GENERATOR

FEATURES:

- Three internal PLLs
- Internal non-volatile EEPROM
- FAST mode ${ }^{2} \mathrm{C}$ serial interfaces
- Input Frequency Ranges: 1 MHz to 400 MHz
- Output Frequency Ranges: 4.9 kHz to 500 MHz
- Reference Crystal Input with programmable oscillator gain and programmable linear load capacitance
- Crystal Frequency Range: 8MHz to 50MHz
- Each PLL has an 8-bit pre-scaler and a 12-bit feedback-divider
- 10-bit post-divider blocks
- Fractional Dividers
- Two of the PLLs support Spread Spectrum Generation capability
- I/O Standards:
- Outputs - 3.3VLVTTL LVCMOS, LVPECL, and LVDS
- Inputs - 3.3VLVTTL LVCMOS
- Programmable Slew Rate Control
- Programmable Loop Bandwidth Settings
- Programmable output inversion to reduce bimodal jitter
- Individual output enable/disable
- Power-down mode
- 3.3VVdd
- Available in TSSOP package

DESCRIPTION:

The IDT5V9882T is a programmable clock generator intended for high performance data-communications, telecommunications, consumer, and networking applications. There are three internal PLLs, each individually programmable, allowing for three unique non-integer-related frequencies. The frequencies are generated from a single reference clock. The reference clock can come from one of the two redundant clock inputs. A glitchless automatic or manual switchover function allows any one of the redundant clocks to be selected during normal operation.

The IDT5V9882T can be programmed through the use of the $I^{2} \mathrm{C}$ interfaces. The programming interface enables the device to be programmed when it is in normal operation or what is commonly known as insystem programmable. An internal EEPROM allows the user to save and restore the configuration of the device without having to reprogram it on power-up.
Each of the three PLLs has an 8-bit pre-scaler and a 12-bit feedback divider. This allows the user to generate three unique non-integer-related frequencies. The PLL loop bandwidth is programmable to allow the user to tailor the PLL response to the application. For instance, the user can tune the PLL parameters to minimize jitter generation or to maximize jitter attenuation. Spread spectrum generation and fractional divides are allowed on two of the PLLs.

There are 10-bit post dividers on five of the six output banks. Two of the six output banks are configurable to be LVTTL, LVPECL, or LVDS. The other four output banks are LVTTL. The outputs are connected to the PLLs via the switch matrix. The switch matrix allows the user to route the PLL outputs to any outputbank. This feature can be used to simplify and optimize the board layout. In addition, each output's slew rate and enable/disable function can be programmed.

FUNCTIONAL BLOCK DIAGRAM

NOTE:

1. OUT3 pair can be configured to be LVDS, LVPECL, or two single-ended LVTTL outputs.

PIN CONFIGURATION

TSSOP TOP VIEW

PIN DESCRIPTION

Pin Name	Pin\#	I/0	Type	Description
XTALIN/REFIN	3	1	LVTTL	CRYSTAL_IN-Reference crystal inputor external reference clockinput
XTALOUT	4	0	LVTTL	CRYSTAL_OUT-Reference crystal feedback
GINO/SDAT	16	1	LVTTL	Multi-purpose inputs. Can be used for Frequency Control or $\operatorname{SDAT}\left(1^{2} \mathrm{C}\right)$.
GIN1/SCLK	17	1	LVTTL	Multi-Purpose inputs. Can be used for Frequency Control or SDAT ($1^{2} \mathrm{C}$).
SHUTDOWN/OE/SUSPEND	20	1	LVTTL	Enables/disables the outputs, PLLs or powers down the chip.
I2C_MFC	18	1	$3-\mathrm{leve}{ }^{(1)}$	$1^{2} \mathrm{C}$ (HIGH) or MFC Mode (MID)
OUT1	5	0	LVTTL	Configurable clock output 1. Can also be used to buffer the reference clock.
OUT2	1	0	LVTTL	Configurableclockoutput2
OUT3	7	0	Adjustable ${ }^{(2)}$	Configurable clock output 3, Single-Ended or Differential when combined with OUT3
OUT3	8	0	Adjustable ${ }^{(2)}$	Configurable complementaryclockoutput3, Single-Endedor Differential when combinedwith OUT3
OUT4	13	0	LVTTL	Configurable clock output4
VDD	2, 13, 19			3.3V Power Supply
GND	6,15			Ground

NOTES:

1. 3-level inputs are static inputs and must be tied to VDD or GND or left floating. These inputs are internally biased to Vod/2. They are not hot-insertable or over voltage tolerant.
2. Outputs are user programmable to drive single-ended 3.3V LVTTL, differential LVDS, or differential LVPECL interface levels.

PLL FEATURES AND DESCRIPTIONS

PLLO Block Diagram

PLL1 Block Diagram

	Pre-Divider (D) Values	Multiplier (M) Values	Programmable Loop Bandwidth	Spread Spectrum GenerationCapability
PLL0	$1-255$	$2-8190$	yes	yes
PLL1	$1-255$	$2-8190$	yes	yes
PLL2	$1-255$	$1-4095$	yes	no

CRYSTALINPUT (XTALIN/REFIN)

The crystal oscillatorsshould be fundamental modequartz crystals: overtone crystals are not suitable. Crystal frequency should be specified for parallel resonance with 50Ω maximum equivalent series resonance.

When the XTALIN/REFIN pin is driven by a crystal, it is important to set the internal oscillator inverter drive strength and internal tuning/load capacitor values correctly to achieve the best clock performance. These values are programmablethroughan I^{2} C_MFCinterfacetoallowformaximum compatibility with crystals from various manufacturers, processes, performances, and qualities. The internal load capacitors are true parallel-plate capacitorsforultralinear performance. Parallel-plate capacitors were chosen to reduce the frequencyshiftthatoccurswhennon-linearload capacitanceinteractswithload, bias, supply, and temperature changes. External non-linear crystal load capacitors should not be used for applications that are sensitive to absolute frequency requirements. The value ofthe internal load capacitors are determined by XTALCAP[7:0]bits, (0x07). Theload capacitance canbe setwitharesolution of 0.125 pF for a total crystal load range of 3.5 pF to 35.4 pF . Check with the vendor's crystal load capacitance specification for the exactsetting to tune the internal load capacitor. The following equation governs how the total internal load capacitance is set.

XTAL load cap $=3.5 \mathrm{pF}+\mathrm{XTALCAP}[7: 0]$ * 0.125 pF (Eq. 1)

Parameter	Bits	Step	Min	Max	Units
XTALCAP	8	0.125	0	32	pF

When using an external reference clock instead of a crystal on the XTAL/ REFIN pin, the inputload capacitors may be completely bypassed. This allows forthe inputfrequency to be upto 200 MHz . Whenusing an external reference clock, the XTALOUT pin mustbe left floating, XTALCAP mustbe programmed to the default value of " 0 ", and crystal drive strength bit, XDRV (0x06), must be set to the default value of "11".

PRE-SCALER, FEEDBACK-DIVIDER, AND POST-DIVIDER

Each PLL incorporates an 8-bit pre-scaler and a 12-bit feedback divider whichallowsthe userto generatethree unique non-integer-related frequencies. For output banks OUT2-OUT4, each bank has a 10 -bit post-divider. The following equation governs how the frequency on output banks OUT2-4 is calculated.

$$
\begin{equation*}
\text { Fout }=\frac{\text { Fin }^{*} D\left(\frac{M}{M}\right)}{P * 2} \tag{Eq.2}
\end{equation*}
$$

Where Fin is the referencefrequency, M is the total feedback-divider value, Disthe pre-scalervalue,P isthe total post-dividervalue, andFout isthe resulting output bank frequency. The value 2 in the denominator is due to the divide-by-2 on each of the outputbanks OUT2-4. Note that OUT1 does nothave any type of post-divider. Also, programming any of the dividers may cause glitches onthe outputs.

