8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89920 Series

MB89923/925/P928/PV920

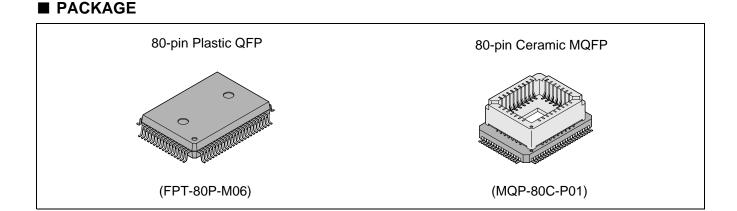
DESCRIPTION

The MB89920 series is a line of single-chip microcontrollers using the F²MC*-8L CPU core which can operate at low voltage but at high speed.

The microcontrollers in this series contain peripheral functions such as a PWM timer, an input capture/output compare control counter, an LCD controller/driver, an A/D converter, and a UART.

The MB89920 series can suit a wide range of applications such as analog input conversion, pulse input measurement/pulse output control, serial communications control, and display control.

*: F²MC stands for FUJITSU Flexible Microcontroller.


■ FEATURES

- High speed processing at low voltage Minimum execution time: 0.5 μs/8.0 MHz
- F²MC-8L family CPU core

Instruction set optimized for controllers

Multiplication and division instructions 16-bit arithmetic operations Test and branch instructions Bit manipulation instructions, etc.

- 8-bit PWM timer: 2 channels (also usable as a reload timer)
- 16-bit input capture: 2 channels / 16-bit output compare: 2 channels

- 20-bit time-base counter
- UART: 1 channel (with asynchronous transfer mode and 8-bit synchronous serial mode)
- 8-bit serial interface: 1 channel (LSB first/MSB first selectability)
- 10-bit A/D converter: 8 channels
- LCD controller/driver: 28 segments × 4 commons (max. 112 pixels)
- Low-voltage detection reset
- Watchdog timer reset
- External interrupt: 4 channels Four channels are independent and capable of wake-up from the low-power consumption mode (with edge detection function)
- Buzzer output/clock output
- Low-power consumption modes: Stop mode (The software stops oscillation to minimize the current consumption.) Sleep mode (The CPU stops to reduce current consumption to approx. 1/3 of normal.) Hardware standby mode (The pin input stops oscillation.)

■ PRODUCT LINEUP

Part number	NDOOOO	MD00005	MDOODOOO		
Parameter	MB89923	MB89925	MB89P928	MB89PV920	
Classification		tion products ⁄/ products)	One-time PROM product (for development)	Piggyback/evaluation product (for development)	
ROM size	$8 \text{ K} \times 8 \text{ bits}$ (internal mask ROM)	16 K × 8 bits (internal mask ROM)	48 K × 8 bits (internal PROM)	48 K × 8 bits (external ROM)	
RAM size	256×8 bits	512×8 bits	1024 >	< 8 bits	
CPU functions	Number of instr Instruction bit le Instruction lengt Data bit length: Minimum execu Interrupt proces	ength: th: ition time:	136 8 bits 1 to 3 bytes 1, 8, 16 bits 0.5 μs/8 MHz 4.5 μs/8 MHz		
Ports	I/O ports (CMO) I/O ports (N-ch Total:	S): open-drain):	35 (25 ports also s 34 (All also serve a 69	erve as peripherals.) as peripherals.)	
Options	Specify with	mask options	Set with EPROM programmer	None	
20-bit time-base timer	20 bits (interva	I time selection: 4.10 m	ns, 16.38 ms, 65.54 ms,	262 ms/8 MHz)	
Real-time I/O		re: 16 bits × 2 channels	s, 1.0 μs, 2.0 μs, 4.0 μs) s, external trigger edge s 6 bits × 2 channels		
LCD controller/ driver	Common output: 4 (selectable from 2 to 4 by software) Segment output: 28 (can be switched to ports in 4-pin unit by software) Bias power supply pins: 3 LCD display RAM size: 14 × 8 bits Dividing resistor for LCD driving: bult-in (external resistor selectability)				
8-bit PWM timer	8 bit	8 bits \times 2-channel rest \times 2-channel PWM op	eload timer operation eration (4 cycles selecta n (4 oscillation clocks se	able)	
UART	full-duplex	with internal double bu	aud rate generator, erro uffer, NRZ transmission chronous transfer capab	formation,	
8-bit serial I/O	(one external	One clock selectable f	SB first selectability, rom four transfer clocks al shift clocks: 1.0 μs, 4.		
10-bit A/D converter	10-bit resolution \times 8 channels A/D conversion mode (conversion time: 16.5 µs (33 instruction cycles)) Sense mode (conversion time: 9.0 µs (18 instruction cycles)) Continuous activation by an internal clock capable				
Watchdog timer			rox. 130 to 260 ms		
Low-voltage			oltage: 3.0 to 4.3 V		
detection reset			Itage: 3.1 to 4.5 V		
Hardware standby Buzzer/clock output	1 channel (output o		illation by pin input 2 KHz, 4 KHz, and divid	hed clock frequency)	
External interrupt					
Package	4 channels (rising edge/falling edge selectability) QFP-80 MQFP-80				
Operating voltage	2.2 to		2.7 to 6.0 V*	2.7 to 6.0 V*	
EPROM for use		_		MBM27C512-20TV (LCC package)	

