline{\text { OE LOW to Data Valid }}$ |  | 6 |  | 7 |  | 8 | ns |
| tizoe | $\overline{\mathrm{OE}}$ LOW to Low $\mathrm{Z}^{[7]}$ | 0 |  | 0 |  | 0 |  | ns |
| $\mathrm{t}_{\text {HZOE }}$ | $\overline{\text { OE }}$ HIGH to High $Z^{[6,7]}$ |  | 6 |  | 7 |  | 7 | ns |
| tlzCe | $\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[7]}$ | 3 |  | 3 |  | 3 |  | ns |
| $\mathrm{t}_{\text {HZCE }}$ | $\overline{\text { CE }}$ HIGH to High $\chi^{[6,7]}$ |  | 6 |  | 7 |  | 7 | ns |
| $\mathrm{t}_{\text {PU }}$ | $\overline{\mathrm{CE}}$ LOW to Power-Up | 0 |  | 0 |  | 0 |  | ns |
| $\mathrm{t}_{\text {PD }}$ | $\overline{\mathrm{CE}}$ HIGH to Power-Down |  | 12 |  | 15 |  | 17 | ns |
| Write Cycle ${ }^{[8,9]}$ |  |  |  |  |  |  |  |  |
| $\mathrm{t}_{\mathrm{wc}}$ | Write Cycle Time | 12 |  | 15 |  | 17 |  | ns |
| $\mathrm{t}_{\text {SCE }}$ | $\overline{\text { CE }}$ LOW to Write End | 10 |  | 12 |  | 12 |  | ns |
| $\mathrm{t}_{\text {AW }}$ | Address Set-Up to Write End | 10 |  | 12 |  | 12 |  | ns |
| $\mathrm{t}_{\mathrm{HA}}$ | Address Hold from Write End | 0 |  | 0 |  | 0 |  | ns |
| $\mathrm{t}_{\text {SA }}$ | Address Set-Up to Write Start | 0 |  | 0 |  | 0 |  | ns |
| $\mathrm{t}_{\text {PWE }}$ | $\overline{\text { WE Pulse Width }}$ | 10 |  | 12 |  | 12 |  | ns |
| $\mathrm{t}_{\text {SD }}$ | Data Set-Up to Write End | 7 |  | 8 |  | 8 |  | ns |
| $\mathrm{t}_{\mathrm{HD}}$ | Data Hold from Write End | 0 |  | 0 |  | 0 |  | ns |
| tlzwe | $\overline{\text { WE }}$ HIGH to Low ${ }^{[7]}$ | 3 |  | 3 |  | 3 |  | ns |
| $\mathrm{t}_{\text {HZWE }}$ | $\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[6,7]}$ |  | 6 |  | 7 |  | 8 | ns |

Notes:
4. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
5. This part has a voltage regulator which steps down the voltage from 5 V to 3.3 V internally. $\mathrm{t}_{\text {power }}$ time has to be provided initially before a read/write operation is started.
6. $t_{H Z O E}, t_{H Z C E}$, and $t_{H Z W E}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
7. At any given temperature and voltage condition, $t_{\text {HZCE }}$ is less than $t_{L Z C E}, t_{H Z O E}$ is less than $t_{I Z O E}$, and $t_{\text {HZWE }}$ is less than $t_{L Z W E}$ for any given device.
8. The internal write time of the memory is defined by the overlap of $\overline{C E}$ LOW, and $\overline{W E}$ LOW. $\overline{C E}$ and $\overline{W E}$ must be LOW to initiate a write, and the transition of either of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
9. The minimum write cycle time for Write Cycle no. 3 ( $\overline{\mathrm{WE}}$ controlled, $\overline{\mathrm{OE}} \mathrm{LOW}$ ) is the sum of $t_{H z W E}$ and $t_{\mathrm{SD}}$.