Pre-Scaler

$\mathrm{D}[7: 0]$ are the bits used to program the pre-scaler for each PLL, D0 for PLLO, D1 for PLL1, and D2 for PLL2. The pre-scalers divide down the referenceclockwith integer values ranging from1 to 255 . To maintainlowjitter, the divided down clockmustbehigherthan 400 KHz ; itis besttouse the smallest Ddividervalue possible. If Dis setto '0x00', thenthis will power down the PLL and all the outputs associated with that PLL.

Feedback-Divider

$\mathrm{N}[11: 0]$ and $\mathrm{A}[3: 0]$ are the bits used to program the feedback-divider for PLLO (NO and A 0) and PLL1 (N1 and A1). If spread spectrum generation is enabled for either PLL0 or PLL1, then the SS_OFFSET[5:0] bits ($0 \times 61,0 \times 69$) would be factored into the overall feedback divider value. See the SPREAD SPECTRUM GENERATION section for more details onhow to configure PLLOandPLL1 when spread spectrum is enabled. The two PLLscanalso be configured for fractional divide ratios. See FRACTIONAL DIVIDER for more details. For PLL2, only the N[11:0] bits (N2) are used to programits feedback divider and there is no spread spectrum generation and fractional divides capability. The12-bit feedback-divider integer values range from 1 to 4095.

The following equations govern how the feedback divider value is set. Note that the equations are different for PLLO/PLL1 and PLL2

```
PLLO and PLL1:
M = 2*N[11:0] + A[3:0] + 1 + SS_OFFSET[5:0] * 1/64 (Eq. 3)
M = 2*N[11:0] + A[3:0] + 1 (spread spectrum disabled)
(Eq. 4)
A[3:0] = 0000 =-1
    = 0001 = 1
    = 0010 = 2
    = 0011 = 3
    = 1111= 15
```

Note: $A[3: 0]$ < (N[11:0]-1), must be met when using A.

PLL2:
 $\mathrm{M}=\mathrm{N}[11: 0]$

The user can achieve an even or odd integer divide ratio for both PLLO and PLL1 by setting the A[3:0] bits accordingly and disabling the spread spectrum. A fractional divide can also be setfor PLLO and PLL1 by using the A[3:0] bits in conjunction with the SS_OFFSET[5:0] bits, which is detailed inthe FRACTIONAL DIVIDER section. Note thatthe VCOhas afrequency range of 10 MHz to 1100 MHz . To maintainlowjitter, itis besttomaximize the VCO frequency. For example, if the reference clock is 100 MHz and a 200 MHz clock is required, to achieve the bestjitter performance, multiply the 100 MHz by 11 to get the VCO running at the highestpossible frequency of 1100 MHz and then divide it downto get 200 MHz . Or ifthe reference clock is 25 MHz and 20MHz is the required clock, multiply the 25 MHz by 40 to get the VCO running at 1000 MHz and then divide it down to get 20 MHz . If N is set to ' 0 x 00 ', the VCO will slew to the minimum frequency.

Post-Divider

Q[9:0] are the bits used to program the 10-bit post-dividers on output banks OUT2-4. OUT1 bank does not have a 10 -bit post-divider or any other postdivide along its path. The 10-bit post-dividers will divide down the output banks' frequency with integer values ranging from 1 to 1023.
There is the option to choose between disabling the post-divider, utilizing a div/1, a div/2, or the 10-bit post-divider by using the PM[1:0] bits. . Each bank, except for OUT1, has a set of PM bits. When disabling the post-divider, no clock will appear at the outputs, but will remain powered on. The values are listed in the table below.

PM[1:0]	P Post-Divider
00	disabled
01	$\operatorname{div} / 1$
10	$\operatorname{div} / 2$
11	Q[9:0] +2 (Eq. 6)

Post-Divider Diagram

Note that the actual 10-bit post-divider value has a 2 added to the integer value Q and the outputs are routed through another div/2 block. The post-divider should never be disabled unless the outputbank will never be used during normal operation. The output frequency range for LVTTL outputs are from 4.9 KHz to 200 MHz . The output frequency range for LVPECL/LVDS outputs are from 4.9 KHz to 500 MHz .

SPREAD SPECTRUM GENERATION

PLLO and PLL1 support spread spectrum generation capability, which users have the option ofturning on and off. Spread spectrum profile, frequency, and spread are fully programmable (within limits). The programmable spread spectrum generation parameters are TSSC[3:0], NSSC[3:0], SS_OFFSET[5:0], SD[3:0], DITH, and X2 bits. These bits are in the memory address range of 0×60 to 0×67 for PLL0 and 0×68 to $0 \times 6 \mathrm{~F}$ for PLL1. The spread spectrum generation on PLL0 \& PLL1 can be enabled/disabled using the TSSC[3:0] bits. To enable spread spectrum, set TSSC > '0' and set NSSC, SD[3:0], SD[5:0], and the $A[3: 0]$ in the total M value accordingly. And to disable, set TSSC = ' 0 '.

TSSC[3:0]

These bits are used to determine the number of phase/frequency detector cycles per spread spectrum cycle (ssc) steps. The modulation frequency can be calculated with the TSSC bits in conjunction with the NSSC bits. Valid TSSC integer values for the modulation frequency range from 5 to 14.

NSSC[3:0]

These bits are used to determine the number of delta-encoded samples used for a single quadrant of the spread spectrum waveform. All four quadrants of the spread spectrum waveform are mirror images of each other. The modulation frequency is also calculated based off the NSSC bits in conjunction with the TSSC bits. Valid NSSC integer values range from 1 to 6.

SS_OFFSET[5:0]

These bits are used to program the fractional offset with respect to the nominal M integer value. For center spread, the SS_OFFSET should be set to '0' so the spread spectrum waveform is about the nominal M (Mnom) value. For down spread, the SS_OFFSET > '0' so the spread spectrum wavform is about the (Mideal-1=Mnom) value. The downspread percentage canbethought of interms of center spread. For example, adownspread of-1\% canalso beconsidered as a center spread of $\pm 0.5 \%$ but with Mnom shifted down by one and offset. The SS_OFFSET has integer values ranging from 0 to 63.

SD[3:0]
These bits are used to shape the profile of the spread spectrum waveform. These are delta-encoded samples of the waveform. There are twelve sets of SD samples for eachPLL. The NSSC bits determine how many of these samples are used for the waveform. The sum of these delta-encoded samples (sigma-delta-encoded samples) determine the amount of spread and should not exceed (63-SS_OFFSET). The maximum spread is inversely proportional to the nominal M integer value.

DITH
This bitis for dithering the sigma-delta-encoded samples. This will randomize the least-significant bit of the inputto the spread spectrum modulator. Setthe bitto '1' to enable dithering.

X2
This bit will double the total value of the sigma-delta-encoded-samples which will increase the amplitude of the spread spectrum waveform by a factor oftwo. When X2 is ' 0 ', the amplitude remains nominal but if set to ' 1 ', the amplitude is increased by $x 2$.

The following equations govern how the spread spectrum is set:

Tssc $=\operatorname{TSSC}[3: 0]+2 \quad$ (Eq. 7)

Nssc = NSSC[3:0] * 2 (Eq. 8)
SD[3:0]k $=\mathrm{S}_{\mathrm{J}+1}$ (unencoded) - S_{J} (unencoded) (Eq. 9)
where $\mathrm{S}_{\text {s is }}$ the unencoded sample out of a possible 12 and SD_{κ} is the delta-encoded sample out of a possible 12.
Amplitude $=\frac{\left(2^{*} \mathrm{~N}[11: 0]+\mathrm{A}[3: 0]+1\right) * \text { Spread } \% / 100}{2}$
if 1 < Amp < 2, then set X2 bit to ' 1 '.

