Video/Audio Interfaces for TV and DVD Recorders

I/O Interface

BH7624KS2

-Description

BH7624KS2 is a PAL video signal input switch for DVD-Recorder applications. It supports $I^{2} C-B U S, 75 \Omega$ driver, PAL control functions with fast blinking, I/O BUS port, and the control for BD3825FS audio signal system switch. A built-in scart terminal is incorporated.

-Features

1) Vcc $5 V$ Single
2) $I^{2} \mathrm{C}$-BUS control (Input switch to high impedance at power-off)
3) BD3825FS control function built-in
4) Built-in three parallel bus control terminal
5) Standby mode
6) CVBS/Y 5 inputs, 5 Bottom Clamp circuits, with Mute function

1 output 0/2dB AMP + Buffer
2 outputs $6 / 8 \mathrm{~dB}$ AMP $+75 \Omega$ driver
1 output 0/6dB AMP + Buffer (for VPS, PDC)
7) Chroma 2 inputs, 2 BIAS circuits, with Mute function

2 outputs $6 / 8 \mathrm{~dB}$ AMP $+75 \Omega$ driver control
3 outputs Buffer +8 order LPF (Record)
8) Each SW independent actuation and all the SW simultaneous actuation are possible for the mute circuit,
9) Playback order LPF 6 circuits built-in
10) Record 8 order LPF 3 circuits built-in
11) Fast blanking circuit built-in
12) Function SW Input, 2 circuit built-in
13) Crosstalk -60dB Typ.
14) DG/DP $0.5 \% / 0.5 d e g ~ T y p$.

- Applications

DVD-Recorder, STB, etc.

- Absolute maximum ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Limits	Unit
Power supply voltage	V	7.0	V
Power dissipation	Pd	$1300{ }^{*} 1$	mW
Operating temperature range	Topr	$-25 \sim+65$	${ }^{\circ} \mathrm{C}$
Storage temperature range	Tstg	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$

*1 Reduced by $13 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$.
-Operating range $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Limits	Unit
Supply voltage	Vcc1, Vcc2, VDD	$4.75 \sim 5.25$	V

-Electrical characteristics (Unless otherwise specified, $\mathrm{Vcc} 1, \mathrm{Vcc} 2, \mathrm{VDD}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

Item	Symbol	Limit			Unit	Conditions
		MIN.	TYP.	MAX.		
<Whole>						
VCC Circuit current	Icc	85	130	175	mA	Load 75 Resistor
VDD Circuit current	IDD	4.6	7.2	9.8	mA	
VCC Circuit current at standby	Iccst	10	15	20	mA	Load 75Ω Resistor
VDD Circuit current at standby	IDDST	3.5	5.5	7.5	mA	
<SW part>						
L1,AUX CVBS/Y \rightarrow For VPS,PDC 0dB Voltage gain	Gvpso	-0.7	-0.2	0.3	dB	Vin=1Vpp , f=100kHz
L1,AUX CVBS/Y \rightarrow For VPS,PDC 6dB Voltage gain	$G_{\text {vPS6 }}$	5.7	6.2	6.7	dB	Vin=1Vpp , f=100kHz
ENC CVBS,ENC Y \rightarrow to INPUT AD OdB Voltage gain	$\mathrm{G}_{\text {ADO }}$	-0.8	-0.3	0.2	dB	$\mathrm{Vin}=1 \mathrm{Vpp}, \mathrm{f}=100 \mathrm{kHz}$
ENC CVBS,ENC Y \rightarrow to INPUT AD 2dB Voltage gain	$\mathrm{G}_{\text {AD2 }}$	1.4	1.9	2.4	dB	Vin $=800 \mathrm{mVpp}, \mathrm{f}=100 \mathrm{kHz}$
ENC CVBS,ENC Y \rightarrow to L1\&AUX 6dB Voltage gain	$\mathrm{G}_{\text {LIAUX6 }}$	5.5	6.0	6.5	dB	Vin=1Vpp , f=100kHz
ENC CVBS,ENC Y \rightarrow to L1\&AUX 8dB Voltage gain	Gliaux	7.7	8.2	8.7	dB	Vin $=800 \mathrm{mVpp}, \mathrm{f}=100 \mathrm{kHz}$
L1 C \rightarrow to AUX 6dB Voltage gain	$\mathrm{G}_{\text {Aux } 6 \text {-1 }}$	5.7	6.2	6.7	dB	Vin $=450 \mathrm{mVpp}, \mathrm{f}=100 \mathrm{kHz}$
ENC C \rightarrow to AUX 6dB Voltage gain	$\mathrm{G}_{\text {AUX6-2 }}$	5.5	6.0	6.5	dB	Vin $=450 \mathrm{mVpp}, \mathrm{f}=100 \mathrm{kHz}$
ENC C \rightarrow to AUX 8dB Voltage gain	$\mathrm{G}_{\text {Aux8 }}$	7.7	8.2	8.7	dB	Vin $=360 \mathrm{mVpp}, \mathrm{f}=100 \mathrm{kHz}$
ENC C \rightarrow to L1 6dB Voltage gain	$\mathrm{G}_{\text {L16-1 }}$	5.5	6.0	6.5	dB	Vin=450mVpp, f=100kHz
ENC C \rightarrow to L1 8 dB Voltage gain	$\mathrm{G}_{\text {L18-1 }}$	7.7	8.2	8.7	dB	Vin $=360 \mathrm{mVpp}, \mathrm{f}=100 \mathrm{kHz}$
ENC R,G,B \rightarrow to L1 6dB Voltage gain	$G_{L 16-2}$	5.5	6.0	6.5	dB	Vin $=450 \mathrm{mVpp}, \mathrm{f}=100 \mathrm{kHz}$
ENC R,G,B \rightarrow to L1 8dB Voltage gain	GL18-2	7.7	8.2	8.7	dB	Vin $=360 \mathrm{mVpp}, \mathrm{f}=100 \mathrm{kHz}$
AUX R,G,B \rightarrow to L1 Voltage gain	$\mathrm{G}_{\text {L16-3 }}$	5.7	6.2	6.7	dB	$\mathrm{Vin}=700 \mathrm{mV}, \mathrm{f}=100 \mathrm{kHz}$
AUX R,G,B \rightarrow to R,G,B Voltage gain (LPF OFF)	$\mathrm{G}_{\text {RGB0-1 }}$	-0.6	-0.1	0.4	dB	$\mathrm{Vin}=560 \mathrm{mV}, \mathrm{f}=100 \mathrm{kHz}$
AUX R,G,B \rightarrow to R,G,B Voltage gain (LPF ON)	$\mathrm{G}_{\text {RGBo-2 }}$	-0.8	-0.3	0.2	dB	$\mathrm{Vin}=560 \mathrm{mV}, \mathrm{f}=100 \mathrm{kHz}$
Difference voltage gain Between the channel	$\Delta \mathrm{G}$	-0.5	0.0	0.5	dB	$\mathrm{Vin}=1.0 \mathrm{Vpp}, \mathrm{f}=100 \mathrm{kHz}$
CVBS/Y OUT to INPUT AD Maximum output level OdB	$\mathrm{V}_{\text {ADO }}$	2.8	3.2	-	Vp-p	Vin: $\mathrm{THD}=1.0 \% \mathrm{f}=100 \mathrm{kHz}$
CVBS/Y OUT to INPUT AD Maximum output level 2dB	$\mathrm{V}_{\text {AD2 }}$	2.8	3.2	-	Vp-p	Vin: $\mathrm{THD}=1.0 \% \mathrm{f}=100 \mathrm{kHz}$
CVBS/Y OUT to L1 Maximum output level 6dB	V CV-L6	2.8	3.2	-	Vp-p	Vin: $\mathrm{THD}=1.0 \% \mathrm{f}=100 \mathrm{kHz}$
CVBS/Y OUT to L1 Maximum output level 8dB	$\mathrm{V}_{\text {cV-L8 }}$	2.8	3.2	-	Vp-p	Vin: $\mathrm{THD}=1.0 \% \mathrm{f}=100 \mathrm{kHz}$
CVBS/Y OUT to AUX Maximum output level 6dB	$\mathrm{V}_{\text {cV-Ab }}$	2.8	3.2	-	Vp-p	Vin: $\mathrm{THD}=1.0 \% \mathrm{f}=100 \mathrm{kHz}$
CVBS/Y OUT to AUX Maximum output level 8dB	$\mathrm{V}_{\text {CV-A8 }}$	2.8	3.2	-	Vp-p	Vin: $\mathrm{THD}=1.0 \% \mathrm{f}=100 \mathrm{kHz}$
C OUT to AUX Maximum output level 6dB	$\mathrm{V}_{\text {C-A6 }}$	2.8	3.2	-	Vp-p	Vin: $\mathrm{THD}=1.0 \% \mathrm{f}=100 \mathrm{kHz}$
C OUT to AUX Maximum output level 8dB	$\mathrm{V}_{\text {C-AB }}$	2.8	3.2	-	Vp-p	Vin: $\mathrm{THD}=1.0 \% \mathrm{f}=100 \mathrm{kHz}$
2/16						

