BT152-500RT

SCR, 20 A, 32 mA, 500 V, SOT78

Rev. 01 — 12 May 2009

Product data sheet

Product profile 1.

1.1 General description

Planar passivated SCR (Silicon Controlled Rectifier) in a SOT78 plastic package

1.2 Features and benefits

- High reliability
- High temperature capable
- High thermal cycling performance
- Very high surge capability

1.3 Applications

- Ignition circuits
- Motor control

- Protection circuits
- Static switching

1.4 Quick reference data

Table 1. **Quick reference**

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DRM}	repetitive peak off-state voltage		-	-	500	V
V_{RRM}	repetitive peak reverse voltage		-	-	500	V
$I_{T(AV)}$	average on-state current	half sine wave; T _{mb} ≤ 122 °C; see <u>Figure 3</u>	-	-	13	Α
I _{T(RMS)}	RMS on-state current	half sine wave; all conduction angles; see Figure 1; see Figure 2	-	-	20	Α
I _{TSM}	non-repetitive peak on-state current	half sine wave; $t_p = 8.3 \text{ ms}$; $T_{j(init)} = 25 \text{ °C}$	-	-	220	Α
		half sine wave; $t_p = 10 \text{ ms}$; $T_{j(init)} = 25 ^{\circ}\text{C}$; see Figure 4; see Figure 5	-	-	200	Α
Static ch	naracteristics					
I _{GT}	gate trigger current	$V_D = 12 \text{ V; } T_j = 25 \text{ °C;}$ $I_T = 100 \text{ mA; see } \frac{\text{Figure 8}}{\text{MH}}$	-	3	32	mA

2. Pinning information

Table 2. Pinning information

Pin	Symbol	Description	Simplified outline	Graphic symbol
1	K	cathode		N 1
2	А	anode	mb	A A K
3	G	gate		G sym037
	A	mounting base; connected to anode	1 2 3	
			SOT78 (TO-220AB;SC-46)	

3. Ordering information

Table 3. Ordering information

Type number	Package					
	Name	Description	Version			
BT152-500RT	TO-220AB; SC-46	plastic single-ended package; heatsink mounted; 1 mounting hole; 3-lead TO-220AB	SOT78			

4. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DRM}	repetitive peak off-state voltage		-	500	V
V_{RRM}	repetitive peak reverse voltage		-	500	V
$I_{T(AV)}$	average on-state current	half sine wave; T _{mb} ≤ 122 °C; see <u>Figure 3</u>	-	13	Α
I _{T(RMS)}	RMS on-state current	half sine wave; all conduction angles; see Figure 1; see Figure 2	-	20	Α
dI _T /dt	rate of rise of on-state current	$I_T = 50 \text{ A}$; $I_G = 200 \text{ mA}$; $dI_G/dt = 200 \text{ mA/}\mu\text{s}$	-	200	A/µs
I_{GM}	peak gate current		-	5	Α
P_{GM}	peak gate power		-	20	W
T _{stg}	storage temperature		-40	150	°C
Tj	junction temperature		-	150	°C

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
I_{TSM}	non-repetitive peak	half sine wave; $t_p = 8.3 \text{ ms}$; $T_{j(init)} = 25 \text{ °C}$	-	220	Α
	on-state current	half sine wave; $t_p = 10$ ms; $T_{j(init)} = 25$ °C; see Figure 4; see Figure 5	-	200	Α
l ² t	I ² t for fusing	t _p = 10 ms; sine-wave pulse	-	200	A^2s
$P_{G(AV)}$	average gate power	over any 20 ms period	-	1	W
V_{RGM}	peak reverse gate voltage		-	5	V

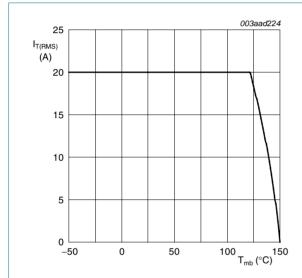
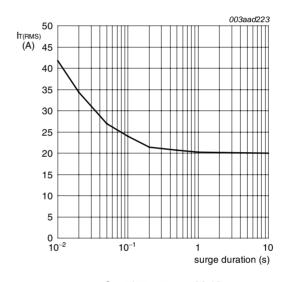
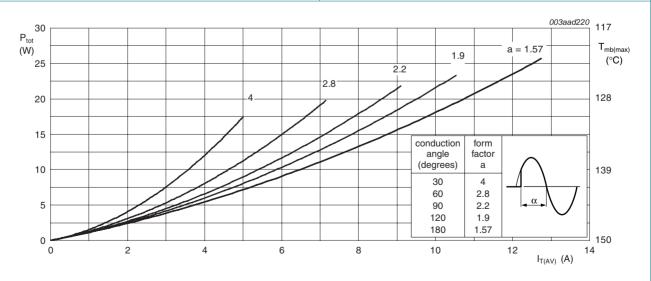




Fig 1. RMS on-state current as a function of mounting base temperature; maximum values

