

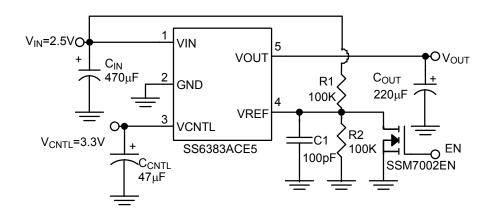
2A DDR Termination Regulator

FEATURES

Source and sink current capability of 2A
Low output voltage offset, ±20mV
High accuracy output voltage at full-load
Vout adjustable by external resistors
Low external component count
Current limit protection
Thermal protection
SO-8 and TO-252-5 packages

APPLICATIONS

Mother Boards
Graphic Cards
DDR Termination Voltage Supply - supports
DDR1 (1.25VTT), DDR2 (0.9VTT), and meets
JEDEC SSTL-2 and SSTL-3 term. specifications

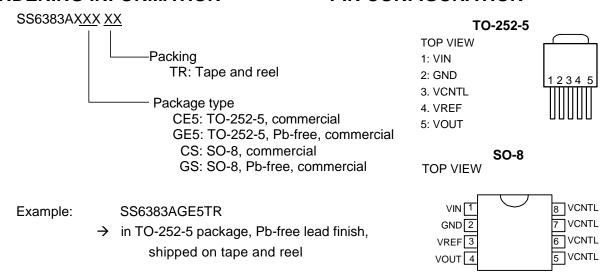

DESCRIPTION

The SS6383A linear regulator is designed to provide 2A source and sink current while regulating an output voltage to within 20mV.

The SS6383A converts voltage supplies ranging from 1.6V to 6V into an output voltage that is set by two external voltage-divider resistors. It provides an excellent voltage source for active termination schemes for high-speed transmission lines such as those seen in high-speed memory buses.

The built-in current-limiting in source and sink mode, together with thermal shutdown, provides maximum protection to the SS6383A against fault conditions.

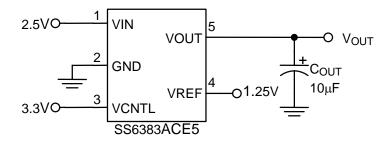
TYPICAL APPLICATION CIRCUIT



Phis device is available with Pb-free lead finish (second-level interconnect) as SS6383AGxx

ORDERING INFORMATION

PIN CONFIGURATION


ABSOLUTE MAXIMUM RATINGS

Supply Voltage		-0.4V to 7V
Operating Temperature Range		40°C~85°C
Storage Temperature Range		65°C ~150°C
Lead Temperature (Solder, 10sec)		260°C
Thermal Resistance θ_{JC}	TO-252	12.5°C /W
	SO-8	40°C /W
Thermal Resistance θ_{JA}	TO-252	100°C /W
(Assumes no ambient airflow, no heatsink)	SO-8	160°C /W

Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

TEST CIRCUIT

ELECTRICAL CHARACTERISTICS

(V_{CNTL}=3.3V, V_{IN}=2.5V, V_{REF}=0.5V_{IN}, C_{OUT}=10μF, T_A=25°C, unless otherwise specified)

PARAMETER	TEST CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Input Voltage (DDR1/2)	Keep V _{CNTL} ≥V _{IN} during power on and off sequences	V _{IN}	1.6	2.5/1.8		V	
		V _{CNTL}	3.0	3.3	6		
Output Voltage	I _{OUT} = 0mA	V _{OUT}		V_{REF}		V	
Output Voltage Offset	IOUT = 0mA	Vos	-20		20	mV	
Lood Dogwletion (DDD4/2)	I _{OUT} =0.1mA ~ +2A			10	20	mV	
Load Regulation (DDR1/2)	I _{OUT} =0.1mA ~ -2A	ΔV_{LOR}		10	20		
Quiescent Current	V _{REF} <0.2V, V _{OUT} = OFF	IQ		8	30	μА	
Operating Current of V _{CNTL}	No load	I _{CNTL}		3	10	mA	
V _{REF} Bias Current	V _{REF} =1.25V		0		1	μΑ	
Current Limit		I _{IL}	2.2	3	4.5	Α	
THERMAL PROTECTION							
Thermal Shutdown Temperature	3.3V≤V _{CNTL} ≤5V	T _{SD}	125	150		°C	
Thermal Shutdown Hysteresis	Guaranteed by design			30		°C	
SHUTDOWN SPECIFICATIONS							
Shutdown Threshold	Output ON (V _{REF} =0V→1.25V)		0.8			.,,	
	Output OFF (V _{REF} =1.25V→0V)				0.2	- V	