*: The minimum operating voltage varies with conditions such as the operating frequencies, functions, and development tool.

■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89923 MB89925 MB89P928	MB89PV920
FPT-80P-M06	0	×
MQP-80C-P01	×	0

 \bigcirc : Available \times : Not available

Note: For more information about each package, see section "
Package Dimensions."

■ DIFFERENCES AMONG PRODUCTS

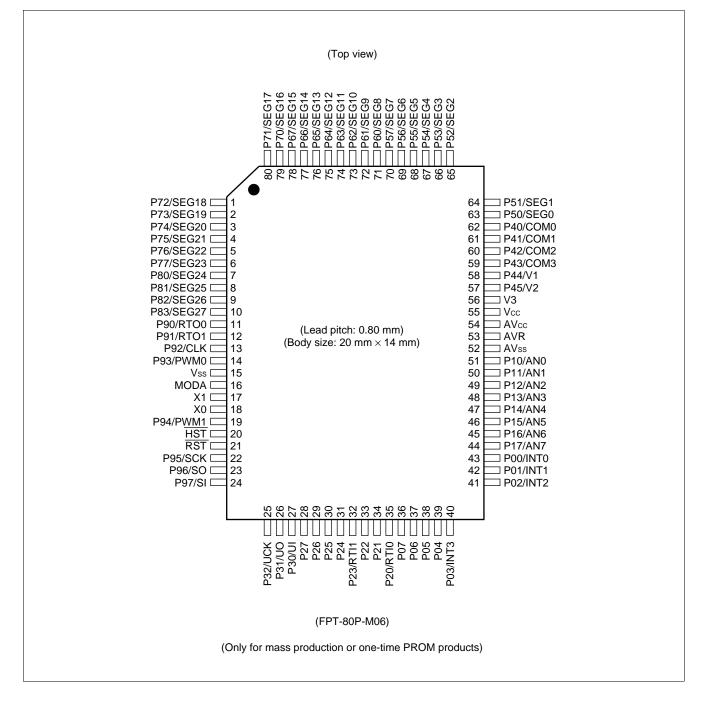
1. Memory Size

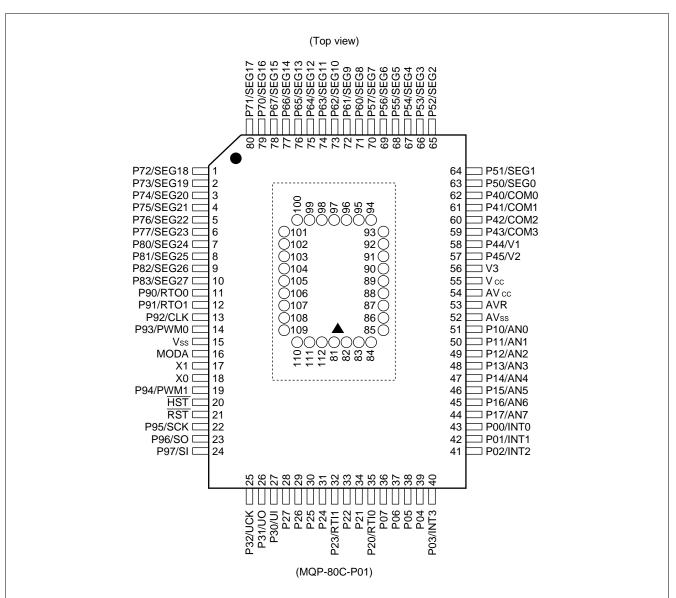
Before evaluating using the piggyback product, verify its differences from the product that will actually be used. Take particular care on the following points:

- The stack area, etc., is set at the upper limit of the RAM.
- The external area is used.