Modulation frequency:
FpFD $=$ Fin / D (Eq. 11)
Fvco $=$ Fpfd * Mnom (Eq. 12)
Fssc $=$ Fpfd $/(4$ * Nssc * Tssc) (Eq. 13)

Spread:

$\Sigma \Delta=\mathrm{SD}_{0}+\mathrm{SD}_{1}+\mathrm{SD}_{2}+\ldots+\mathrm{SD}_{11}$
the number of samples used depends on the Nssc value
$\Sigma \Delta \leq 63$ - SS_OFFSET
\pm Spread $\%=\frac{\Sigma \Delta * 100}{64 *(2 * \mathrm{~N}[11: 0]+\mathrm{A}\{3: 0\}+1)}$
\pm Max Spread\% $/ 100=1 /$ Мnом or $2 /$ Мnом (X2=1)
Profile:
Waveform starts with SS_OFFSET, SS_OFFSET + SDJ, SS_OFFSET + SD ${ }_{\mathrm{J}+1}$, etc.

Nssc

Spread Spectrum Using Sinusoidal Profile

Example

Fin $=25 \mathrm{MHz}$, Fout $=100 \mathrm{MHz}, \mathrm{Fssc}=33 \mathrm{KHz}$ with center spread of $\pm 2 \%$. Find the necessary spread spectrum register settings.
Since the spread is center, the SS_OFFSET can be setto '0'. Solve for the nominal M value; keep in mind that the nominal M should be chosen to maximize the VCO. Start with D $=1$, using Eq. 10 and Eq. 11 .

Мnом $=1100 \mathrm{MHz} / 25 \mathrm{MHz}=44$

Using Eq.4, we arbitrarily choose $N=20, A=3$. Now that we have the nominal M value, we can determine TSSC and NSSC by using Eq.12.
Nssc * Tssc $=25 \mathrm{MHz} /(33 \mathrm{KHz} * 4)=190$
However, using Eq. 7 and Eq.8, we find that the closest value is when TSSC $=14$ and NSSC $=6$. Keep in mind to maximize the number of samples used to enhance the profile of the spread spectrum waveform.

Tssc $=14+2=16$
Nssc $=6$ * $2=12$
Nssc * Tssc $=192$

Use Eq. 14 to determine the value of the sigma-delta-encoded samples.
$\pm 2 \%=\frac{\Sigma \Delta * 100}{64 * 44}$
$\Sigma \Delta=56.32$

Either round up or down to the nearestinteger value. Therefore, we end up with 56 or 57 for sigma-delta-encoded samples. Since the sigma-delta-encoded samples must not exceed 63 with SS_OFFSET set to ' 0 ', 56 or 57 is well within the limits. It is the discretion of the user to define the shape of the profile that is better suited for the intended application.

Using Eq. 14 again, the actual spread for the sigma-delta-encoded samples of 56 and 57 are $\pm 1.99 \%$ and $\pm 2.02 \%$, respectively.
Use Eq. 10 to determine if the X 2 bit needs to be set;
Amplitude $=\frac{44 *(1.99 \text { or } 2.02) / 100}{2}=0.44<1$

Therefore, the $\mathrm{X} 2=10$ '. The dither bit is left to the discretion of the user.
The example above was of a center spread using spread spectrum. For down spread, the nominal M value can be set one integer value lower to 43.
Note that the 5 v 9882 T should not be programmed with TSSC > '0', SS_OFFSET = ' 0 ', and SD = '0' in order to prevent an unstable state in the modulator. The PLL loop bandwidth mustbe at least 10x the modulation frequency along with higher damping (larger curz) to prevent the spread spectrum from being filtered and reduce extraneous noise. Refer tothe LOOP FILTER sectionfor more detail on $\omega \mathbf{z}$. The A[3:0] mustbe used for spread spectrum, even ifthe total multiplier value is an even integer.

FRACTIONAL DIVIDER

There is the option for the feedback-divider to be programmed as a fractional divider for only PLLO and PLL. By setting TSSC > ' 0 ' and SD bits to ' 0 ', the SS_OFFSET bits would determine the fractional divide value. See the SPREAD SPECTRUM GENERATION section for more details on the TSSC, SD, and SS_OFFSET bits. The following equation governs how the fractional divide value is set.

$$
\mathrm{M}=2 * \mathrm{~N}[11: 0]+\mathrm{A}[3: 0]+1+\text { SS_OFFSET[5:0] *1/64 }
$$

The spread spectrum parameters such as the modulation frequency and profile will not be enabled nor will it have any impact on the PLL output when the PLL is programmed for fractional divide.

The following is an example of how to set the fractional divider.

Example

Fin $=20 \mathrm{MHz}$, Fout1 $=168.75 \mathrm{MHz}$, Fout2 $=350 \mathrm{MHz}$
Solving for 350MHz using Eq. 2 and Eq. 3 with PLLO and spread spectrum off,
$350 \mathrm{MHz}=\frac{20 \mathrm{MHz} *(\mathrm{M} / \mathrm{D})}{\mathrm{P} * 2}$

For better jitter performance, keep D as small as possible
$\frac{350 \mathrm{MHz}^{*} 2}{20 \mathrm{MHz}}=\frac{\mathrm{M}}{\mathrm{P}}=\frac{35}{1}$

Therefore, we have $\mathrm{D}=1, \mathrm{M}=35(\mathrm{~N}=16, \mathrm{~A}=2)$ for PLL0 with $\mathrm{P}=1$ on output bank4 resulting in 350 MHz .

Solving for 168.75MHz with PLL1 and fractional divide enabled:
$168.75 \mathrm{MHz}=\frac{20 \mathrm{MHz} *(\mathrm{M} / \mathrm{D})}{\mathrm{P} * 2}$
$\frac{168.75 \mathrm{MHz} * 2}{20 \mathrm{MHz}}=\frac{\mathrm{M}}{\mathrm{P}}=\frac{16.875}{1}$ or $\frac{33.75}{2}$

The 33.75 value is chosen to achieve the highest VCO frequency possible. Next step is to figure out the setting for the fractional divide using Eq.3.
$33.75=2 * N+A+1+$ SS_OFFSET * 1/64
Integer value 33 can be determined by N and A , thus leaving 0.75 left to be solved.
2*N $+\mathrm{A}+1=33$
SS_OFFSET $=64 * 0.75=48$
Therefore, we have $\mathrm{D}=1, \mathrm{M}=33.75(\mathrm{~N}=15, \mathrm{~A}=2$, SS_OFFSET=48) for PLL1 with $\mathrm{P}=2$ on an output bank resulting in 168.75 MHz .

The fractional divider can be determined if it is needed by following the steps in the previous example. Note that the 5 v 9882 T should not be programmed with TSSC > ' 0 ', SS_OFFSET = ' 0 ', and SD = ' 0 ' in order to prevent an unstable state in the modulator. The $A[3: 0]$ must be used and set to be greater than '2' for a more accurate fractional divide.

LOOP FILTER

Theloopfilterfor each PLL canbe programmed to optimize thejitter performance. Thelow-passfrequency response ofthe PLL isthemechanismthatdictates the jitter transfer characteristics. The loop bandwidth can be extracted from the jitter transfer. A narrow loop bandwidth is good for jitter attenuation while a wide loop bandwidth is best for low jitter generation. The specific loop filter components that can be programmed are the resistor viathe RZ[3:0] bits, pole capacitor via the $C Z[3: 0]$ bits, zero capacitor via the $C P[3: 0]$ bits, and the charge pump current via the IP[2:0] bits.

The following equations govern how the loop filter is set.