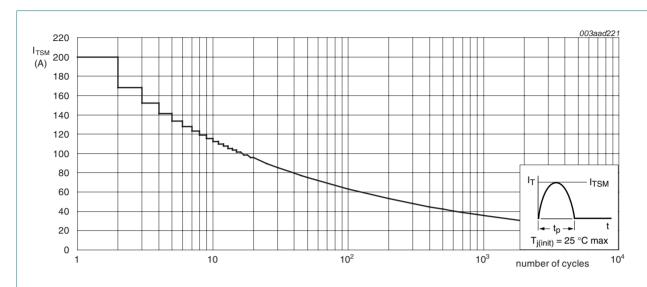

 $f = 50 \text{ Hz } T_{sp} = 122 \text{ }^{\circ}\text{C}$

Fig 2. RMS on-state current as a function of surge duration; maximum values

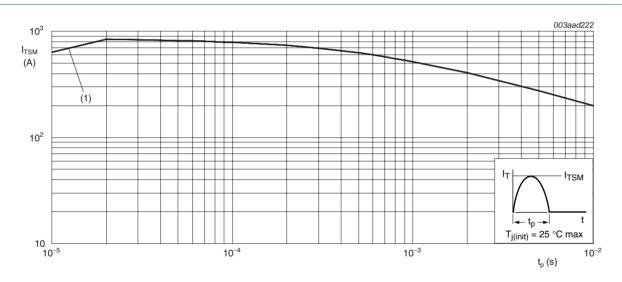

a =form factor $= I_{T(RMS)} / I_{T(AV)}$

Fig 3. Total power dissipation as a function of average on-state current; maximum values

 $f = 50 \,\mathrm{Hz}$

Fig 4. Non-repetitive peak on-state current as a function of the number of sinusoidal current cycles; maximum values

 $t_p \leq 10 \text{ ms}(1) \text{ d}I_T/\text{dt limit}$

Fig 5. Non-repetitive peak on-state current as a function of pulse width for sinusoidal currents; maximum values

Thermal characteristics 5.

Thermal characteristics Table 5.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-mb)}$	thermal resistance from junction to mounting base	see Figure 6	-	-	1.1	K/W
R _{th(j-a)}	thermal resistance from junction to ambient free air		-	60	-	K/W

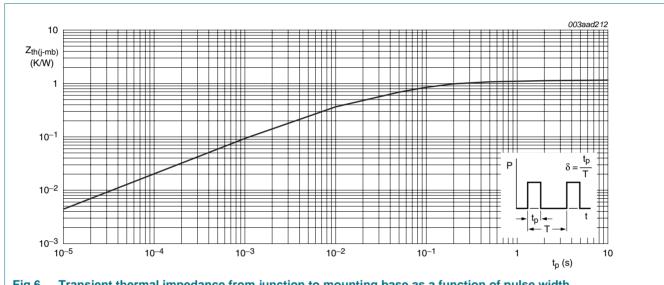


Fig 6. Transient thermal impedance from junction to mounting base as a function of pulse width

Characteristics

Table 6. Characteristics

	Ondi dotoriotioo					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static cha	aracteristics					
I_{GT}	gate trigger current	$V_D = 12 \text{ V}; T_j = 25 \text{ °C}; I_T = 100 \text{ mA};$ see Figure 8	-	3	32	mA
I <u>L</u>	latching current	$V_D = 12 \text{ V}; T_j = 25 \text{ °C}; I_G = 100 \text{ mA};$ see Figure 9	-	25	80	mA
l _H	holding current	T _j = 25 °C; see <u>Figure 10</u>	-	15	60	mA
V_{T}	on-state voltage	$I_T = 40 \text{ A}; T_j = 25 \text{ °C}; \text{ see } \frac{\text{Figure 11}}{\text{M}}$	-	1.4	1.75	V
V_{GT}	gate trigger voltage	I_T = 100 mA; V_D = 12 V; T_j = 25 °C; see Figure 12	-	0.6	1.5	V
		$I_T = 100 \text{ mA}; V_D = 500 \text{ V}; T_j = 125 ^{\circ}\text{C}$	0.25	0.4	-	V
I _D	off-state current	$V_D = 500 \text{ V}; T_j = 125 ^{\circ}\text{C}$	-	0.2	1	mA
I_R	reverse current	$V_R = 500 \text{ V}; T_j = 125 ^{\circ}\text{C}$	-	0.2	1	mA

Table 6. Characteristics ... continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Dynamic	charateristics					
dV _D /dt	rate of rise of off-state voltage	V_{DM} = 335 V; T_j = 125 °C; gate open circuit; see Figure 7	200	300	-	V/µs
t _{gt}	gate-controlled turn-on time	$I_{TM} = 40 \text{ A}; V_D = 500 \text{ V}; I_G = 100 \text{ mA}; \\ dI_G/dt = 5 \text{ A/}\mu\text{s}$	-	2	-	μs
tq	commutated turn-off time	$V_{DM} = 335 \text{ V; } T_j = 125 \text{ °C; } I_{TM} = 20 \text{ A;}$ $V_R = 25 \text{ V; } (dI_T/dt)_M = 30 \text{ A/µs;}$ $dV_D/dt = 50 \text{ V/µs; } R_{GK} = 100 \Omega$	-	70	-	μs