Item	Symbol	Limit			Unit	Conditions
		MIN.	TYP.	MAX.		
R/C OUT to L1 Maximum output level 6dB	$\mathrm{V}_{\text {RC-L6 }}$	2.8	3.2	-	Vp-p	Vin: $\mathrm{THD}=1.0 \% \mathrm{f}=100 \mathrm{kHz}$
R/C OUT to L1 Maximum output level 8dB	VRC-L8	2.8	3.2	-	Vp-p	Vin: $\mathrm{THD}=1.0 \% \mathrm{f}=100 \mathrm{kHz}$
G OUT to L1 Maximum output level 6dB	$\mathrm{V}_{\mathrm{G}-\mathrm{L6}}$	2.8	3.2	-	Vp-p	Vin: $\mathrm{THD}=1.0 \% \mathrm{f}=100 \mathrm{kHz}$
G OUT to L1 Maximum output level 8dB	$V_{G-L 8}$	2.8	3.2	-	Vp-p	Vin: $\mathrm{THD}=1.0 \% \mathrm{f}=100 \mathrm{kHz}$
B OUT to L1 Maximum output level 6dB	$V_{\text {B-L6 }}$	2.8	3.2	-	Vp-p	Vin: $\mathrm{THD}=1.0 \% \mathrm{f}=100 \mathrm{kHz}$
B OUT to L1 Maximum output level 8dB	$V_{\text {B-L8 }}$	2.8	3.2	-	Vp-p	Vin: $\mathrm{THD}=1.0 \% \mathrm{f}=100 \mathrm{kHz}$
R Maximum output level	V_{R}	2.8	3.2	-	Vp-p	Vin: $\mathrm{THD}=1.0 \% \mathrm{f}=100 \mathrm{kHz}$
G Maximum output level	V_{G}	2.8	3.2	-	V	Vin: $\mathrm{THD}=1.0 \% \mathrm{f}=100 \mathrm{kHz}$
B Maximum output level	V_{B}	2.8	3.2	-	V	Vin: $\mathrm{THD}=1.0 \% \mathrm{f}=100 \mathrm{kHz}$
For VPS, PDC Maximum output level OdB	Vvpso	2.8	3.2	-	V	Vin: $\mathrm{THD}=1.0 \% \mathrm{f}=100 \mathrm{kHz}$
For VPS, PDC Maximum output level 6dB	$\mathrm{V}_{\text {vPS6 }}$	2.8	3.2	-	V	Vin: $\mathrm{THD}=1.0 \% \mathrm{f}=100 \mathrm{kHz}$
CVBS/Y OUT to INPUT AD Frequency characteristic OdB	$\mathrm{F}_{\text {ADO }}$	-1.0	0	1.0	dB	Vin=1Vpp, f=100k/7MHz
CVBS/Y OUT to INPUT AD Frequency characteristic 2dB	$\mathrm{F}_{\text {AD2 }}$	-1.0	0	1.0	dB	Vin=800mVpp , f=100k/7MHz
CVBS/Y OUT to L1 Frequency characteristic 6dB	$\mathrm{F}_{\text {cV-L6 }}$	-1.0	0	1.0	dB	Vin=1Vpp, f=100k/7MHz
CVBS/Y OUT to L1 Frequency characteristic 8dB	$\mathrm{F}_{\text {CV-L8 }}$	-1.0	0	1.0	dB	Vin=800mVpp , f=100k/7MHz
CVBS/Y OUT to AUX Frequency characteristic 6dB	Fcv-au6	-1.0	0	1.0	dB	Vin=1Vpp, f=100k/7MHz
CVBS/Y OUT to AUX Frequency characteristic 8dB	Fcv-aus	-1.0	0	1.0	dB	Vin=800mVpp , f=100k/7MHz
C OUT to AUX Frequency characteristic 6dB	$\mathrm{F}_{\mathrm{C}-\mathrm{A6}}$	-1.0	0	1.0	dB	Vin=450mVpp , f=100k/7MHz
C OUT to AUX Frequency characteristic 8dB	$\mathrm{F}_{\mathrm{C}-\mathrm{AB}}$	-1.0	0	1.0	dB	Vin=360mVpp , f=100k/7MHz
R/C OUT to L1 Frequency characteristic 6dB	$\mathrm{F}_{\text {RC-L6 }}$	-1.0	0	1.0	dB	Vin=700mVpp , f=100k/7MHz
R/C OUT to L1 Frequency characteristic 8dB	$\mathrm{F}_{\text {RC-L8 }}$	-1.0	0	1.0	dB	Vin $=560 \mathrm{mVpp}, \mathrm{f}=100 \mathrm{k} / 7 \mathrm{MHz}$
G OUT to L1 Frequency characteristic 6dB	FG-L6	-1.0	0	1.0	dB	Vin $=700 \mathrm{mVpp}$, f=100k/7MHz
G OUT to L1 Frequency characteristic 8 dB	$\mathrm{F}_{\text {G-L8 }}$	-1.0	0	1.0	dB	Vin $=560 \mathrm{mVpp}, \mathrm{f}=100 \mathrm{k} / 7 \mathrm{MHz}$
B OUT to L1 Frequency characteristic 6dB	$\mathrm{F}_{\text {B-L6 }}$	-1.0	0	1.0	dB	Vin=700mVpp , f=100k/7MHz
B OUT to L1 Frequency characteristic 8dB	$\mathrm{F}_{\mathrm{B}-\mathrm{L} 8}$	-1.0	0	1.0	dB	Vin $=560 \mathrm{mVpp}, \mathrm{f}=100 \mathrm{k} / 7 \mathrm{MHz}$
R Frequency characteristic	F_{R}	-1.0	0	1.0	dB	Vin $=700 \mathrm{mVpp}$, f=100k/7MHz
G Frequency characteristic	F_{G}	-1.0	0	1.0	dB	Vin $=700 \mathrm{mVpp}$, f=100k/7MHz
B Frequency characteristic	F_{B}	-1.0	0	1.0	dB	Vin $=700 \mathrm{mVpp}$, f=100k/7MHz
CVBS/Y OUT LPF ON Frequency characteristic 1	FCV-LPF1	-1.5	-0.5	0.5	dB	Vin $=1.0 \mathrm{Vpp}, \mathrm{f}=100 \mathrm{k} / 6.75 \mathrm{MHz}$
CVBS/Y OUT LPF ON Frequency characteristic 2	FCV-LPF2	-	-38	-27	dB	Vin=1.0Vpp , f=100kHz/27MHz
C-R/C-G-B OUT LPF ON Frequency characteristic 1	$\mathrm{F}_{\text {CR-LPF1 }}$	-1.5	-0.5	0.5	dB	Vin $=1.0 \mathrm{Vpp}, \mathrm{f}=100 \mathrm{k} / 6.75 \mathrm{MHz}$
C-R/C-G-B OUT LPF ON Frequency characteristic 2	$\mathrm{F}_{\text {CR-LPF2 }}$	-	-38	-27	dB	$\mathrm{Vin}=1.0 \mathrm{Vpp}, \mathrm{f}=100 \mathrm{kHz} / 27 \mathrm{MHz}$