Charge Pump and Loop Filter Configuration

Resistor (Rz) $=0.3 K \Omega+\operatorname{RZ}[3: 0]$ * $1 K \Omega$
Zero capacitor $(C z)=6 p F+C Z[3: 0]$ * 27.2pF
Pole capacitor $(C p)=1.3 p F+C P[3: 0]$ * $0.75 p F(E q .17)$
Charge pump current $(I p)=5 *{ }^{2 \mathrm{P}[2: 0]} \mu \mathrm{A}$

Parameter	Bits	Step	Min	Max	Units
RZ	4	1	0.3	15.3	$\mathrm{~K} \Omega$
CZ	4	27.2	6	414	pF
CP	4	0.75	1.3	12.55	pF
IP	3	2	640	$\mu \mathrm{~A}$	

PLL loop filter design is beyond the scope of this datasheet. Refer to design procedures for 3-order charge-pump based PLLs. For the sake of simplicity, the fastest and easiest way to calculate the PLL loop bandwidth (Fc) given the programmable loop filter parameters is as follows.

PLL Loop Bandwidth:

$\begin{array}{ll}\text { Charge pump gain }(\mathrm{K} \phi)=\mathrm{lp} / 2 \pi & \text { (Eq. 19) } \\ \text { VCO gain }(\mathrm{Kvco})=950 \mathrm{MHz} / \mathrm{V} * 2 \pi & \text { (Eq. 20) }\end{array}$
$M=$ Total multiplier value (See the PRE-SCALERS, FEEDBACK-DIVIDERS, POST-DIVIDERS section for more detail)
$\omega c=\frac{R z * K \phi * K v c o * C z}{M *(C z+C p)} \quad$ (Eq. 21)
$\mathrm{Fc}=\omega \mathrm{c} / 2 \pi$
(Eq. 22)

Note, the phase/frequency detector frequency (FpFs) is typically seven times the PLL closed-loop bandwidth (Fc) but too high of a ratio will reduce your phase margin thus compromising loop stability.

To determine if the loop is stable, the phase margin ($\omega \mathrm{m}$) would need to be calculated as follows.

Phase Margin:

$$
\begin{align*}
& \omega z=1 /(R z * C z) \tag{Eq.23}\\
& \omega p=\frac{C z+C p}{R z * C z * C p} \tag{Eq.24}\\
& \phi m=(360 / 2 \pi) *\left[\tan ^{-1}(\omega / \omega z)-\tan ^{-1}(\omega / \omega p)\right] \text { (Eq. 25) }
\end{align*}
$$

Toensure stability in the loop, the phase margin is recommended to be $>60^{\circ}$ buttoo high will result in the lock time being excessively long. Certain loop filter parameters would need to be compromised to not only meet a required loop bandwidth but to also maintain loop stability.

Example

$\mathrm{Fc}=150 \mathrm{KHz}$ is the desired loop bandwidth. The total M value is 850 . The ratio of ω p/ $\omega \mathrm{c}$ should be at least 4 . A rule of thumb that will help to aid the way, the ap/ ω c ratio should be at least 4 . Given Fc andM, an optimal loop filter setting needs to be solved for that will meet boththe PLL loop bandwidth and maintain loopstability.

The charge pump gain should be relatively small as possible to achieve a low loop bandwidth.
$\mathrm{Ip}=40 \mathrm{uA}$.
$\mathrm{K} \phi^{*} \mathrm{Kvco}=950 \mathrm{MHz} / \mathrm{V} * 40 \mathrm{uA}=38000 \mathrm{~A} / \mathrm{Vs}$
Loop Bandwidths
$\omega C=2 \pi * \mathrm{FC}=9.42 \times 10^{5} \mathrm{~s}^{-1}$
$\omega z=\omega p / \omega=4$
$\omega c^{2}=\omega p^{*} \omega z$
$\omega p=\frac{C z+C p}{R z * C z * C p}=\omega z(1+C z / C p)$
Solving for Cz, Cp, and Rz
Knowing $\omega c=\mathrm{Rz} * \mathrm{~K} \phi^{*} \mathrm{Kvco} * \mathrm{Cz}$ and substituting in the equations from above,

$$
\text { M * }(C z+C p)
$$

$C z \ggg C p$, therefore, we can easily derive $C p$ to be
$\mathrm{Cp}=\frac{\mathrm{K} \phi^{*} \mathrm{Kvco}}{\mathrm{M} * \mathrm{\omega C}^{2 *} \omega \mathrm{Zz}}=12.60 \mathrm{pF}$

Similarly for Cz and Rz
$C z=\frac{K \phi^{*} K v c o *\left(\omega u z^{2}-1\right)=C p^{*}\left(\omega z^{2}-1\right)}{M^{*} \omega c^{2} \omega z}=189 p F$
$R z=\frac{M * \omega c^{*} \omega z^{2}}{K \phi^{*} K v c o *\left(\omega z^{2}-1\right)}=22.48 \mathrm{~K} \Omega$
Based on the loop filter parameter equations from above, since there are no possible values of 12.60 pF for $\mathrm{Cp}, 189 \mathrm{pF}$ for Cz , and $22.48 \mathrm{~K} \Omega$ for Rz , the next possible values within the loop filter settings are $12.55 \mathrm{pF}(C P[3: 0]=1111), 196.4 \mathrm{pF}(C Z[3: 0]=0111)$, and $15.3 \mathrm{~K} \Omega(R Z[3: 0]=1111)$, respectively. This loop filter setting will yield a loop bandwidth of about 102 KHz . The phase margin must be checked for loop stability.
$\phi m=(360 / 2 \pi) *\left[\tan ^{-1}\left(6.41 \times 10^{5} \mathrm{~s}^{-1} / 3.33 \times 10^{5} \mathrm{~s}^{-1}\right)-\tan ^{-1}\left(6.41 \times 10^{5} \mathrm{~s}^{-1} / 5.54 \times 10^{6} \mathrm{~s}^{-1}\right)\right]=56^{\circ}$
Although slightly below 60°, the phase margin would be acceptable with a fairly stable loop.

CONFIGURING THE MULTI-PURPOSEI/Os

The 5V9882T can operate in two distinct modes. These modes are controlled by the $I^{2} C_{-}$MFC pin. The general purpose I/O pins (GIN0 and GIN1) have different use depending on the mode of operation. The modes of operation are:

1) Manual Frequency Control (MFC) Mode for PLLO Only
2) $I^{2} C$ Programming Mode

Along with the GINx pins are also GOUTx outputpinsthat cantake up adifferentfunctiondepending onthe mode of operation. Seetable belowfordescription.

Multi-Purpose Pins	Other Signal Functions	
GIN0	SDAT	$1^{2} C$ serial data input/config select input Description
GIN1	SCLK	$1^{2} C$ clock input/config select input

Each PLL's programming registers can store up to four different Dxand Mx configurations in combination with htwo different P configurations in MFC modes. The post-divider should never be disabled in any of the two P configurations unless the output bank will never be used during normal operation. The PLL's loop filter settings also has four different configurations to store and select from. This will be explained intheMODE1 and MODE2 sections. The use of the GINx pins in MFC mode control the selection of these configurations.

MODE1 - Manual Frequency Control (MFC) Mode for PLLO Only

In this mode, only the configuration of PLLO can be changed during operation. The GINO and GIN1 pins control the selection of up to four different D0, M0, P, RZO, CZO, PZO, and IP0 stored configurations.
The outputbanks will each have two P configurations that can be associated with each of the PLL configurations. Each of the two P configurations has its own set of PM bits (See the PRE-SCALERS, FEEDBACK-DIVIDERS, POST-DIVIDERS section for more detail on the PM bits). Use the ODIV bitto choose which post-divider configuration to associate with aspecific PLL configuration. For example, ifODIV0_CONFIG0=1, thenwhenConfig0 is selected Qx[9:0]_CONFIG1 is selected as the post-dividervalue to be used. OrifODIV2_CONFIG3=0, then when CONFIG7 is selected, Qx[9:0]_CONFIG0 is selected. Note that there is an ODIVx bit for each of the PLL configurations. In this way, the post-divider values can change with the configuration.
To enter this mode, I^{2} C_MFC pin must be left floating.