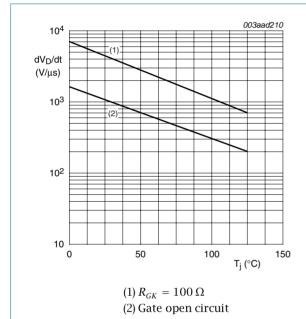


Fig 7. Critical rate of rise of off-state voltage as a function of junction temperature; typical values

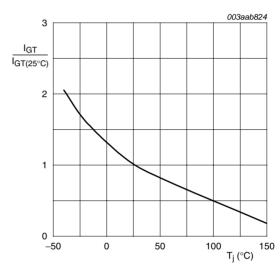


Fig 8. Normalized gate trigger current as a function of junction temperature

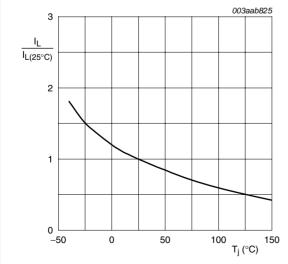


Fig 9. Normalized latching current as a function of junction temperature

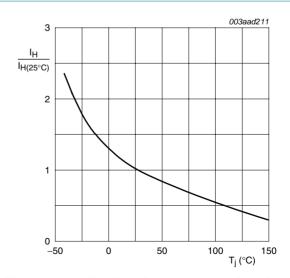
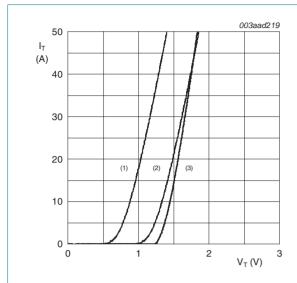



Fig 10. Normalized holding current as a function of junction temperature

 $V_o = 1.06 \text{ V}; R_s = 0.03 \Omega$

(1) $T_j = 150$ °C; typical values (2) $T_j = 150$ °C; maximum values (3) $T_j = 25$ °C; maximum values

Fig 11. On-state current as a function of on-state voltage

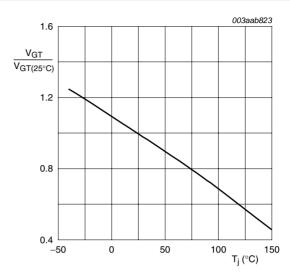


Fig 12. Normalized gate trigger voltage as a function of junction temperature

7. Package outline

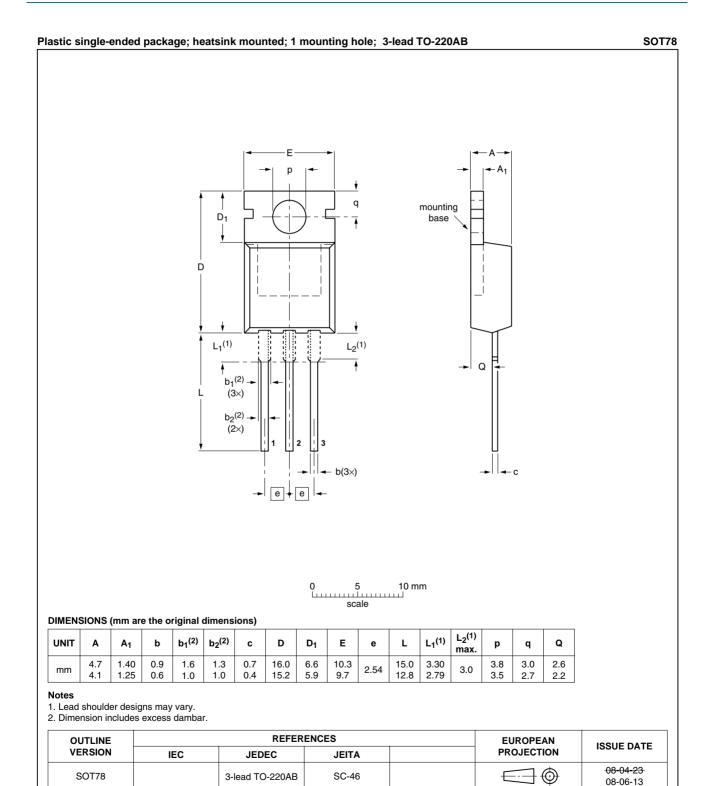


Fig 13. Package outline SOT78 (TO-220AB)

BT152-500RT

SCR, 20 A, 32 mA, 500 V, SOT78

8. Revision history

Table 7. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
BT152-500RT_1	20090512	Product data sheet	-	-

9. Legal information

9.1 Data sheet status

Document status [1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

9.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

10. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

11. Contents

1	Product profile
1.1	General description
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data1
2	Pinning information2
3	Ordering information2
4	Limiting values2
5	Thermal characteristics5
6	Characteristics5
7	Package outline8
8	Revision history9
9	Legal information10
9.1	Data sheet status
9.2	Definitions10
9.3	Disclaimers
9.4	Trademarks10
10	Contact information10

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