Item	Symbol	Limit			Unit	Conditions
		MIN.	TYP.	MAX.		
R-G-B LPF ON Frequency characteristic 1	$\mathrm{F}_{\mathrm{RGB} 1}$	-3	0	1	dB	$\begin{aligned} & \mathrm{Vin}=700 \mathrm{mVpp}, \\ & \mathrm{f}=100 \mathrm{kHz} / 6 \mathrm{MHz} \end{aligned}$
R-G-B LPF ON Frequency characteristic 2	$\mathrm{F}_{\mathrm{RGB} 2}$	-	-15	-1.5	dB	$\begin{gathered} \text { Vin }=700 \mathrm{mVpp}, \\ (\mathrm{f}=100 \mathrm{kHz} / 14.3 \mathrm{MHz}) \end{gathered}$
CVBS/Y OUT to INPUT AD MUTE attenuation	$M_{\text {AD }}$	-	-60	-55	dB	$\mathrm{Vin}=1.0 \mathrm{Vpp}, \mathrm{f}=4.43 \mathrm{MHz}$
CVBS/Y OUT to L1 MUTE attenuation	M L_{1}	-	-60	-55	dB	$\mathrm{Vin}=1.0 \mathrm{Vpp}, \mathrm{f}=4.43 \mathrm{MHz}$
CVBS/Y OUT to AUX MUTE attenuation	$\mathrm{M}_{\text {AUX }}$	-	-60	-55	dB	$\mathrm{Vin}=1.0 \mathrm{Vpp}, \mathrm{f}=4.43 \mathrm{MHz}$
C OUT to AUX MUTE attenuation	Mc	-	-60	-55	dB	$\mathrm{Vin}=1.0 \mathrm{Vpp}, \mathrm{f}=4.43 \mathrm{MHz}$
R/C OUT to L1 MUTE attenuation	Mrc	-	-60	-55	dB	Vin=1.0Vpp , f=4.43MHz
G OUT to L1 MUTE attenuation	Mg	-	-60	-55	dB	$\mathrm{Vin}=1.0 \mathrm{Vpp}, \mathrm{f}=4.43 \mathrm{MHz}$
B OUT to L1 MUTE attenuation	M_{B}	-	-60	-55	dB	$\mathrm{Vin}=1.0 \mathrm{Vpp}, \mathrm{f}=4.43 \mathrm{MHz}$
SW1 Switch crosstalk	$\mathrm{C}_{\text {sw1 }}$	-	-60	-55	dB	$\begin{gathered} \text { Vin }=1.0 \mathrm{Vpp}, \mathrm{f}=4.43 \mathrm{MHz} \\ \text { AMPOdB } \end{gathered}$
SW2 Switch crosstalk	Csw2	-	-60	-55	dB	$\begin{gathered} \text { Vin }=1.0 \mathrm{Vpp}, \mathrm{f}=4.43 \mathrm{MHz} \\ \text { AMP6dB } \end{gathered}$
SW3 Switch crosstalk	Csw3	-	-60	-55	dB	$\begin{gathered} \text { Vin }=1.0 \mathrm{Vpp}, \mathrm{f}=4.43 \mathrm{MHz} \\ \text { AMP6dB } \end{gathered}$
SW4 Switch crosstalk	Csw4	-	-60	-55	dB	$\begin{gathered} \text { Vin }=1.0 \mathrm{Vpp}, \mathrm{f}=4.43 \mathrm{MHz} \\ \text { AMP6dB } \end{gathered}$
SW5 Switch crosstalk	Csw5	-	-60	-55	dB	$\begin{gathered} \text { Vin }=1.0 \mathrm{Vpp}, \mathrm{f}=4.43 \mathrm{MHz} \\ \text { AMP6dB } \end{gathered}$
SW7 Switch crosstalk	$\mathrm{C}_{\text {sw7 }}$	-	-60	-55	dB	$\begin{gathered} \text { Vin }=1.0 \mathrm{Vpp}, \mathrm{f}=4.43 \mathrm{MHz} \\ \text { AMP6dB } \end{gathered}$
SW8 Switch crosstalk	Csw8	-	-60	-55	dB	$\begin{gathered} \text { Vin }=1.0 \mathrm{Vpp}, \mathrm{f}=4.43 \mathrm{MHz} \\ \text { AMP6dB } \end{gathered}$
SW10 Switch crosstalk	Csw10	-	-60	-55	dB	$\begin{gathered} \text { Vin }=1.0 \mathrm{Vpp}, \mathrm{f}=4.43 \mathrm{MHz} \\ \text { AMP6dB } \end{gathered}$
CVBS/Y OUT Between the channel crosstalk	$\mathrm{C}_{\text {cviss }}$	-	-60	-55	dB	$\begin{gathered} \mathrm{Vin}=1.0 \mathrm{Vpp}, \mathrm{f}=4.43 \mathrm{MHz} \\ \text { AMPO, } 6 \mathrm{~dB} \end{gathered}$
C-R/C-G-B OUT Between the channel crosstalk	$\mathrm{C}_{\text {cr/ggb }}$	-	-60	-55	dB	$\begin{gathered} \text { Vin }=1.0 \mathrm{Vpp}, \mathrm{f}=4.43 \mathrm{MHz} \\ \text { AMP6dB } \end{gathered}$
R-G-B Between the channel crosstalk	$\mathrm{C}_{\text {RGB }}$	-	-60	-55	dB	$\mathrm{Vin}=1.0 \mathrm{Vpp}, \mathrm{f}=4.43 \mathrm{MHz}$
BIAS input impedance	$\mathrm{R}_{\text {BIAS }}$	14	20	26	k Ω	
BIAS input impedance AUX R/C terminal	R_{RC}	100	150	200	k Ω	
<Scart connector part>						
FB threshold	$V_{\text {FB }}$	0.4	0.7	0.9	V	
L1 FB OUT Output voltage H	$\mathrm{V}_{\text {FB-HI }}$	3.6	4	4.4	V	$\mathrm{R}_{\mathrm{L}}=150 \Omega$
L1 FB OUT Output voltage L	$\mathrm{V}_{\text {FB-LO }}$	0	-	0.7	V	$\mathrm{R}_{\mathrm{L}}=150 \Omega$
FSW Output voltage H	VFSW-HI	$\begin{aligned} & \text { VCC } \\ & -0.5 \end{aligned}$	$\begin{gathered} \hline \text { VCC } \\ -0.1 \\ \hline \end{gathered}$	VCC	V	No load
FSW Output voltage L	$V_{\text {FSW-LOW }}$	0	-	0.7	V	No load
<ADR>						
Input voltage H	$\mathrm{V}_{\text {ADR-HI }}$	2.0	-	VCC	V	
Input voltage L	$\mathrm{V}_{\text {ADR-LOW }}$	0	-	1.0	V	
Input impedance	$\mathrm{R}_{\text {ADR }}$	65	100	135	k Ω	Pull down resister