GIN1 Pin	GIN0 Pin	PLLO Configuration Selection (Mode 1)
0	0	Configuration 0: D0_CONFIG0, M0_CONFIG0, and ODIV0_CONFIG0
0	1	Configuration 1: D0_CONFIG1, MO_CONFIG1, and ODIVO_CONFIG1
0	0	Configuration 2: D0_CONFIG2, MO_CONFIG2, and ODIVO_CONFIG2
0	1	Configuration 3: D0_CONFIG3, M0_CONFIG3, and ODIVO_CONFIG3

MODE2 - $I^{2} \mathrm{C}$ Programming Mode

Inthis mode, GIN0, GIN1, GIN3 and GIN5 becomeSDAT (${ }^{2} \mathrm{C}$ data), SCLK (${ }^{2} \mathrm{C}$ clock), SUSPEND andCLK_SEL signal pins, respectively. TheoutputGOUT0 will become an indicator for loss of PLL lock(LOSS_LOCK). GOUT1 pin will become an indicator for loss of the selected clock(LOSS_CLKIN). GIN2 and GIN4 are not available to users.

To enter this mode, I^{2} C_MFC pin must be set HIGH.

Multi-Purpose pins	Manual Frequency Control modes	
	Mode1	$1^{2} \mathrm{C}$
	GIN0	SDAT
GIN1	GIN1	SCLK

NOTE:

1. The PLL(s) will lock onto the primary clock and the manual switchover can be controlled by the PRIMCLK bit.

Understanding the GIN Signals

During power up, the part will virtually be in MFC mode2, therefore, the values of GIN1 and GIN0 will be latched and used for PLL configuration selection, regardless of the state of the I^{2} C_MFC pin. This means that when in programming mode, the PLL configuration can only be changed by writing directly to the registers of the currently selected configuration. When in MFC mode, configuration0 or 1 should be selected ifyou do not want to change configurations when entering or leaving programming mode. The GIN pins should be held LOW during power up to select configuration0 as default.

When not in programming mode, the GIN inputs directly control the selected configuration. The internal GINx signals can be individually disabled via programming the GINEN bits (0x06). When disabled by setting GINENx to " 0 ", the GINx inputs may be left floating, but during power up, the GIN pins will still latch. Disabled inputs are interpreted as LOW by the internal state machines. Even if disabled, GIN1 and GIN0 pins will be enabled if required for I^{2} C_MFC programming functions when in programming mode.

SHUTDOWN/SUSPEND/ENABLE OF OUTPUTS

There are two external pins along with internal bits that control the enabling/disabling of the outputbanks. The SHUTDOWN/SUSPEND/OE pin, along with the internal bits, control the enabling and disabling ofthe outputbank and PLLs. This pincan be programmed to function as an outputenable, PLL power down, or global shutdown. The polarity of the SHUTDOWN/OE signal pin can be programmed to be either active HIGH or LOW with the SP bit (0x1C). When SP is "0", the pin becomes active HIGH and when SP is "1", the pin becomes active LOW. The SH bit($0 x 1 C$) determines the function of the SHUTDOWN/OE signal pin. If SH is "1", the signal pin is SHUTDOWN and functions as a global shutdown. This will override the OEx (0x1C), OSx (0x1D), and PLLSx (0x1E) bits. IfSHis"0", the signal pinisOE andfunctionsas anenable/disable oftheoutputbanks. Ifusedas anoutputenable/disable, eachoutputbankcanbe individually programmed to be enabled or disabled by the OE pin.by setting OEx bits to "1". If the OE signal pinis asserted, the output banks that has their corresponding OEx bitsetto"1" will be disabled. The OEMx bits determine the outputs' disable state. When setto "Ox" the outputs will be tristated. When setto "10", the outputs will be pulled low. When set to "11", the outputs will be pulled high. Inverted outputs will be parked in the opposite state. If the OEx bits are setto "0", the states of the corresponding outputbanks will not be impacted by the state of the OE pin. To individually enable/disable via programming instead of the OE pin, hard wire the OE pin to Vdd or GND (depending if it is active HIGH or LOW) as if to disable the outputs. Then toggle the OEx bits to either "0" to enable or " 1 " to disable.

When the chip is in shutdown, the outputs, the reference oscillator, and the $I^{2} C_{_}$MFC pin are powered down. The outputs will be tristated and the $I^{2} C_{-} M F C$ pin will be set to MFC mode (MID level). Programming will not be allowed. The GINx pins and clock inputs remain operational. The PLL is not disabled. The SHUTDOWN pin must be deasserted in order to program the part or to resume operation.

The SUSPEND function can be used to power down the PLL and/or output banks. Each output bank can be individually programmed to be enabled or disabled by the SUSPEND signal pin by setting the OSx bits to "1". Ifthe SUSPEND signal pin is asserted, the outputbanks that has their corresponding OSx bit set to "1" will be powered down and outputs tristated. Ifthe OSx bits are set to "0", the states of the corresponding output banks will not be impacted by the state ofthe SUSPEND pin. There is also anoptionto suspend individual PLLs by setting the PLLSxbits (0x1E) to"1". This will associatethePLL tothe SUSPEND pin. When the pin is asserted, the corresponding PLLs will be powered down. It will not only power down the PLL but also any output bank associated with it. The PLLSx bits will override the OSx bits.

In the event of a PLL suspend, the PLL must achieve lock again after it has been re-enabled, In the event of a global shutdown, the PLL does not have to re-acquire lock since it is not disabled.

MANUAL FREQUENCY CONTROL (MFC) BLOCK DIAGRAM

MFC = MODE

NOTES:

This illustration shows how the configurations are arranged for each PLL. There is an ODIV bit associated with each of the four configurations.

- GINO and GIN1 control four configurations from PLLO.
- ODIV from each configuration determines the selection of two Output Divider Px Configurations.

BLOCK DIAGRAM FOR SHUTDOWN/OE CONTROL SIGNAL

NOTE:
This illustration shows the internal logic behind the SHUTDOWN/OE pin and the bits associated with it.

POWER UP AND POWER SAVING FEATURES

If a global shutdown is enabled, SHUTDOWN/SUSPEND/OE pin asserted, most of the chip except for the PLLs will be powered down. In order to have a complete power down of the chip, the PLLs mustbe powered downviathe SUSPEND function or by setting the pre-scaler bits to '0x00' and disable the internal GINx signals via the enable bits atmemory address 0x05. Note thatthe register bits will notlose their state inthe event of achip power-down. The only possibility that the register bits will lose their state is if the part was power-cycled. After coming out of shutdown mode, the PLLs will require time to relock.

During power up, the value of GIN1 and GIN0 will be latched and used for PLL configuration selection, regardless of the state ofthe ${ }^{2} C_{C} M F C$ pinand GINx being disabled viathe GINENxbits. The GIN pinsshould beheld LOW during power up to select configuration0as default. Theoutputlevelswill be atanundefined state during power up.

The post-divider should neverbe disabled viaPM bits after power up, or else it will render the outputbank completely non-functional during normal operation, (unless the output bank itself will not be used at all).

During power up, the Vdd ramp must be monotonic.

CLOCK SWITCH MATRIX AND OUTPUTS

All three PLL outputs and the currently selected inputclock source are routed into and through aclock matrix. The user is able to select which PLL output and clock source is routed to which output bank via the SRCx bits ($0 \times 34,0 \times 35$). Each output bank has its own set of SRC bits. Refer to the RAM table for more information. Note that OUT1 will be based off the reference clock and the only output bank toggling under the default RAM bit settings.