2. Current Consumption

- In the case of the MB89PV920, add the current consumed by the EPROM which is connected to the top socket.
- When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume more current than the product with a mask ROM.


However, the current consumption in sleep/stop modes is the same. (For more information, see section "■ Electrical Characteristics.")


3. Mask Options

Functions that can be selected as options and how to designate these options vary by the product.

Before using options check section "
Mask Options."

■ PIN ASSIGNMENT

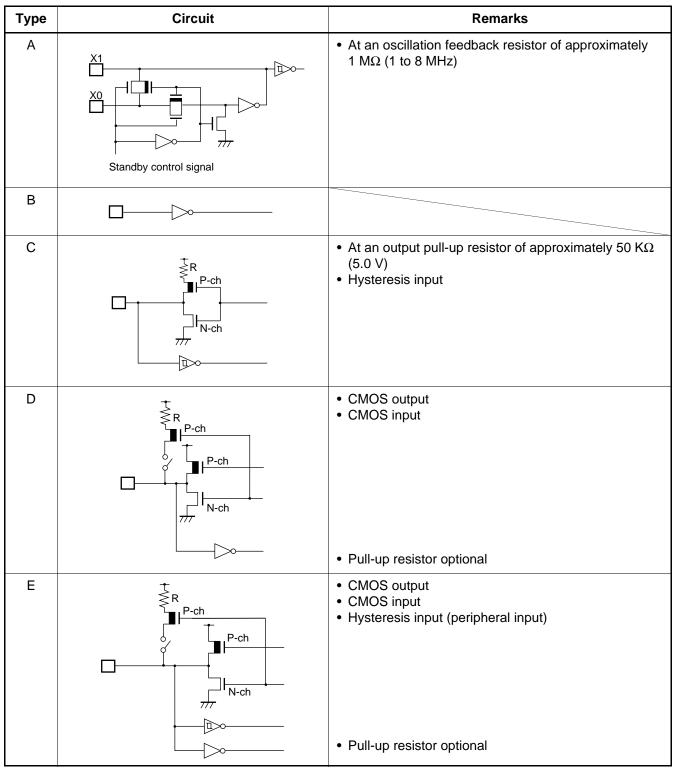
• Pin assignment on package top (only for piggyback/evaluation product)

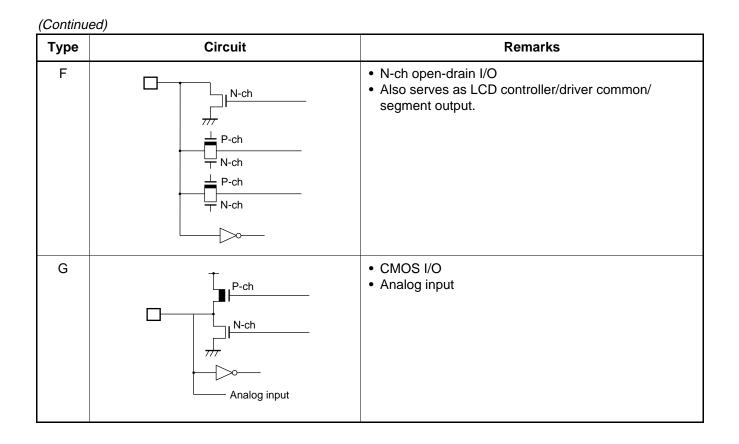
Pin no.	Pin name						
81	N.C.	89	AD2	97	N.C.	105	OE/Vpp
82	A15	90	AD1	98	O4	106	N.C.
83	A12	91	AD0	99	O5	107	A11
84	AD7	92	N.C.	100	O6	108	A9
85	AD6	93	O1	101	07	109	A8
86	AD5	94	O2	102	O8	110	A13
87	AD4	95	O3	103	CE	111	A14
88	AD3	96	Vss	104	A10	112	Vcc

N.C.: Internally connected. Do not use.