Item	Symbol	Limit			Unit	Conditions
		MIN.	TYP.	MAX.		
<SCL, SDA>						
Input voltage H	$\mathrm{V}_{\text {IIC-HI }}$	2.0	-	VCC	V	
Input voltage L	$V_{\text {II }}$ C-Low	0	-	1.0	V	
Input bias current	$V_{\text {II }}$ C-BIAS	0	-1	-10	$\mu \mathrm{A}$	
INT Output voltage H	VINT-HI	$\begin{gathered} \hline \text { Vcc } \\ -0.5 \\ \hline \end{gathered}$	Vcc-0.1	Vcc	V	Pull up $100 \mathrm{k} \Omega$
INT Output voltage L	VInt-Low	0	0.3	0.5	V	$l_{\text {load }}=1 \mathrm{~mA}$
ALL MUTE threshold	$V_{\text {mute }}$	1.0	1.5	2.0	V	The span that input is possible. $0 \sim \mathrm{VCC}$
FS1, FS2 Input threshold H	VFS-H	2.5	2.75	3	V	Maximum input voltage VCC $(\mathrm{VCC} \pm 5 \%)$
FS1, FS2 Input threshold L	$V_{\text {FS-L }}$	0.83	1.08	1.33	V	Minimum input voltage 0 V $(V C C \pm 5 \%)$
PARALLEL 1~4 Output voltage H	$V_{\text {OPH }}$	$\begin{gathered} \hline \mathrm{Vcc} \\ -0.5 \end{gathered}$	$\begin{aligned} & \hline \text { Vcc } \\ & -0.1 \end{aligned}$	Vcc	V	Pull up $100 \mathrm{k} \Omega$
PARALLEL 1~4 Output voltage L	VopL	0	0.3	0.5	V	$\mathrm{l}_{\text {load }}=1 \mathrm{~mA}$
ASW1~4 Output voltage H	Vosh	3.5	$\begin{gathered} \text { VCC- } \\ 0.1 \\ \hline \end{gathered}$	VCC	V	No load
ASW1~4 Output voltage L	VosL	0	0.1	1.0	V	No load
FSL1, FSAUX Output voltage H	Vofsh	4.0	$\begin{aligned} & 0.95 \\ & \times \mathrm{Vcc} \end{aligned}$	VCC	V	$\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$
FSL1, FSAUX Output voltage M	V ofsm	2.0	2.5	3.0	V	$\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$
FSL1, FSAUX Output voltage L	$\mathrm{V}_{\text {OFSL }}$	0	0.1	0.75	V	$\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$
<Guaranteed design parameters>						
<SW part>						
L1,AUX CVBS/Y \rightarrow For VPS,PDC OdB Differential Gain	Dgvpso	-	0.1	-	\%	75Ω terminating. 1Vpp output
L1,AUX CVBS/Y \rightarrow For VPS,PDC 6dB Differential Gain	$\mathrm{D}_{\text {gVps6 }}$	-	0.1	-	\%	75Ω terminating. 1Vpp output
ENC CVBS,ENC Y \rightarrow to INPUT AD OdB Differential Gain	$\mathrm{D}_{\text {GADO }}$	-	0.1	-	\%	75Ω terminating. 1Vpp output
ENC CVBS,ENC Y \rightarrow to INPUT AD 2dB Differential Gain	$\mathrm{D}_{\text {GAD2 }}$	-	0.1	-	\%	75Ω terminating. 1Vpp output
ENC CVBS,ENC Y \rightarrow to L1\&AUX 6dB Differential Gain	$\mathrm{D}_{\text {GL1AU6 }}$	-	0.5	-	\%	75Ω terminating. 1Vpp output
ENC CVBS,ENC Y \rightarrow to L1\&AUX 8dB Differential Gain	$\mathrm{D}_{\text {GL1AU8 }}$	-	0.5	-	\%	75Ω terminating. 1Vpp output
L1C \rightarrow to AUX 6dB Differential Gain	Dglcaux	-	1.0	-	\%	75Ω terminating. 1Vpp output
ENC C \rightarrow to AUX 6dB Differential Gain	DGC-A6	-	1.0	-	\%	75Ω terminating. 1Vpp output
ENC C \rightarrow to AUX 8dB Differential Gain	$\mathrm{D}_{\text {GC-AB }}$	-	1.0	-	\%	75Ω terminating. 1Vpp output
ENC C \rightarrow to L1 6dB Differential Gain	Dgc-L6	-	1.0	-	\%	75Ω terminating. 1Vpp output
ENC C \rightarrow to L1 8dB Differential Gain	Dgc-L8	-	1.0	-	\%	75Ω terminating. 1Vpp output
ENC R,G,B \rightarrow to L1 6dB Differential Gain	$\mathrm{D}_{\text {GRGBL6 }}$	-	0.8	-	\%	75Ω terminating. 1Vpp output
ENC R,G,B \rightarrow to L1 8dB Differential Gain	DGRGbL8	-	0.8	-	\%	75Ω terminating. 1Vpp output
AUX R,G,B \rightarrow to L1 Differential Gain	DGAUX-L	-	0.2	-	\%	75Ω terminating. 1Vpp output
5/16						