Note 2: Vos is the voltage measurement, which is defined as the difference between Vout and VREF.

Note 3: Load regulation is measured at constant junction temperature, using pulse testing with a low ON time.

Note 4: Current limit is measured by pulsing a short time.

Note 5: To operate the system safely; V_{CNTL} must be always greater than V_{IN} .

Note 6: Specifications are guaranteed by Statistical Quality Controls (SQC), and not production tested, within the operating temperature range of -40°C to 85°C.

TYPICAL PERFORMANCE CHARACTERISTICS

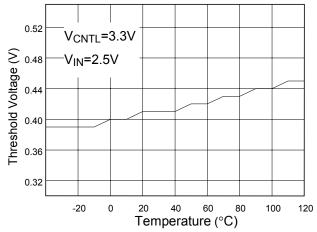


Fig. 1 Turn-On Threshold vs. Temp.

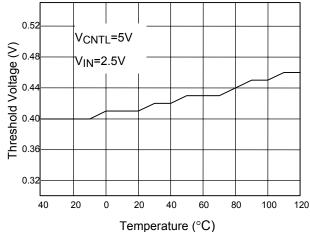


Fig. 2 Turn On Threshold vs. Temp.

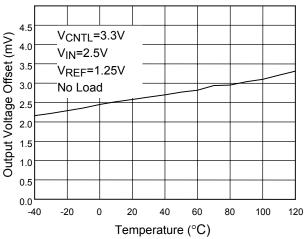


Fig. 3 Output Voltage Offset vs. Temp.

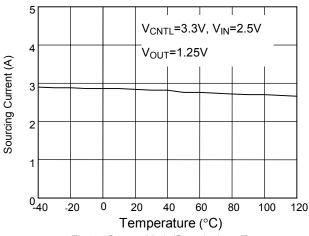


Fig. 4 Current-Limit (Sourcing) vs. Temp.

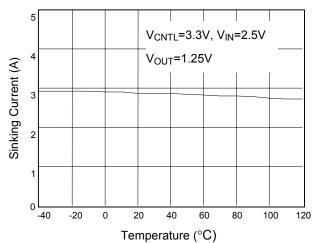


Fig. 5 Current Limit (Sinking) vs. Temp.

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

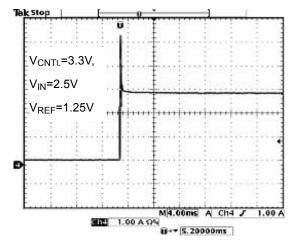


Fig. 6 Output Short-Circuit (Sinking)

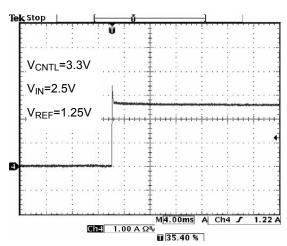


Fig.7 Output Short-Circuit (Sourcing)

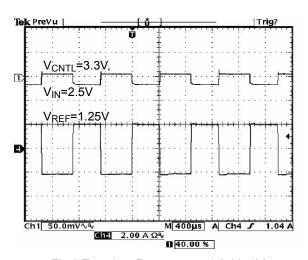


Fig.8 Transient Response at 1.25V_{TT}/2A

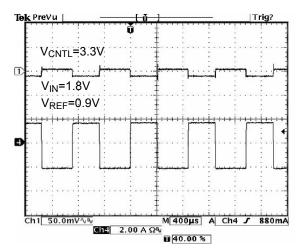
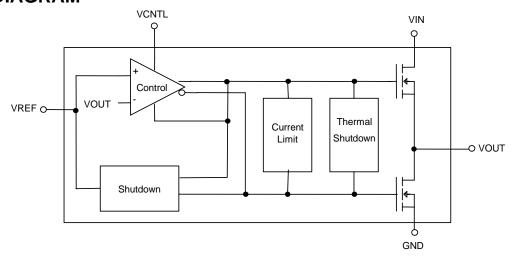