Outputs 1, 2 and 4 are 3.3V LVTTL. Outputs bank 3 can be 3.3V LVTTL, LVPECL or LVDS. The LVDS and LVPECL selection is determined by the LVLX bits ($0 \times 54,0 \times 58$). Each outputbankhas individual slew-rate control (SLEWx bits). Each output can be individually inverted (INVx bits); when using LVPECL or LVDS modes, one of the outputs in each LVPECL/LVDS pair should be inverted. All output banks except OUT1 have a programmable 10-bit post-divider (Qx bits) with two selectable divide configurations via the ODIVx bits.
There are four settings for the programmable slew rate, $0.7 \mathrm{~V} / \mathrm{ns}, 1.25 \mathrm{~V} / \mathrm{ns}, 2 \mathrm{~V} / \mathrm{ns}$, and $2.75 \mathrm{~V} / \mathrm{ns}$; this only applies to the 3.3 V LVTTL outputs. The differential outputs are notslew rate programmable in LVPECL or LVDS modes. SLEW3 mustbe setto $2.75 \mathrm{~V} / \mathrm{ns}$ for stable outputoperation. For LVTTL outputfrequency rateshigher than 100 MHz , aslew rate of $2 \mathrm{~V} / \mathrm{ns}$ or greater should be selected. Each outputcan also beenabled/disabled, whichis described inthe'SHUTDOWN/ SUSPEND/ENABLE of OUTPUTS' section. Refer to the RAM table for all binary settings.

HIGH LEVEL BLOCK DIAGRAM FOR CONFIGURATION SCHEME

NOTE: Diagram does not represent actual number of die on chip.

PROGRAMMING THE DEVICE

$I^{2} \mathrm{C}$ may be used to program the 5 V 9882 T . The $I^{2} \mathrm{C}$ _MFC pin selects the $I^{2} \mathrm{C}$ when HIGH .

Hardwired Parameters for the IDT5V9882T

Device (slave) address = 7'b1101010
ID Byte for the 5V9882T = 8'b00010000

$I^{2} \mathrm{C}$ PROGRAMMING

The 5 v 9882 T is programmed through an $I^{2} \mathrm{C}$-Bus serial interface, and is an $I^{2} \mathrm{C}$ slave device. The read and write transfer formats are supported. The first byte of data after a write frame to the correct slave address is interpreted as the register address; this address auto-increments after each byte written or read. The frame formats are shown below.

Figure 1: Framing

Each frame starts with a "Start Condition" and ends with an "End Condition". These are both generated by the Master device.

The first byte transmitted by the Master is the Slave Address followed by the R/W bit. The Slave acknowledges by sending a "1" bit.

Figure 2: First Byte Transmittetd on $I^{2} C$ Bus

EXTERNAL I ${ }^{2}$ C INTERFACE CONDITION

KEY:
\square From Master to Slave
$\square \Delta$
From Master to Slave, but can be omitted iffollowed by the correct sequence
Normally datatransfer is terminated by a STOP condition generated by the Master. However, ifthe Master still wishes to communicate on the bus, itcan generate a repeated START condition, and address another Slave address without first generating a STOP condition.
From Slave to Master

SYMBOLS:

ACK - Acknowledge (SDA LOW)
NACK - Not Acknowledge (SDA HIGH)
Sr -Repeated Start Condition
S-START Condition
P-STOP Condition

PROGWRITE

S	Address	R/W	ACK	Command Code	ACK	Register	ACK	Data	ACK	P
	7-bits	0	1-bit	8-bits: $x x x x x x 00$	1-bit	8-bits	1-bit	8-bits	1-bit	

Figure 3: Progwrite Command Frame
Writes can continue as long as a Stop condition is not sent and each byte will increment the register address.

PROGREAD

Note: If the expected read command is not from the next higher register to the previous read or write command, then set a known "read" register address prior to a read operation by issuing the following command:

S	Address	R/W	ACK	Command Code	ACK	Register	ACK
	7-bits	0	1-bit	8-bits: $\mathrm{xxxxxx00}$	1-bit	8-bits	1-bit

Figure 4a: Prior to Progread Command Set Register Address
The user can ignore the STOP condition above and use a repeated START condition instead, straight after the slave acknowledgementbit (i.e., followed by the Progread command):

Sr	Address	R/W	ACK	ID Byte	ACK	Data_1	ACK	Data_2	ACK	Data_last	NACK	P
	7-bits	1	1-bit	8 bits	1-bit	8-bits	1-bit	8-bits	1-bit	8-bits	1-bit	

Figure 4b: Progread Command Frame

Note: Figure 4b above by itself is the Progread command format. The ID byte for the 5V9882T is 10hex. Each byte recieved increments the register address.

PROGSAVE

S	Address	R/W	ACK	Command Code	ACK	P
	7-bits	0	1-bit	8-bits:xxxxxx01	1-bit	

PROGRESTORE

S	Address	RN	ACK	Command Code	ACK	P
	7-bits	0	1-bit	8-bits:xxxxxx10	1-bit	

NOTE:
PROGWRITE is for writing to the 5v9882T registers.
PROGREAD is for reading the 5v9882T registers.
PROGSAVE is for saving all the contents of the 5v9882T registers to the EEPROM.
PROGRESTORE is for loading the entire EEPROM contents to the 5v9882T registers.

EEPROMINTERFACE

The IDT5V9882T can also store its configuration in an internal EEPROM. The contents of the device's internal programming registers can be saved to the EEPROM by issuing a save instruction (ProgSave) and can be loaded back to the internal programming registers by issuing a restore instruction (ProgRestore).

To initiate a save or restore using ${ }^{2} \mathrm{C}$, only two bytes are transferred. The Device Address is issued with the read/write bitsetto "0", followed by the appropriate command code. The save or restore instruction executes after the STOP condition is issued by the Master, during which time the IDT5V9882T will not generate Acknowledge bits. The 5V9882T will acknowledge the instructions after it has completed execution of them. During thattime, the $l^{2} \mathrm{C}$ bus should be interpreted as busy by all other users of the bus.

In order for the save and restore instructions to function properly, the IDT5V9882T must notbe in shutdown mode (SHUTDOWN pin asserted). In the event of an interrupt of some sort such as a power down of the part in the middle of a save or restore operation, the contents to or from the EEPROM will be partially loaded, and a CRC error will be generated. The CERR bit (0x81) will be asserted to indicate that an error has occurred. The LOSS_LOCK signal will also be asserted.

On power-up of the IDT5V9882T, an automatic restore is performed to load the EEPROM contents into the internal programming registers. The auto-restore will not function properly if the device is in shutdown mode (SHUTDOWN pin asserted). The IDT5V9882T will be ready to accept a programming instruction once it acknowledges its 7 -bit ${ }^{2} \mathrm{C}$ address.

$I^{2} \mathrm{C}$ BUS DC CHARACTERISTICS

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
VIH	Input HIGH Level		0.7 * VDD			V
VIL	InputLOW Level				0.3 * VDD	V
Vhrs	Hysteresis of Inputs		0.05 * VdD			V
In	InputLeakage Current				± 1.0	$\mu \mathrm{A}$
VoL	OutputLOW Voltage	$\mathrm{loL}=3 \mathrm{~mA}$			0.4	V

I^{2} C BUS AC CHARACTERISTICS FOR STANDARD MODE

Symbol	Parameter	Min	Typ	Max	Unit
Fsclk	Serial Clock Frequency (SCLK)	0		100	KHz
tBuF	Bus free time between STOP and START	4.7			$\mu \mathrm{s}$
tsu'Start	Setup Time, START	4.7			$\mu \mathrm{s}$
thd:Start	Hold Time, START	4			$\mu \mathrm{s}$
tsu'Data	Setup Time, data input(SDAT)	250			ns
tho:DATA	Hold Time, data input(SDAT) ${ }^{(1)}$	0			$\mu \mathrm{S}$
tovo	Output data valid from clock			3.45	$\mu \mathrm{s}$
Св	Capacitive Load for Each Bus Line			400	pF
tR	Rise Time, data and clock (SDAT, SCLK)			1000	ns
E	Fall Time, data and clock (SDAT, SCLK)			300	ns
tHIGH	HIGH Time, clock (SCLK)	4			$\mu \mathrm{S}$
tow	LOW Time, clock (SCLK)	4.7			$\mu \mathrm{s}$
tsu:Stop	Setup Time, STOP	4			$\mu \mathrm{s}$

NOTE:

1. A device must internally provide a hold time of at least 300 ns for the SDAT signal (referred to the Vihmin of the SCLK signal) to bridge the undefined region of the falling edge of SCLK.