Item	Symbol	Limit			Unit	Conditions
		MIN.	TYP.	MAX.		
AUX R,G,B \rightarrow R,G,B Differential Gain	$\mathrm{D}_{\text {gaurb }}$	-	0.2	-	\%	75Ω terminating. 1Vpp output
L1,AUX CVBS/Y \rightarrow For VPS,PDC OdB Differential Phase	Dpvpso	-	0.2	-	deg	75Ω terminating. 1Vpp output
L1,AUX CVBS/Y \rightarrow For VPS,PDC 6dB Differential Phase	DPvps6	-	0.2	-	deg	75Ω terminating. 1Vpp output
ENC CVBS,ENC Y \rightarrow to INPUT AD 6dB Differential Phase	DP ${ }_{\text {AD6 }}$	-	0.2	-	deg	75Ω terminating. 1 Vpp output
ENC CVBS,ENC Y \rightarrow to INPUT AD 8dB Differential Phase	$\mathrm{DP}_{\text {AD8 }}$	-	0.2	-	deg	75Ω terminating. 1Vpp output
ENC CVBS,ENC Y \rightarrow to L1\&AUX 6dB Differential Phase	DP ${ }_{\text {L1aU6 }}$	-	0.2	-	deg	75Ω terminating. 1Vpp output
ENC CVBS,ENC Y \rightarrow to L1\&AUX 8dB Differential Phase	DP ${ }_{\text {L1AU8 }}$	-	0.2	-	deg	75Ω terminating. 1Vpp output
L1 C \rightarrow to AUX 6dB Differential Phase	DP ${ }_{\text {lcaug }}$	-	0.2	-	deg	75Ω terminating. 1Vpp output
ENC C to AUX 6dB Differential Phase	DP ${ }_{\text {C-A6 }}$	-	0.4	-	deg	75Ω terminating. 1Vpp output
ENC C \rightarrow to AUX 8dB Differential Phase	DP ${ }_{\text {c-A8 }}$	-	0.4	-	deg	75Ω terminating. 1Vpp output
ENC C \rightarrow to L1 6dB Differential Phase	DP ${ }_{\text {c-L6 }}$	-	0.4	-	deg	75Ω terminating. 1Vpp output
ENC C \rightarrow to L1 8dB Differential Phase	DP ${ }_{\text {c-L8 }}$	-	0.4	-	deg	75Ω terminating. 1Vpp output
ENC R,G,B \rightarrow to L1 6dB Differential Phase	DP $\mathrm{R}_{\text {RGbl6 }}$	-	0.2	-	deg	75Ω terminating. 1Vpp output
ENC R,G,B \rightarrow to L1 8dB Differential Phase	DP $\mathrm{R}_{\text {RGbl8 }}$	-	0.2	-	deg	75Ω terminating. 1Vpp output
AUX R,G,B \rightarrow to L1 Differential Phase	DP ${ }_{\text {AUX }}$ L	-	0.2	-	deg	75Ω terminating. 1Vpp output
AUX R,G,B \rightarrow to R,G,B Differential Phase	DP ${ }_{\text {AURB }}$	-	0.2	-	deg	75Ω terminating. 1Vpp output
L1,AUX CVBS/Y \rightarrow For VPS,PDC 0dB S/N ratio	SNvpso	-	-70	-	dB	Standard 100\% white signal
L1,AUX CVBS/Y \rightarrow For VPS,PDC 6dB S/N ratio	SNvps6	-	-70	-	dB	Standard 100\% white signal
ENC CVBS,ENC Y \rightarrow to INPUTAD OdB S/N ratio	SNado	-	-70	-	dB	Standard 100\% white signal
ENC CVBS,ENC Y \rightarrow to INPUT AD 2 dB S/N ratio	$\mathrm{SN}_{\text {AD2 }}$	-	-70	-	dB	Standard 100\% white signal
ENC CVBS,ENC Y \rightarrow to L1\&AUX 6dB S/N ratio	SN ${ }_{\text {L1AU6 }}$	-	-70	-	dB	Standard 100\% white signal
ENC CVBS,ENC Y \rightarrow to L1\&AUX 8dB S/N ratio	SN ${ }_{\text {L1AU }}$	-	-70	-	dB	Standard 100\% white signal
L1 C \rightarrow to AUX 6dB S/N ratio	SNlcaug	-	-70	-	dB	Standard 100\% white signal
ENC C \rightarrow to AUX 6dB S/N ratio	$\mathrm{SN}_{\mathrm{C}-\mathrm{A} 6}$	-	-70	-	dB	Standard 100\% white signal
ENC C \rightarrow to AUX 8dB S/N ratio	$\mathrm{SN}_{\mathrm{C}-\mathrm{A8}}$	-	-70	-	dB	Standard 100\% white signal
ENC C \rightarrow to L1 $6 \mathrm{~dB} \mathrm{S/N}$ ratio	SN $\mathrm{C}_{\text {-L6 }}$	-	-70	-	dB	Standard 100\% white signal
ENC C \rightarrow to L1 $8 \mathrm{~dB} \mathrm{S/N}$ ratio	$\mathrm{SN}_{\mathrm{C}-\mathrm{L8}}$	-	-70	-	dB	Standard 100\% white signal
ENC R,G,B \rightarrow to L16dB S/N ratio	SN RGGLL	-	-70	-	dB	Standard 100\% white signal
ENC R,G,B \rightarrow to L18dB S/N ratio	SN ${ }_{\text {RGBL8 }}$	-	-70	-	dB	Standard 100\% white signal
AUX R,G,B \rightarrow to L1 S/N ratio	SNAUX-L	-	-70	-	dB	Standard 100\% white signal
AUX R,G,B \rightarrow to R,G,B S/N ratio	$\mathrm{SN}_{\text {AURB }}$	-	-70	-	dB	Standard 100\% white signal

