Features

» Zener Voltage Range 3.3. to 56Volts.
৯ DO-41 Package (JEDEC)
ঔ Through-Hole Device Type Mounting
\& Hermetically Sealed Glass
\diamond Compression Bonded Construction
\diamond All External Suface Are Corrosion Resistant And Terminals Are Readily Solderable
\diamond Solder Hot Dip Tin(Sn) Lead Finish
\diamond RoHS Compliant

Mechanical Data

\triangleleft Lead: Pure tin plated, lead free, solderable per
MIL-STD-202, Method 208 guaranteed
\diamond Polarity: Color band denotes cathode
\triangleleft High temperature soldering guaranteed:
260oC//10 seconds
\diamond Weight: 0.270~0.290 grams
\diamond Marking code : 1N47XXG for $\pm 5 \%$ Vz 1N47XXC for $\pm 2 \%$ Vz

1W DO-41 Zener Voltage Regulators
DO-41

Dimension	Millimeters		Inches	
	Min	Max	Min	Max
A	0.72	0.86	0.028	0.034
B	4.07	5.2	0.16	0.205
C	25.4	---	1	---
D	2.04	2.71	0.08	0.107

Cathode
Anode
ELECTRICAL SYMBOL

Maximum Ratings and Electrical Characteristics

Rating at $25^{\circ} \mathrm{C}$ ambient temperature unless otherwise specified.
Single phase, half wave, 60 Hz , resistive or inductive load.
For capacitive load, derate current by 20%

Type Number	Symbol	Value	Units
Power Dissipation	P_{D}	1	W
Thermal Resistance Junction to Lead	Rjl	53.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance Junction to Ambient	Rja	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range	$\mathrm{T}_{\text {OPR }}$	-65 to +200	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-65 to +200	${ }^{\circ} \mathrm{C}$

Notes: These ratings are limiting values above which the serviceability of the diode may be impaired

Electrical characteristics (TA $=25^{\circ} \mathrm{C}$ unless otherwise note)

Device Type	$\begin{aligned} & \mathrm{V}_{\mathrm{z}} @ \mathrm{I}_{\mathrm{zT}} \\ & \text { (Volts) } \\ & \text { Norminal } \end{aligned}$	$\begin{gathered} \mathrm{I}_{\mathrm{ZT}} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\mathrm{ZT}} @ \mathrm{I}_{\mathrm{ZT}} \\ \text { (Ohm) } \\ \text { Max. } \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{ZK}} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\mathrm{ZK}} @ \mathrm{I}_{\mathrm{ZK}} \\ \text { (Ohm) } \\ \text { Max. } \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{R}} @ \mathrm{~V}_{\mathrm{R}} \\ (\mathrm{uA}) \\ \text { Max. } \end{gathered}$	$\begin{gathered} V_{R} \\ \text { (Volts) } \end{gathered}$
1N4728G	3.3	76	10	1	400	100	1
1N4729G	3.6	69	10	1	400	100	1
1N4730G	3.9	64	9	1	400	50	1
1N4731G	4.3	58	9	1	400	10	1
1N4732G	4.7	53	8	1	500	10	1
1N4733G	5.1	49	7	1	550	10	1
1N4734G	5.6	45	5	1	600	10	2
1N4735G	6.2	41	2	1	700	10	3
1N4736G	6.8	37	3.5	1	700	10	4
1N4737G	7.5	34	4	0.5	700	10	5
1N4738G	8.2	31	4.5	0.5	700	10	6
1N4739G	9.1	28	5	0.5	700	10	7
1N4740G	10	25	7	0.25	700	10	7.6
1N4741G	11	23	8	0.25	700	5	8.4
1N4742G	12	21	9	0.25	700	5	9.1
1N4743G	13	19	10	0.25	700	5	9.9
1N4744G	15	17	14	0.25	700	5	11.4
1N4745G	16	15.5	16	0.25	700	5	12.2
1N4746G	18	14	20	0.25	700	5	13.7
1N4747G	20	12.5	22	0.25	750	5	15.2
1N4748G	22	11.5	23	0.25	750	5	16.7
1N4749G	24	10.5	25	0.25	750	5	18.2
1N4750G	27	9.5	35	0.25	750	5	20.6
1N4751G	30	8.5	40	0.25	1000	5	22.8
1N4752G	33	7.5	45	0.25	1000	5	25.1
1N4753G	36	7	50	0.25	1000	5	27.4
1N4754G	39	6.5	60	0.25	1000	5	29.7
1N4755G	43	6	70	0.25	1500	5	32.7
1N4756G	47	5.5	80	0.25	1500	5	35.8
1N4757G	51	5	95	0.25	1500	5	38.8
1N4758G	56	4.5	110	0.25	2000	5	42.6

VF Forward Voltage = 1.2 V Maximum @ IF = 200 mA for all types

Notes:

1. TOLERANCE AND TYPE NUMBER DESIGNATION (VZ)

The type numbers listed have a standard tolerance on the nominal zener voltage of $\pm 5 \%$. Device tolerance of
2% is indicated by a " C " instead of an " G "
2. SPECIALS AVAILABLE INCLUDE

Nominal zener voltages between the voltages shown and tighter voltage, for detailed information on price,
availability and delivery, contact you nearest TAIWAN SEMICONDUCTOR CO
3. ZENER VOLTAGE (VZ) MEASUREMENT

The zener voltage (VZ) is tested under pulse condition. The measured VZ is guaranteed to be within specification with device junction in thermal equilibrium.
4. ZENER IMPEDANCE (ZZ) DERIVATION

The zener impedance is derived from the 60 cycle AC voltage, which results when an AC current having an RMS value equal to 10% of the DC zener current (IZT or IZK) is superimposed on IZT or IZK.