Switching Characteristics ${ }^{[4]}$ Over the Operating Range (continued)

| Parameter | Description | 7C1049B-20 |  | 7C1049B-25 |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. | Min. | Max. |  |
| Read Cycle |  |  |  |  |  |  |
| $\mathrm{t}_{\text {power }}$ | $\mathrm{V}_{\mathrm{CC}}$ (typical) to the First Access ${ }^{[5]}$ | 1 |  | 1 |  | 1 |
| $\mathrm{t}_{\mathrm{RC}}$ | Read Cycle Time | 20 |  | 25 |  | ns |
| $\mathrm{t}_{\mathrm{AA}}$ | Address to Data Valid |  | 20 |  | 25 | ns |
| $\mathrm{t}_{\mathrm{OHA}}$ | Data Hold from Address Change | 3 |  | 5 |  | ns |
| $\mathrm{t}_{\text {ACE }}$ | $\overline{\mathrm{CE}}$ LOW to Data Valid |  | 20 |  | 25 | ns |
| $\mathrm{t}_{\text {DOE }}$ | $\overline{\mathrm{OE}}$ LOW to Data Valid |  | 8 |  | 10 | ns |
| t Lzoe | $\overline{\mathrm{OE}}$ LOW to Low $\mathrm{Z}^{[7]}$ | 0 |  | 0 |  | ns |
| $\mathrm{t}_{\text {HZOE }}$ | $\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[6,7]}$ |  | 8 |  | 10 | ns |
| t LZCE | $\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[7]}$ | 3 |  | 5 |  | ns |
| $\mathrm{t}_{\text {HZCE }}$ | $\overline{\mathrm{CE}}$ HIGH to High ${ }^{[6,7]}$ |  | 8 |  | 10 | ns |
| $\mathrm{t}_{\text {PU }}$ | $\overline{\mathrm{CE}}$ LOW to Power-Up | 0 |  | 0 |  | ns |
| $\mathrm{t}_{\text {PD }}$ | $\overline{\mathrm{CE}}$ HIGH to Power-Down |  | 20 |  | 25 | ns |
| Write Cycle ${ }^{[8]}$ |  |  |  |  |  |  |
| $\mathrm{t}_{\mathrm{wc}}$ | Write Cycle Time | 20 |  | 25 |  | ns |
| $\mathrm{t}_{\text {SCE }}$ | $\overline{\text { CE }}$ LOW to Write End | 13 |  | 15 |  | ns |
| $\mathrm{t}_{\text {AW }}$ | Address Set-Up to Write End | 13 |  | 15 |  | ns |
| $\mathrm{t}_{\mathrm{HA}}$ | Address Hold from Write End | 0 |  | 0 |  | ns |
| $\mathrm{t}_{\mathrm{SA}}$ | Address Set-Up to Write Start | 0 |  | 0 |  | ns |
| $\mathrm{t}_{\text {PWE }}$ | $\overline{\text { WE Pulse Width }}$ | 13 |  | 15 |  | ns |
| $\mathrm{t}_{\text {SD }}$ | Data Set-Up to Write End | 9 |  | 10 |  | ns |
| $\mathrm{t}_{\mathrm{HD}}$ | Data Hold from Write End | 0 |  | 0 |  | ns |
| t LZWE | $\overline{\text { WE }}$ HIGH to Low ${ }^{[7]}$ | 3 |  | 5 |  | ns |
| $\mathrm{t}_{\text {HZWE }}$ | $\overline{\text { WE LOW }}$ to High ${ }^{[6,7]}$ |  | 8 |  | 10 | ns |

Data Retention Characteristics Over the Operating Range

| Parameter | Description |  |  | Conditions ${ }^{[11]}$ | Min. | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{DR}}$ | $\mathrm{V}_{\mathrm{CC}}$ for Data Retention |  |  |  | 2.0 |  | V |
| $\mathrm{I}_{\text {CCDR }}$ | Data Retention Current | Com'l | L | $\begin{aligned} & V_{C C}=V_{D R}=3.0 V \\ & C E \geq V_{C C}-0.3 V \\ & V_{I N} \geq V_{C C}-0.3 V \text { or } V_{I N} \leq 0.3 V \end{aligned}$ |  | 200 | $\mu \mathrm{A}$ |
|  |  | Ind'l |  |  |  | 1 | mA |
| $\mathrm{t}_{\mathrm{CDR}}{ }^{[3]}$ | Chip Deselect to Data Retention Time |  |  |  | 0 |  | ns |
| $\mathrm{tR}^{[10]}$ | Operation Recovery Time |  |  |  | $\mathrm{t}_{\mathrm{RC}}$ |  | ns |

Notes:
10. $\mathrm{t}_{\mathrm{r}} \leq 3 \mathrm{~ns}$ for the -12 and -15 speeds. $\mathrm{t}_{\mathrm{r}} \leq 5 \mathrm{~ns}$ for the -20 and slower speeds.
11. No input may exceed $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$.