Fig. 1
Blocks inside the dotted line operate at a standby mode.

Pin No. Pin name				INPUT range (V)
				Terminal voltage (V)
1. DGND 19. GND2 39. GND1	GND terminal		-	0
2. ENCY 6. ENCR 8. ENCG 10. ENCB 12. TV CVBS/Y 24. L1 CVBS/Y 38. AUX CVBS/Y 42. AUX G 44. AUX B 48. L1 C	Signal input terminal The video signal input pins is a bottom clamp.		\prod_{π}^{0}	1.4
4. ENC C 26. L1 C	Signal input terminal The video signal input pins is a resistance bias.		$\frac{\square}{\pi}$	2.9
40. AUX R/C	Signal input terminal AUX R input can be a bottom clamp or resistance bias.			1.4
14. CVBS/Y OUT to INPUT AD 16. for VPS PDC 18. R 20. G 22. B	S-Video signal input distinction terminal The state of each pin can be read by $I^{2} C$-BUS.		-	0.7
28. B OUT to L1 29. G OUT to L1 30. R/C OUT to L1 32. $\mathrm{CVBS} / \mathrm{Y}$ OUT to AUX 34. C OUT to AUX	Signal output terminal 75Ω driver output pin gain can be selected $6 / 8 \mathrm{~dB}$ by $I^{2} C$-BUS.		-	0.7 2.1
50. L1 FB OUT	Signal output terminal This pin is an output terminal for scart connector. The drive of 75Ω is possible.		-	-
52. FSW	Signal output terminal The input from FB is outputted as is.		-	-
51. FB	Signal input terminal The signal from scart connector input.		\prod_{π}^{0}	-
9. VREF	Reference voltage terminal A capacitor is connected to opposite GND.			2.8

$\begin{array}{r} 7 . \\ 11 . \\ 13 . \\ 43 . \end{array}$	PARALLEL1 PARALLEL2 PARALLEL3 PARALLEL4	Open collector output terminal It can be set up by $\mathrm{I}^{2} \mathrm{C}$-BUS.		$\left\{\begin{array}{l} 5 \\ 0 \end{array}\right.$	0
$\begin{aligned} & 15 . \\ & 17 . \\ & 21 . \\ & 23 . \end{aligned}$	ASW4 ASW3 ASW2 ASW1	BD3825FS control terminal The signal which switches SW of BD3825FS is output. It can be set by $I^{2} C$-BUS.		-	LOW 0 HI 5
$\begin{aligned} & 3 . \\ & 5 . \end{aligned}$	FS AUX FS L1	FS output terminal Controls the FS output of BD3825FS. It can be set up by $I^{2} \mathrm{C}-\mathrm{BUS}$.		-	0
37.	TEST1	TEST control terminal Short to GND.		\prod_{π}^{0}	0
41.	ALL MUTE	ALL MUTE control terminal It can set all 75Ω driver outputs to mute mode.		\square_{0}	5
5.	ADR	ADR control terminal Pin to set slave address which is $90 \mathrm{H}(91 \mathrm{H})$ or $92 \mathrm{H}(93 \mathrm{H})$.			0
$\begin{aligned} & 27 . \\ & 31 . \end{aligned}$	$\begin{aligned} & \text { FS1 } \\ & \text { FS } \end{aligned}$	FS monitor terminal It acts as the monitor for the FS change.		\prod_{π}^{0}	-
46.	SCL	$I^{2} \mathrm{C}$-BUS Clock input terminal The pin is an input clock of $I^{2} \mathrm{C}$-BUS. It uses a resistor to pull up.			-
47.	SDA	$I^{2} \mathrm{C}$-BUS Data input terminal The pin is data of the $1^{2} \mathrm{C}$-BUS. It uses a resistor to pull up.			-
45.	INT	INT terminal When INT terminal changes FS pin, it outputs HiZ.			0

-Description of operations

$\square I^{2} \mathrm{C}$-BUS Control input specifications

- I ${ }^{2} \mathrm{C}$-BUS Format (WRITE MODE)

	b7	b6	b5	b4	b3	b2	b1	b0
Slave address	1	0	0	1	0	0	ADR	R/W
DATA1	ADSW			L1SW		YAUXSW		
DATA2	CAUVSW		RSW		GBSW		LASW	
DATA3	CRSW	FBSW		AMP0/6	AMP6/8	FILTERSW	$\begin{aligned} & \text { CL/BI } \\ & \text { SEL } \end{aligned}$	\#
DATA4	INT_EN	OUTCTL1	OUTCTL2	Standby	\#	\#	\#	\#
DATA5	PARALLEL1	PARALLEL2	PARALLEL3	PARALLEL4	ASW1	ASW2	ASW3	ASW4
DATA6					\#	\#	\#	\#

\# (Don't Care) When the power is turned on, the condition is as marked *.