$I^{2} \mathrm{C}$ BUS AC CHARACTERISTICS FOR FAST MODE

Symbol	Parameter	Min	Typ	Max	Unit
Fsclk	Serial Clock Frequency (SCLK)	0		400	KHz
tBuF	Bus free time between STOP and START	1.3			$\mu \mathrm{s}$
tsu:Start	Setup Time, START	0.6			$\mu \mathrm{s}$
thd:Start	Hold Time, START	0.6			$\mu \mathrm{s}$
tsu:DATA	Setup Time, data input(SDAT)	100			ns
tho:DATA	Hold Time, data input(SDAT) ${ }^{(1)}$	0			$\mu \mathrm{s}$
tovo	Output data valid from clock			0.9	$\mu \mathrm{s}$
Св	Capacitive Load for Each Bus Line			400	pF
tR	Rise Time, data and clock (SDAT, SCLK)	$20+0.1$ * Св		300	ns
F	Fall Time, data and clock (SDAT, SCLK)	$20+0.1$ * Св		300	ns
tHGH	HIGH Time, clock (SCLK)	0.6			$\mu \mathrm{s}$
tow	LOW Time, clock (SCLK)	1.3			$\mu \mathrm{s}$
tsu:Stop	Setup Time, STOP	0.6			$\mu \mathrm{s}$

NOTE:

1. A device must internally provide a hold time of at least 300 ns for the SDAT signal (referred to the Vihmin of the SCLK signal) to bridge the undefined region of the falling edge of SCLK.

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
$V_{D D}$	Internal Power Supply Voltage	-0.5 to +4.6	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	-0.5 to +4.6	V
Vo_{0}	Output Voltage ${ }^{(2)}$	-0.5 to $\mathrm{VDD}_{\mathrm{DD}}+0.5$	V
$\mathrm{~T}_{J}$	Junction Temperature	150	${ }^{\circ} \mathrm{C}$
TSTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Not to exceed 4.6 V .

CAPACITANCE $\left(\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{Vin}=0 \mathrm{~V}\right)^{\mathbf{(1)}}$

Symbol	Parameter	Min.	Typ.	Max.	Unit
CIN	Input Capacitance	-	4	-	pF

Crystal Specifications

XTAL_FREQ	Crystal Frequency	8	-	50	MHz
XTAL_MIN	Minimum Crystal Load Capacitance	-	3.5	-	pF
XTAL_MAX	Maximum Crystal Load Capacitance	-	35.4	-	pF
	Crystal Load Capacitance Resolution	-	0.125	-	
XTAL_VPP	Voltage Swing (peak-to-peak, nominal)	-	2.3	-	V

NOTE:

1. Capacitance levels characterized but not tested.

RECOMMENDED OPERATING CONDITIONS

Symbol	Description	Min.	Typ.	Max.	Unit
VDD	Power Supply Voltagefor LVTTL	3	3.3	3.6	V
	Power Supply Voltage for LVDSS/LVPECL	3.135	3.3	3.465	
TA	Operating Temperature,Ambient	-40	-	+85	${ }^{\circ} \mathrm{C}$
CLoAD_OUT	Maximum Load Capacitance(LVTTLonly)	-	-	15	pF
FIN	External ReferenceCrystal	8	-	50	MHz
	External ReferenceClock, Industrial	1	-	400	
tPU	Power-uptimeforallVDDsto reach minimum specified voltage (powerrampsmustbemonotonic)	0.05	-	5	ms

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
VIHH	Input HIGH Voltage Level ${ }^{(1)}$	$1^{12} C_{2}$ MFC 3-Level Input		VdD - 0.4	-	-	V
Vimm	Input MID Voltage Level ${ }^{(1)}$	$1^{2} C^{2}$ MFC 3-Level Input		Vdo/2-0.2	-	$\mathrm{VdD} / 2+0.2$	V
VILL	InputLOW Voltage Level ${ }^{(1)}$	$I^{2} \mathrm{C}$ _MFC 3-Level Input		-	-	0.4	V
13	3-Level Input DC Current	VIN $=$ Vdo	HIGH Level	-	-	200	$\mu \mathrm{A}$
		$\mathrm{VIN}=\mathrm{V}_{\mathrm{DD}} / 2$	MID Level	-50	-	+50	
		VIN = GND	LOW Level	-200	-	-	
IDD	Total Power Supply Current(3.3V Supply, VdD)	2 outputs @166MHz; 4 outputs @ 83MHz		-	120	-	mA
		2 outputs @20MHz; 4 outputs @ 40MHz		-	40	-	
IDDS	Total Power Supply Current in ShutdownMode ${ }^{(2)}$	Global Shutdown Mode (PLLs, dividers, outputs, etc. powered down)		-	2	-	mA

NOTES:

1. These inputs are normally wired to $\operatorname{VDD}, G N D$, or left floating. If these inputs are switched dynamically after powerup, the function and timing of the outputs may be glitched, and the PLL may require additional tAQ time before all datasheet limits are achieved.
2. Dividers must reload reprogrammed values via power-on reset or terminal count reload in order to ensure low-power mode.

DC ELECTRICAL CHARACTERISTICS FOR 3.3V LVTTL ${ }^{(1)}$

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
Іон	Output HIGH Current	VоH $=\mathrm{V}$ DD $-0.5, \mathrm{VdD}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	12	24	-	mA
IoL	OutputLOWCurrent	$\mathrm{VoL}=0.5 \mathrm{~V}, \mathrm{VdD}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	12	24	-	mA
VIH	Input Voltage HIGH		2	-	-	V
VIL	InputVoltage LOW		-	-	0.8	V
ІІн	Input HIGH Current	VIN $=\mathrm{V}_{\text {d }}$	-	-	10	$\mu \mathrm{A}$
IIL	InputLOW Current	VIN $=0 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
IozD	OutputLeakageCurrent	3-state outputs	-	-	10	$\mu \mathrm{A}$

NOTE:

1. See RECOMMENDED OPERATING RANGE table.

POWER SUPPLY CHARACTERISTICS FOR LVTTL OUTPUTS

Symbol	Parameter	Test Conditions	Typ.	Max	Unit
IdDQ	Quiescent Vod Power Supply Current	REF = LOW Outputsenabled, All outputsunloaded	6	12	mA
IDDD	Dynamic VdD Power Supply Currentper Output	Vdd $=$ Max., $\mathrm{CL}=0 \mathrm{pF}$	40	60	$\mu \mathrm{A} / \mathrm{MHz}$
Itot	Total Power Vod Supply Current	Freference clock $=33 \mathrm{MHz}$, CL $=15 \mathrm{pf}$	26	40	mA
		Freference clock $=133 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{pf}$	80	120	
		Freference clock $=200 \mathrm{MHz}$, Cl $=15 \mathrm{pf}$	112	170	

DC ELECTRICAL CHARACTERISTICS FOR LVDS

Symbol	Parameter	Min.	Typ.	Max	Unit
Vот $(+)$	Differential OutputVoltageforthe TRUEbinary state	247	-	454	mV
Vот $(-)$	Differential OutputVoltagefortheFALSEbinarystate	-247	-	-454	mV
Δ Vот	Change in VotbetweenComplimentary OutputStates	-	-	50	mV
Vos	OutputCommonModeVoltage(OffsetVoltage)	1.125	1.2	1.375	V
Δ Vos	Change in VosbetweenComplimentary OutputStates	-	-	50	mV
los	Outputs Short Circuit Current, Vout+ or Vout- = OV or VDD	-	9	24	mA
losd	Differential Outputs ShortCircuitCurrent, Vout+=Vout-	-	6	12	mA

POWER SUPPLY CHARACTERISTICS FOR LVDS OUTPUTS ${ }^{(1)}$

Symbol	Parameter	Test Conditions ${ }^{(2)}$	Typ.	Max	Unit
IDDQ	Quiescent VDD Power Supply Current	REF $=$ LOW Outputsenabled, All outputsunloaded	68	90	mA
IDDD	Dynamic VdD Power Supply ITOT $\operatorname{Currentper~Output~}$				

NOTES:

1. Output banks 4 and 5 are toggling. Other output banks are powered down.
2. The termination resistors are excluded from these measurements.

