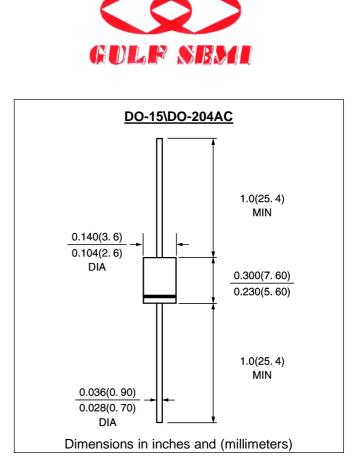
BYW54GP THRU BYW56GP

SINTERED GLASS JUNCTION PLASTIC RECTIFIER

VOLTAGE:600 TO 1000V


CURRENT: 2.0A

FEATURE

High temperature metallurgically bonded construction Sintered glass cavity free junction Capability of meeting environmental standard of MIL-S-19500 High temperature soldering guaranteed 350° /10sec/0.375"lead length at 5 lbs tension Operate at Ta =45°C with no thermal run away Typical Ir<0.1µA

MECHANICAL DATA

Terminal: Plated axial leads solderable per MIL-STD 202E, method 208C Case: Molded with UL-94 Class V-0 recognized Flame Retardant Epoxy Polarity: color band denotes cathode Mounting position: any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

(single-phase, half-wave, 60HZ, resistive or inductive load rating at 25°C, unless otherwise stated, for capacitive load, derate current by 20%)

Maximum Recurrent Peak Reverse Voltage				1	
	Vrrm	600	800	1000	V
Maximum RMS Voltage	Vrms	420	560	700	V
Maximum DC blocking Voltage	Vdc	600	800	1000	V
reverse avalanche breakdown voltage $I_R = 0.1 \text{ mA}$	V(BR)R (min)	650	900	1100	V
Maximum Average Forward Rectified Current 3/8"lead length at Ta =45°C	lf(av)	2.0			A
Peak Forward Surge Current 10ms single half sine-wave superimposed on rated load	lfsm	50.0			A
Maximum Instantaneous Forward Voltage IF=1.0A	Vf	1.0			V
non-repetitive peak reverse avalanche energy (Note 1)	Ersm	20			mJ
Maximum DC Reverse Current $Ta = 25^{\circ}$ at rated DC blocking voltage $Ta = 125^{\circ}$	lr	5.0 100			μA
Typical Reverse Recovery Time (Note 2)	Trr	3.0			μS
Typical Junction Capacitance (Note 3)	Cj	50.0			PF
Typical Thermal Resistance (Note 4)	R(ja)	35.0			°C /W
Storage and Operating Junction Temperature	Tstg, Tj	-65 to +175			C

3.Measured at 1.0 MHz and applied reverse voltage of 4.0Vdc

4. Thermal Resistance from Junction to Ambient at 3/8"lead length, P.C. Board Mounted

Fig.1 Maximum average forward curve

1

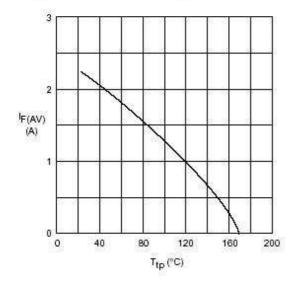
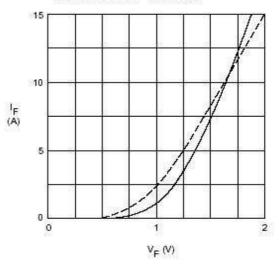
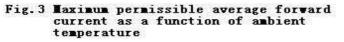




Fig. 2 Forward current as a function of forward voltage

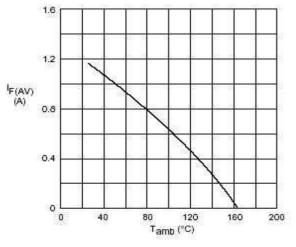


Fig. 4 Reverse current as a function of junction temperature

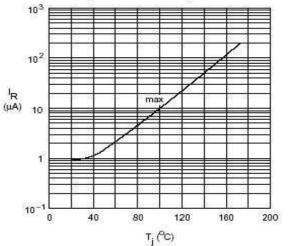
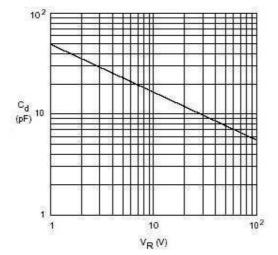



Fig. 5 Diode capacitance as a function of reverse voltage

www.gulfsemi.com