	Explanation		Explanation

LASW	SW10 input select. A signal to output in "for VPS, PDC", select. 00 : AUX CVBS/Y * 01 : L1 CVBS/Y 1X : TU CVBS/Y	INT_EN	INT signal output control. 0 : Enable * 1 : Disable Caution: When Enable \rightarrow Disable change, INT signal is cleared.
AMP6/8	When encoder input is chosen, the gain of AMP is configured. (Encoder input terminal :ENC CVBS, ENC Y, ENC C, ENC R, ENC G, ENC B) 0: 6dB (0dB) * 1: $8 \mathrm{~dB} \quad(2 \mathrm{~dB})$ Caution : As for "CVBS/Y OUT to INPUT $A D$ ", it is $0 / 2 \mathrm{~dB}$ switchover.	FILTERSW	SW11 input select. Select the R, G and B each output signal are outputted through the filter, or not outputted through the filter. 0 : There is no filter. * 1: There is a filter.
OUTCTL 1	"C OUT to AUX" output control. 0 : Normal * 1 : HI Z	OUTCTL2	"B OUT to L1" output control. 0 : Normal * 1 : HI Z
Standby	normal/standby mode configuration. 0 : Normal * 1 : Standby Caution: Block diagram is referred for the actuation block at the time of Standby.	ASW 1~4	The output configuration of the ASW terminal. $0 \quad:$ Low $1 \quad: \mathrm{Hi}$ (Initial condition) ASW1:H ASW 2:L ASW 3:L ASW 4:H *
FSL	The output configuration of the FSL1. 00 : input mode * 01 : Low 10 : MID 11 : HI Caution: When input mode, the output of BD3825FS becomes HiZ(Low).	FSA	The output configuration of the FSAUX. 00 : input mode * 01 : Low 10 : MID 11 : HI Caution : When input mode, the output of BD3825FS becomes HiZ(Low).

- $1^{2} \mathrm{C}$-BUS format (READ MODE)

S	SLAVE ADDRESS	A	DATA1	A/N	DATA2	A/N	DATA3	A/N	DATA4	A/N	DATA5	A/N	DATA6	A/N	P

S: Start Condition A/N : NO acknowledge P: Stop Condition

	b7	b6	b5	b4	b3	b2	b1	b0
Slave address	1	0	0	1	0	0	ADR	R/W
DATA1	ADSW			L1SW		YAUXSW		
DATA2	CAUVSW		RSW		GBSW		LASW	
DATA3	CRSW	FBSW		AMP0/6	AMP6/8	FILTERSW	$\begin{aligned} & \text { CL/BI } \\ & \text { SEL } \end{aligned}$	HI
DATA4	INT_EN	OUTCTL1	OUTCTL2	Standby	HI	HI	HI	HI
DATA5	PARALLEL1	PARALLEL2	PARALLEL3	PARALLEL4	ASW1	ASW2	ASW3	ASW4
DATA6	FSL		FSA		FS1		FS2	

\# (Don't Care)
In the read mode, 00 h is output from DATA4 after power-on is reset to 09 h . If a write movement occurs once, it is set to normal mode.

	Explanation		Explanation
ADR	The slave address configured with the ADR terminal. (read mode) 0 : When ADR terminal input is L. Address becomes " 91 H ". 1: When ADR terminal input is H . Address becomes " 93 H ".	R/W	READ/WRITE mode setting 0 : WRITE 1 : READ
FS1	The state of FS1 is outputted. 00 : Low 10 : MID 11 : HI	FS2	The state of FS2 is outputted. 00 : Low 10 : MID 11 : HI

- INT signal (45pin)
- An INT signal outputs HI (high impedance) when the state of $\mathrm{FS} 1, \mathrm{FS} 2$ is monitored by $\mathrm{I}^{2} \mathrm{C}$ - BUS for transition stage, during input mode configuration.

Mode		Monitor
FS1	FS2	
Input mode	Input mode	Both
Input mode	Others	Only FS1
Others	Input mode	Only FS2
Others	Others	No monitoring

- INT signal clearance occurs every time the read (read mode) of the data with $I^{2} C-B U S$ when slave address is sent.
- INT signal output control

It can be controlled with I ${ }^{2} \mathrm{C}$-BUS. INT signal is cleared at switching by Enable \rightarrow Disable.

- Standby mode
- Standby mode can be configured by $I^{2} \mathrm{C}$-BUS. Only the section marked in the dotted line, in the Figure 3, Block Diagram, is active during standby state. All others are off.
- ALL MUTE
- CVBS/Y, C, R/C, G, B output (14pin, 29pin, 30pin, 31pin, 32pin, 34pin, 36pin) are all muted. Mute controls each output separately by $\mathrm{I}^{2} \mathrm{C}-\mathrm{BUS}$.

ALL MUTE	Mode
H	Normal
L	Mute

- The bias of an AUX R/C

As for CLAMP/BIAS change of AUX R/C (40pin), the output bias of R/C OUT to L1 (30pin) is synchronized. Setup "CL/BI SEL" by the $I^{2} C$-BUS control, in accordance with the bias method of the input chosen when input from ENC C (4pin) and ENC R (6pin) is output.