(Only for piggyback/evaluation product)

■ PIN DESCRIPTION


Pin no.	Pin name	Circuit type	Function	
17	X1	А	Clock oscillator pins	
18	X0			
16	MODA	В	Operation mode selection input pin Connect this pin to Vss (GND).	
20	HST	В	Hardware standby input pin	
21	RST	С	Reset I/O pin This pin is an N-ch open-drain output type with a pull-up resistor, and a hysteresis input type. "L" is output from this pin by an internal reset source. The internal circuit is initialized by the input of "L".	
11, 12	P90/RTO0, P91/RTO1	D	General-purpose I/O ports A pull-up resistor option is provided. Also serve as an output compare data output.	
13	P92/BUZ/CLK	D	General-purpose I/O port Also serves as a buzzer/clock output.	
14	P93/PWM0	D	General-purpose I/O port A pull-up resistor option is provided. Also serves as an 8-bit PWM output.	
19	P94/PWM1	D	General-purpose I/O port A pull-up resistor option is provided. Also serves as an 8-bit PWM output.	
22	P95/SCK	E	General-purpose I/O port A pull-up resistor option is provided. Also serves as the clock I/O (SCK) for the serial I/O. The SCK input is a hysteresis input. The output type can be switched between N-ch open-drain and CMOS.	
23	P96/SO	D	General-purpose I/O port A pull-up resistor option is provided. Also serves as the data output (SO) for the serial I/O. The output type can be switched between N-ch open-drain and CMOS.	
24	P97/SI	E	General-purpose I/O port A pull-up resistor option is provided. Also serves as the data input (SI) for the serial I/O.	
25	P32/UCK	E	General-purpose I/O port A pull-up resistor option is provided. Also serves as a UART clock I/O (UCK). The UCK input is hysteresis input. The output type can be switched between N-ch open-drain and CMOS.	
26	P31/UO	D	General-purpose I/O port A pull-up resistor option is provided. Also serves as a UART data output (UO). The output type can be switched between N-ch open-drain and CMOS.	


Pin no.	Pin name	Circuit type	Function	
27	P30/UI	E	General-purpose I/O port A pull-up resistor option is provided. Also serves as a UART data input (UI).	
28 to 31	P27 to P24	D	General-purpose I/O ports A pull-up resistor option is provided.	
32	P23/RTI1	E	General-purpose I/O port A pull-up resistor option is provided. Also serves as an input capture data input.	
33, 34	P22, P21	D	General-purpose I/O ports A pull-up resistor option is provided.	
35	P20/RTI0	E	General-purpose I/O port A pull-up resistor option is provided. Also serves as an input capture data input.	
36 to 39	P07 to P04	D	General-purpose I/O ports A pull-up resistor options is provided.	
40 to 43	P03/INT3 to P00/INT0	E	General-purpose I/O ports A pull-up resistor options is provided. Also serve as an external interrupt input (INT0 to INT3).	
44 to 51	P17/AN7 to P10/AN0	G	CMOS I/O ports Also serve as an A/D converter analog input.	
57, 58	P45/V2, P44/V1	F	LCD driving power supply pins These pins can be used as an N-ch open-drain general-purpose I/O when not used as an LCD driving power supply.	
59 to 62	P43/COM3 to P40/COM0	F	LCD common output pins These pins can be used as an N-ch open-drain general-purpose I/O when not used as an LCD common output.	
63 to 70	P50/SEG0 to P57/SEG7	F	LCD segment output pins These pins can be used as an N-ch open-drain general-purpose I/O when not used as an LCD segment output.	
71 to 78	P60/SEG8 to P67/SEG15	F	LCD segment output pins These pins can be used as an N-ch open-drain general-purpose I/O when not used as an LCD segment output.	
79, 80	P70/SEG16, P71/SEG17	F	LCD segment output pins These pins can be used as an N-ch open-drain general-purpose I/O when not used as an LCD segment output.	
1 to 6	P72/SEG18 to P77/SEG23	F	LCD segment output pins These pins can be used as an N-ch open-drain general-purpose I/O when not used as an LCD segment output.	
7 to 11	P80/SEG24 to P83/SEG27	F	LCD segment output pins These pins can be used as an N-ch open-drain general-purpose I/O when not used as an LCD segment output.	
52	AVss		A/D converter power supply (GND) pin	
53	AVR		A/D converter reference power supply pin	
54	AVcc		A/D converter power supply pin	
55	Vcc		Power supply pin	
56	V3		LCD driving power supply pin	
15	Vss		Power supply (GND) pin	

