

UPDATED 09/29/2008

EMS101-C DC-6GHz GaAs MMIC SPDT SWITCH

FEATURES

- BROADBAND PERFORMANCE
- HIGH ISOLATION
- LOW INSERTION LOSS
- LOW DC POWER CONSUMPTION
- FAST SWITCHING SPEED
- SI3N4 PASSIVATION
- ADVANCED EPITAXIAL HETEROJUNCTION PROFILE PROVIDES HIGH RELIABILITY

Caution! ESD sensitive device.

DESCRIPTION

The EMS101-C is a GaAs IC single pole double throw broadband RF switch chip. It can be used for broadband communications and instrument application. The RF outputs can be terminated with 50ohm load or short circuit. The switch is controlled by 0V/-5V signals to the control lines in accordance with the truth tables below.

ELECTRICAL CHARACTERISTICS (T_a = 25 °C)

SYMBOL	PARAMETERS/TEST CONDITIONS		MIN	TYP	MAX	UNIT
F	Operating frequency Range		DC		6	GHz
P1dB	Input Power at 1dB Gain compression	0/-5V Control; 50MHz		21		dBm
		0/-5V Control; 2GHz		27		dBm
Ls	Insertion Loss	(DC-3GHz)		0.9	1.3	dB
		(3-6GHz)		1.2	1.8	dB
ISO	Isolation	(DC-3GHz)	33	38		dB
		(3-6GHz)	30	32		dB
RL in	Input Return Loss		14	16		dB
RL out	Output Return Loss		15	18		dB
т	Switching Speed (50% control to 10%/90%RF)			3	8	nS
IP3	Third Order Intercept			46		dBm

Notes:

- 1. All measurements made in a 50ohm system.
- 2. P1dB measured input power at which insertion loss compressed by 1 dB.
- 3. Return Loss measured in low loss switch state

EMS101-C

UPDATED 09/29/2008

DC-6GHz GaAs MMIC SPDT SWITCH

Chip Outline

Dimensions indicated in um. All bonding pads are 100umx100um.

Electrical Schematic

Switching Truth Table

1&2	3&4	IN-OUT1	IN-OUT2
0V	-5V	Low loss	Isolated
-5V	0V	Isolated	Low loss

Absolute maximum Rating

RF input power	31dBm
Operating temperature	-40°C to +85°C
Storage temperature	-65°C to 150°C

Ground R: Reflective Ground T: Terminated

page 2 of 3 Revised September 2008

UPDATED 09/29/2008

EMS101-C DC-6GHz GaAs MMIC SPDT SWITCH

DISCLAIMER

EXCELICS SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. EXCELICS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

LIFE SUPPORT POLICY

EXCELICS SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF EXCELICS SEMICONDUCTOR, INC.

AS HERE IN:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.