-Reference data

Fig. 2 VCC Circuit Current (Supply voltage dependence)

Fig. 5 VCC Circuit Current (Temperature dependence)

Fig. 8 Frequency Characteristics CVBS/Y OUT to L1

Fig. 11 Frequency Characteristics CVBS/Y OUT to L1

Fig. 3 VDD Circuit Current (Supply voltage dependence)

Fig. 6 VDD Circuit Current (Temperature dependence)

Fig. 9 Frequency Characteristics CVBS/Y OUT to L1 (with LPF)

Fig12 Frequency Characteristics CVBS/Y OUT to L1 (with LPF)

Fig. 4 VCC Circuit Current (Standby) (Supply voltage dependence)

Fig. 7 VCC Circuit Current (Standby) (Temperature dependence)

Fig. 10 Frequency Characteristics G

Fig. 13 Frequency Characteristics
G

Fig. 14 Frequency Characteristics G (with LPF)

Fig. 17 Maximum Output Level CVBS/Y OUT to L1

Fig. 20 Differential Gain (Temperature dependence)

Fig. 23 S/N ratio
(Temperature dependence)

Fig. 15 Frequency Characteristics G (with LPF)

Fig. 18 Maximum Output Level G

Fig. 21 Differential Phase (Supply voltage dependence)

Fig. 24 BIAS input impedance (Temperature dependence)

Fig. 16 MUTE Attenuation (Temperature dependence)

Fig. 19 Differential Gain (Supply voltage dependence)

Fig. 22 Differential Phase (Temperature dependence)

Fig. 25 AUX R BIAS input impedance (Temperature dependence)

-Cautions on use

1. Numbers and data in entries are representative design values and are not guaranteed values of the items.
2. Although ROHM is confident that the example application circuit reflects the best possible recommendations, be sure to verify circuit characteristics for your particular application. Modification of constants for other externally connected circuits may cause variations in both static and transient characteristics for external components as well as this Rohm IC. Allow for sufficient margins when determining circuit constants.
3. Absolute maximum ratings

Use of the IC in excess of absolute maximum ratings, such as the applied voltage or operating temperature range (Topr), may result in IC damage. Assumptions should not be made regarding the state of the IC (short mode or open mode) when such damage is suffered. A physical safety measure, such as a fuse, should be implemented when using the IC at times where the absolute maximum ratings may be exceeded.
4. GND potential

Ensure a minimum GND pin potential in all operating conditions. Make sure that no pins are at a voltage below the GND at any time, regardless of whether it is a transient signal or not.
5. Thermal design

Perform thermal design, in which there are adequate margins, by taking into account the permissible dissipation (Pd) in actual states of use.
6. Short circuit between terminals and erroneous mounting

Pay attention to the assembly direction of the ICs. Wrong mounting direction or shorts between terminals, GND, or other components on the circuits, can damage the IC.
7. Operation in strong electromagnetic field

Using the ICs in a strong electromagnetic field can cause operation malfunction.
8. Operating Voltage Range and Operating Temperature Range

The circuit functional operations and electrical characteristics are guaranteed within the Operating Voltage Range and Operating Temperature Range. However, careful consideration must be taken in designing the circuit.
9. Supply voltage of operation

Although basic circuit function is guaranteed under normal voltage operation ($4.75 \mathrm{~V} \sim 5.25 \mathrm{~V}$), ensure each parameter complies with appropriate electrical characteristics, when using this device.
10. The first resistor of 75Ω driver output must be layout nearest to the IC.
11. The coupling capacitor must be layout nearest to the IC and each pin.
12. $I^{2} \mathrm{C}$ BUS is compatible with fast mode of Version 2.0 but not compatible with Hs mode.

-Thermal derating characteristics

Fig. 26

-Selection of order type

BH7624KS2

SOFP-T52

<Packing information>	
Container	Tray(with dry pack)
Quantity	1000pcs
Direction of feed	Direction of product is fixed in a tray.

- The contents described herein are correct as of October, 2005

The contents described herein are subject to change without notice. For updates of the latest information, please contact and confirm with ROHM CO.,LTD.

- Any part of this application note must not be duplicated or copied without our permission.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set
- Any data, including, but not limited to application circuit diagrams and information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer.
- The products described herein utilize silicon as the main material.
- The products described herein are not designed to be X ray proof.

The products listed in this catalog are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Excellence in Electronics

ROHM CO., LTD.
21, Saiin Mizosaki-cho, Ukyo-ku, Kyoto
615-8585, Japan
TEL: (075)311-2121 FAX: (075)315-0172
URL http: // www. rohm. com
Published by
Application Engineering Group

Contact us for further information about the products.

$$
\begin{aligned}
& \text { Atlanta U.S.A. / ROHM ELECTRONICS ATLANTA SALES OFFICE } \\
& \text { (DIVISION OF ROHM ELE U.S.ALLC) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (DIVISION OF ROHM ELE. U.S.A .,LLC) } \\
& \text { TEL: }+1 \text { (770)754-5972 } \\
& \text { FAX: }+1(770) 754-0691
\end{aligned}
$$

TEL: $+1(7770) 754-5972$ FAX: +1(770) 754 -A69 SALES OFFICE

Diego U.S.A. / ROHM ELECTRONICS SAN DIEGO SAL
(DIVIION OF ROHM ELE. U.SA .,LLC)
TEL: $+1(858) 625-3630$ FAX: $+1(858) 625-3670$
Germany / ROHM ELECTRONICS GMBH (GERMANY)
TEL: +49(2154)9210 FAX: +49(2154)921400
United Kingdom / ROHM ELECTRONICS GMBH (UK)
France /ROHM ELECTRONICS GMBH (FRANCE)
TEL: $+33(0) 15693060$ FAX: $+33(0) 156973080$
Hong Kong China $/$ ROHM ELECTRONISS (H.K.)
TEL: $+852(2) 7406262$ FAX., $+852(2) 375-8971$,
Hong Kong China /ROHM ELECTRONICS (H.K.) CO., LTD.
TEL: $+852(2) 7406262$ FAX:+852(2)3755-8971
Shanghai China /ROHM ELECTRONICS (SHANGAI) CO., LTD.
Shanghai China / ROHM ELECTRONICS (SHANGHAI) CO., LTD.
TEL: $+86(21) 6279-2727$ FAX: $+86(21) 6247-2066$
Dalian China /ROHM ELECTRONICS TRADING (DALIAN) CO., LTD.

```
Beijing China / BEIING REPRESENTATIVE OFFICE 
Taiwan /ROHM ELECTRONICS TAIWAN CO ITD.
Taiwan /ROHM ELECTRONICS TAIWAN CO.,"LTD.
Korea/ROHMM ELECTRONICS KOREA CORPORATION
TEL:+82(2)8182-700 FAX:+82(2)8182-715 (
Malaysia /ROHMM ELECTRONICS(MALYSIA) SDN. BHD.
TEL:+60(3)7958-8355 FAX:+60(3)7958-8377) SALES CORPORATION
Philippines /ROHM ELECTRONICS (PHIIIPINES) SALES
Thailand /ROHM ELECTRONICS (THAILAND) CO., LTD.
```


Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.
It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog.

Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact your nearest sales office.

[^0]
[^0]: Copyright © 2008 ROHM CO.,LTD
 ROHM CO., LTD. 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan
 TEL: +81-75-311-2121 FAX : +81-75-315-0172