DC ELECTRICAL CHARACTERISTICS FOR LVPECL

Symbol	Parameter	Min.	Typ.	Max	Unit
Voн	Output Voltage HIGH, terminated through 50 ${ }^{\text {atied to V }}$ VD - 2 V	VDD-1.2	-	VDD - 0.9	V
VoL	Output Voltage LOW, terminated through 50 2 tied to VDD - 2 V	VDD - 1.95	-	VDD-1.61	V
Vswing	Peak to Peak Output Voltage Swing	0.55	-	0.93	V

POWER SUPPLY CHARACTERISTICS FOR LVPECL OUTPUTS ${ }^{(1)}$

Symbol	Parameter	Test Conditions ${ }^{(2)}$	Typ.	Max	Unit
IdDQ	Quiescent Vdd Power Supply Current	REF = LOW Outputs enabled, All outputs unloaded	86	110	mA
IDDD	Dynamic Vdd Power Supply Currentper Output	$V_{\text {dd }}=$ Max., $\mathrm{CL}_{\text {L }}=0 \mathrm{pF}$	35	50	$\mu \mathrm{A} / \mathrm{MHz}$
Ітот	Total Power Vdo Supply Current	Freference clock $=100 \mathrm{MHz}$, CL $=5 \mathrm{pf}$	120	180	mA
		Freference clock $=200 \mathrm{MHz}$, CL $=5 \mathrm{pf}$	130	190	
		Freference clock $=400 \mathrm{MHz}$, CL $=5 \mathrm{pf}$	140	210	

NOTES:

1. Output banks 4 and 5 are toggling. Other output banks are powered down.
2. The termination resistors are excluded from these measurements.

AC TIMING ELECTRICAL CHARACTERISTICS

(SPREAD SPECTRUM GENERATION = OFF)

Symbol	Parameter	Test Conditions		Min.	Typ.	Max	Unit
fin	InputFrequency	InputFrequency Limit		$1^{(1)}$	-	400	MHz
1/t1	OutputFrequency	Single Ended Clock outputlimit(LVTTL)		0.0049	-	200	MHz
		Differential Clock output limit(LVPECL/LVDS)		0.0049	-	500	
fvo	VCO Frequency	VCO operating Frequency Range		10	-	1200	MHz
fppo	PFD Frequency	PFDoperating Frequency Range		$0.35{ }^{(1)}$	-	400	MHz
fig	Loop Bandwidth	Based on loop filter resistor and capacitor values		0.03	-	40	MHz
12	Input Duty Cycle	Duty Cycle for Input		40	-	60	\%
B	Output Duty Cycle	Measured at Vdo/2, Fout $\leq 200 \mathrm{MHz}$		45	-	55	\%
		Measured at $\mathrm{Vdo}^{\text {d }}$, F Fout $>200 \mathrm{MHz}$		40	-	60	
t4 $4^{(2)}$	Slew Rate $\text { SLEWx(bits) }=00$	Single-Ended Outputclock rise and fall time, 20% to 80% of VDD (Output Load $=15 \mathrm{pf}$)		-	2.75	-	V/ns
	Slew Rate $\text { SLEWx(bits) }=01$	Single-Ended Outputclock rise and fall time, 20% to 80% of $V_{D D}$ (Output Load = 15pf)		-	2	-	
	Slew Rate SLEWX(bits) $=10$	Single-Ended Output clock rise and fall time, 20\% to 80\% of VdD (Output Load = 15pf)		-	1.25	-	
	Slew Rate $\text { SLEWx(bits) }=11$	Single-Ended Outputclock rise and fall time, 20% to 80% of VDD (Output Load = 15 pf)		-	0.75	-	
45	Rise Times	LVDS, 20\% to 80\%		-	850	-	ps
	Fall Times			-	850	-	
	Rise Times	LVPECL, 20\% to 80\%		-	500	-	
	Fall Times			-	500	-	
16	Outputthree-state Timing	Time for outputto enter or leave three-state mode after SHUTDOWN/OE switches		-	-	$\begin{gathered} \hline 150+ \\ \text { 1/Foutx } \end{gathered}$	ns
t7	Clock Jitter ${ }^{(3,7)}$	Peak-to-peak periodjitter, CLK outputs measured at VdD/2	fpFd $>20 \mathrm{MHz}$	-	-	150	ps
			fpFD $<20 \mathrm{MHz}$	-	200	-	
18	OutputSkew ${ }^{(8)}$	Skew between outputto output on the same bank (bank 4 and bank 5 only) ${ }^{(4,5)}$		-	-	150	ps
t9	LockTime	PLL Lock Time from Power-up ${ }^{(6)}$		-	10	20	ms
+10	Locktime ${ }^{(9)}$	PLL Locktime from shutdown mode		-	20	100	$\mu \mathrm{s}$

NOTES:

1. Practical lower input frequency is determined by loop filter settings.
2. A slew rate of $2 \mathrm{~V} / \mathrm{ns}$ or greater should be selected for output frequencies of 100 MHz and higher.
3. Input frequency is the same as the output with all output banks running at the same frequency.
4. Skew measured between all output pairs under identical input and output interfaces, same PLL and PLL multiplication and post divider value, transitions and load conditions on any one device.
5. Skew measured between the cross points of all differential output pairs under identical input and output interfaces, transitions and load conditions on any one device.
6. Includes loading the configuration bits from EEPROM to PLL registers. It does not include EEPROM programming/write time.
7. Guaranteed by design but not production tested.
8. Outputs are aligned upon device power-on. If an output divider ratio is changed (via programming or Manual Frequency Control), then outputs are no longer guaranteed to be synchronized.
9. Actual PLL lock time depends on the loop configuration.

SPREAD SPECTRUM GENERATION SPECIFICATIONS

Symbol	Parameter	Description	Min.	Typ.	Max	Unit
$\mathrm{fin}^{\text {f }}$	InputFrequency	InputFrequency Limit	$1^{(1)}$	-	400	MHz
fmod	Mod Freq	Modulation Frequency	-	33	-	kHz
fspread	Spread Value	Amount of Spread Value (Programmable)- Down Spread	-0.5, -1, -2.5, -3.5, -4			\%fout
		Amount of Spread Value (Programmable)- Center Spread	-0.5 to +0.5			

NOTE:

1. Practical lower input frequency is determined by loop filter settings.

TEST CIRCUITS AND CONDITIONS ${ }^{(1)}$

NOTE:

1. All VDD pins must be tied together.

OTHER TERMINATION SCHEME (BLOCK DIAGRAM)

LVTTL: -15pF for each output

LVDS: - 100Ω between differential outputs with $5 p F$

LVPECL: - 50 2 to VDD-2V for each output with 5pF

RAM (PROGRAMMING REGISTER) TABLES

ORDERING INFORMATION

CORPORATE HEADQUARTERS
6024 Silver Creek Valley Road San Jose, CA 95138
for SALES:
800-345-7015 or 408-284-8200
fax: 408-284-2775
uww.idt.com
for Tech Support: clockhelp@idt.com