Data Retention Waveform


## Switching Waveforms

Read Cycle No. ${ }^{[12,13]}$


Read Cycle No. 2 ( $\overline{\mathrm{OE}}$ Controlled) ${ }^{[13,14]}$


## Notes:

12. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
13. $\overline{\text { WE }}$ is HIGH for read cycle.
14. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.

## Switching Waveforms (continued)

Write Cycle No. 1 ( $\overline{\text { CE }}$ Controlled) ${ }^{[15,16]}$


Write Cycle No. 2 (产 Controlled, $\overline{\mathrm{OE}}$ HIGH During Write) ${ }^{[15,16]}$


Notes:
15. Data $\mathrm{I} / \mathrm{O}$ is high impedance if $\mathrm{OE}=\mathrm{V}_{\mathrm{IH}}$.
16. If $\overline{C E}$ goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.
17. During this period the I/Os are in the output state and input signals should not be applied.

CY7C1049BN
PERFORM

## Switching Waveforms (continued)

Write Cycle No. 3 ( $\overline{\text { WE }}$ Controlled, $\overline{\mathrm{OE}}$ LOW) ${ }^{[16]}$


## Truth Table

| CE | WE | OE | Inputs/Outputs | Mode | Power |
| :---: | :---: | :---: | :---: | :---: | :---: |
| H | X | X | High Z | Power-down | Standby ( $\mathrm{I}_{\text {SB }}$ ) |
| L | H | L | Data Out | Read | Active (ICC) |
| L | L | X | Data In | Write | Active (ICc) |
| L | H | H | High Z | Selected, Output disabled | Active ( $\mathrm{I}_{\mathrm{CC}}$ ) |

## Ordering Information

| Speed (ns) | Ordering Code | Package Diagram | Package Type | $\begin{aligned} & \hline \text { Operating } \\ & \text { Range } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| 12 | CY7C1049BN-12VC | 51-85090 | 36-Lead (400-Mil) Molded SOJ | Commercial |
|  | CY7C1049BN-12VXC | 51-85090 | 36-Lead (400-Mil) Molded SOJ (Pb-free) |  |
| 15 | CY7C1049BN-15VC | 51-85090 | 36-Lead (400-Mil) Molded SOJ |  |
|  | CY7C1049BN-15VXC | 51-85090 | 36-Lead (400-Mil) Molded SOJ (Pb-free) |  |
|  | CY7C1049BN-15VI | 51-85090 | 36-Lead (400-Mil) Molded SOJ | Industrial |
|  | CY7C1049BN-15VXI | 51-85090 | 36-Lead (400-Mil) Molded SOJ (Pb-free) |  |
| 17 | CY7C1049BN-17VC | 51-85090 | 36-Lead (400-Mil) Molded SOJ | Commercial |
|  | CY7C1049BNL-17VC | 51-85090 | 36-Lead (400-Mil) Molded SOJ |  |
|  | CY7C1049BN-17VXC | 51-85090 | 36-Lead (400-Mil) Molded SOJ (Pb-free) |  |
| 20 | CY7C1049BN-20VC | 51-85090 | 36-Lead (400-Mil) Molded SOJ |  |
|  | CY7C1049BNL-20VC | 51-85090 | 36-Lead (400-Mil) Molded SOJ |  |
|  | CY7C1049BN-20VXC | 51-85090 | 36-Lead (400-Mil) Molded SOJ (Pb-free) |  |
|  | CY7C1049BN-20VI | 51-85090 | 36-Lead (400-Mil) Molded SOJ | Industrial |
|  | CY7C1049BN-20VXI | 51-85090 | 36-Lead (400-Mil) Molded SOJ (Pb-free) |  |
| 25 | CY7C1049BNL-25VC | 51-85090 | 36-Lead (400-Mil) Molded SOJ | Commercial |
|  | CY7C1049BN-25VI | 51-85090 | 36-Lead (400-Mil) Molded SOJ | Industrial |
|  | CY7C1049BN-25VXI | 51-85090 | 36-Lead (400-Mil) Molded SOJ (Pb-free) |  |

[^0]
## Package Diagram



All product and company names mentioned in this document may be the trademarks of their respective holders.

## Document History Page

| Document Title: CY7C1049BN 512K x 8 Static RAM |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :--- | :--- |
| Document Number: 001-06501 |  |  |  |  |  |
| REV. | ECN NO. | Issue <br> Date | Orig. of <br> Change |  | Description of Change |
| $* *$ | 424111 | See ECN | NXR | New Data Sheet |  |


[^0]:    Please contact local sales representative regarding availability of these parts.

