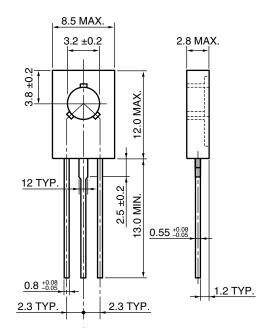
PNP SILICON POWER TRANSISTOR 2SB772

PNP SILICON POWER TRANSISTOR

DESCRIPTION

The 2SB772 is PNP silicon transistor suited for the output stage of 3 W audio amplifier, voltage regulator, DC-DC converter and relay driver.


FEATURES

- · Low saturation voltage
 - $V_{\text{CE(sat)}} \le -0.5 \text{ V (Ic}$ = -2 A, I_{B} = -0.2 A)
- Excellent he linearity and high he he = 60 to 400 (Vce = -2 V, Ic = -1 A)
- Less cramping space required due to small and thin package and reducing the trouble for attachment to a radiator.
 No insulator bushing required.

ABSOLUTE MAXIMUM RATINGS

Maximum Temperature -55 to +150°C Storage Temperature 150°C Maximum Junction Temperature Maximum Power Dissipation Total Power Dissipation ($T_A = 25^{\circ}C$) 1.0 W Total Power Dissipation (Tc = 25°C) 10 W Maximum Voltages and Currents (T_A = 25°C) Vсво Collector to Base Voltage -40 V VCEO Collector to Emitter Voltage -30 V Vево Emitter to Base Voltage -5.0 V Collector Current (DC) -3.0 AIC(DC) IC(pulse) Note Collector Current (pulse) -7.0 A

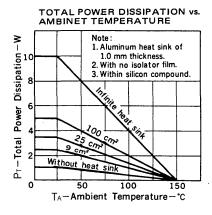
* PACKAGE DRAWING (Unit: mm)

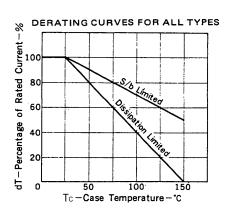
- 1: Emitter
- 2: Collector: connected to mounting plane
- 3: Base

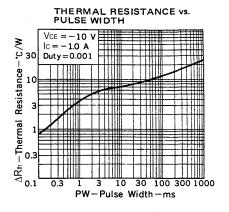
Note Pulse Test PW \leq 350 μ s, Duty Cycle \leq 2% **ELECTRICAL CHARACTERISTICS (TA = 25°C)**

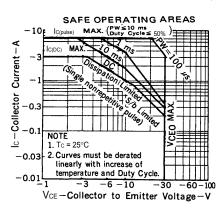
CHARACTERISTIC	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
DC Current Gain	h _{FE1}	$V_{CE} = -2.0 \text{ V, } I_{C} = -20 \text{ mA}^{Note}$	30	220		
DC Current Gain	h _{FE2}	$V_{CE} = -2.0 \text{ V, } I_{C} = -1.0 \text{ mA}^{Note}$	60	160	400	
Gain Bandwidth Product	f⊤	$V_{CE} = -5.0 \text{ V}, I_{C} = -0.1 \text{ A}$		80		MHz
Output Capacitance	Cob	$V_{CB} = -10 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$		55		pF
Collector Cutoff Current	Ісво	$V_{CB} = -30 \text{ V}, I_E = 0 \text{ A}$			-1.0	μΑ
Emitter Cutoff Current	ІЕВО	$V_{EB} = -3.0 \text{ V, Ic} = 0 \text{ A}$			-1.0	μΑ
Collector Saturation Voltage	V _{CE(sat)}	$I_C = -2.0 \text{ A}, I_B = -0.2 \text{ A}^{\text{Note}}$		-0.3	-0.5	V
Base Saturation Voltage	V _{BE(sat)}	$I_C = -2.0 \text{ A}, I_B = -0.2 \text{ A}^{\text{Note}}$		-1.0	-2.0	V

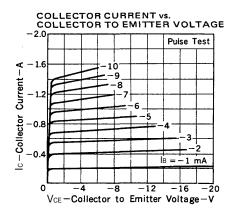
Note Pulse Test: PW \leq 350 μ s, Duty Cycle \leq 2%


CLASSIFICATION OF hee


Rank	R	Q	Р	E
Range	60 to 120	100 to 200	160 to 320	200 to 400


Remark Test Conditions: VcE = -2.0 V, Ic = 1.0 A


The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.


TYPICAL CHARACTERISTICS (TA = 25°C, unless otherwise noted.)