Fig. 9 Transient Response at 0.9V_{TT}/2A

BLOCK DIAGRAM

PIN DESCRIPTIONS (TO-252-5)

PIN 1: VIN - Input supply pin. It provides

main power to create the external reference voltage by divider resistors for regulating

VREF and VOUT-

PIN 2: GND - Ground pin.

PIN 3: VCNTL - Input supply pin. It is used to

supply all the internal control

circuitry.

PIN 4: VREF - Reference voltage input. Pull

this pin low to shutdown device.

PIN 5: VOUT - Output pin.

APPLICATION INFORMATION

Layout Consideration

As the SS6383A is in SO-8 and TO-252-5 packages, it is unable to dissipate heat easily when it operates at high current. To avoid exceeding the maximum junction temperature, a suitable copper area must be used.

The large copper area shown at V_{CNTL} pins is able to relieve the thermal dissipation. Using the via to direct heat into the large copper area shown on the bottom layer also helps significantly.

All capacitors should be placed as close as possible to the relevant pins.

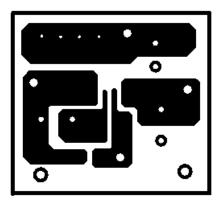


Figure 10. Top layer

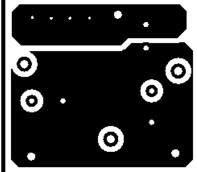


Figure 11. Bottom layer

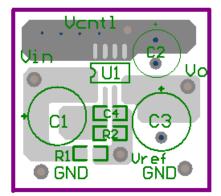
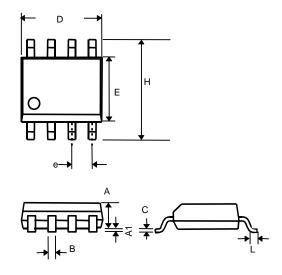
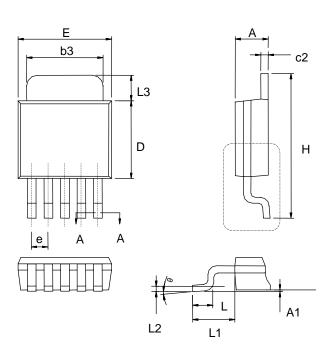



Figure 12. Placement


PHYSICAL DIMENSIONS

SO-8

SYMBOL	MIN	MAX	
А	1.35	1.75	
A1	0.10	0.25	
В	0.33	0.51	
С	0.19	0.25	
D	4.80	5.00	
Е	3.80	4.00	
е	1.27(TYP)		
Н	5.80	6.20	
L	0.40	1.27	

TO-252-5

SYMBOL	MIN	MAX	
А	2.19	2.38	
A1	0	0.13	
b3	5.21	5.46	
c2	0.46	0.58	
D	5.33	5.59	
Е	6.35	6.73	
е	1.27 BSC		
Н	9.40	10.41	
L	1.4	1.78	
L1	2.67 REF		
L2	0.51 BSC		
L3	1.52	2.03	
θ	0°	8°	

Information furnished by Silicon Standard Corporation is believed to be accurate and reliable. However, Silicon Standard Corporation makes no guarantee or warranty, express or implied, as to the reliability, accuracy, timeliness or completeness of such information and assumes no responsibility for its use, or for infringement of any patent or other intellectual property rights of third parties that may result from its use. Silicon Standard reserves the right to make changes as it deems necessary to any products described herein for any reason, including without limitation enhancement in reliability, functionality or design. No license is granted, whether expressly or by implication, in relation to the use of any products described herein or to the use of any information provided herein, under any patent or other intellectual property rights of Silicon Standard Corporation or any third parties.