• External EPROM pins (the MB89PV920 only)

Pin no.	Pin name	I/O	Function
82 83 84 85 86 87 88 89 90 91	A15 A12 A7 A6 A5 A4 A3 A2 A1 A0	0	Address output pins
93 94 95	01 02 03	l	Data input pins
96	Vss	0	Power supply (GND) pin
98 99 100 101 102	O4 O5 O6 O7 O8	I	Data input pins
103	CE	0	ROM chip enable pin Outputs "H" during standby.
104	A10	0	Address output pin
105	OE/V _{PP}	0	ROM output enable pin Outputs "L" at all times.
107 108 109	A11 A9 A8	0	Address output pins
110	A13	0	Address output pin
111	A14	0	Address output pin
112	Vcc	0	EPROM power supply pin
81 92 97 106	N.C.		Internally connected pins Be sure to leave them open.

■ I/O CIRCUIT TYPE

■ HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ Electrical Characteristics" is applied between Vcc and Vss.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

Also, take care to prevent the analog power supply (AVcc and AVR) and analog input from exceeding the digital power supply (Vcc) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters

Connect to be AVcc = DAVC = Vcc and AVss = AVR = Vss even if the A/D and D/A converters are not in use.

4. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

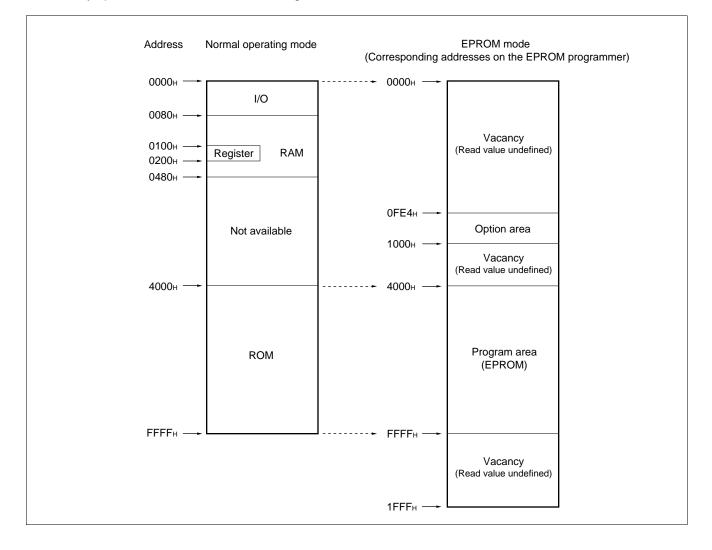
5. Power Supply Voltage Fluctuations

Although V_{CC} power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that V_{CC} ripple fluctuations (P-P value) will be less than 10% of the standard V_{CC} value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.

6. Precautions when Using an External Clock

Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and wake-up from stop mode.

■ PROGRAMMING TO THE EPROM ON THE MB89P928


The MB89P928 is an OTPROM version of the MB89920 series.

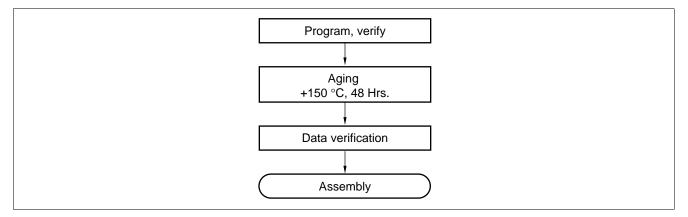
1. Features

- 48-Kbyte PROM on chip
- Options can be set using the EPROM programmer.
- Equivalency to the MBM27C1001A in EPROM mode (when programmed with the EPROM programmer)

2. Memory Space

Memory space in the EPROM mode is diagrammed below.

3. Programming to the EPROM


In EPROM mode, the MB89P928 functions equivalent to the MBM27C1001A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter.

• Programming procedure

- (1) Set the EPROM programmer to the MBM27C1001A.
- (2) Load program data into the EPROM programmer at 0FE4_H to FFFF_H.
- (3) Program with the EPROM programmer.

4. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program.

5. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

6. EPROM Programmer Socket Adapter

Package	Compatible socket adapter
FPT-80P-M06	ROM-80QF-32DP-8LA

Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760

Note: Depending on the EPROM programmer, inserting a capacitor of about 0.1 µF between VPP and Vss or Vcc and Vss can stabilize programming operations.

7. PROM Option Bit Map

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0FE4н	Vacancy	Vacancy	Vacancy	Oscillation stabilization time	Reset pin output	Power-on reset	Vacancy	Vacancy
	Readable	Readable	Readable	1: Crystal 0: Ceramic	1: Yes 0: No	1: Yes 0: No	Readable	Readable
0FE8⊦	P07 Pull-up 1: No 0: Yes	P06 Pull-up 1: No 0: Yes	P05 Pull-up 1: No 0: Yes	P04 Pull-up 1: No 0: Yes	P03 Pull-up 1: No 0: Yes	P02 Pull-up 1: No 0: Yes	P01 Pull-up 1: No 0: Yes	P00 Pull-up 1: No 0: Yes
0FEC⊦	P27 Pull-up 1: No 0: Yes	P26 Pull-up 1: No 0: Yes	P25 Pull-up 1: No 0: Yes	P24 Pull-up 1: No 0: Yes	P23 Pull-up 1: No 0: Yes	P22 Pull-up 1: No 0: Yes	P21 Pull-up 1: No 0: Yes	P20 Pull-up 1: No 0: Yes
0FF0н	Vacancy Readable	Vacancy Readable	Vacancy Readable	Vacancy Readable	Vacancy Readable	P32 Pull-up 1: No 0: Yes	P31 Pull-up 1: No 0: Yes	P30 Pull-up 1: No 0: Yes
0FF4н	P97 Pull-up 1: No 0: Yes	P96 Pull-up 1: No 0: Yes	P95 Pull-up 1: No 0: Yes	P94 Pull-up 1: No 0: Yes	P93 Pull-up 1: No 0: Yes	P92 Pull-up 1: No 0: Yes	P91 Pull-up 1: No 0: Yes	P90 Pull-up 1: No 0: Yes
	Vacancy	Vacancy	WDT/low- voltage control		e detection age	Low-voltage reset	Low-voltage detection	Watchdog timer (WDT)
0FF8н	Readable	Readable	1: Register 0: Option EPROM	00: — 10: 3.6 V	01: 3.3 V 11: 4.0 V	1: Yes 0: No	1: Automatic 0: Prohibited	1: Automatic 0: Prohibited
0FFCн	Vacancy Readable	Vacancy Readable	Vacancy Readable	Vacancy Readable	Vacancy Readable	Vacancy Readable	Vacancy Readable	Vacancy Readable

Notes: • Set each bit to 1 to erase.

- Do not write 0 to the vacant bit.
 - The read value of the vacant bit is 1, unless 0 is written to it.
- Write the same value as each option register to the 3-byte vacant address that follows above option registers.

Example: In the case of 0FE4H, write the same value to 0FE5H, 0FE6H and 0FF7H.

• This optional information is taken into the OTPROM while the oscillation is being reset. Therefore, if the hardware state is initially shifted to standby state after the power supply is turned on, the optional information will not be valid during the transition (in a state of the initial value 1).

After the hardware standby state is cleared, the oscillation starts and the optional information becomes valid.

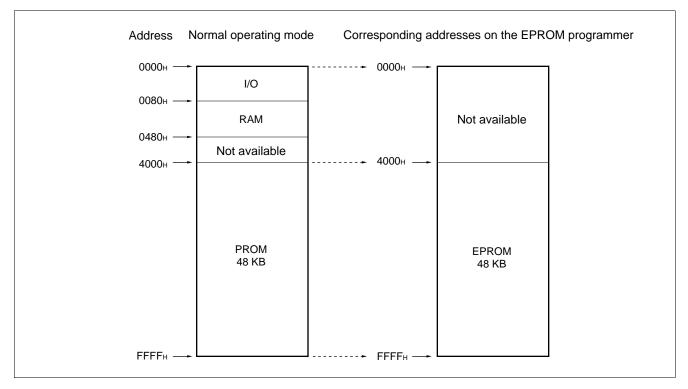
Note that if the hardware is shifted to the standby or stop state in the course of a normal operation (oscillation), the contents of the optional register are valid since the option data has already been taken into the OTPROM.

■ PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

1. EPROM for Use

MBM27C512-20TV

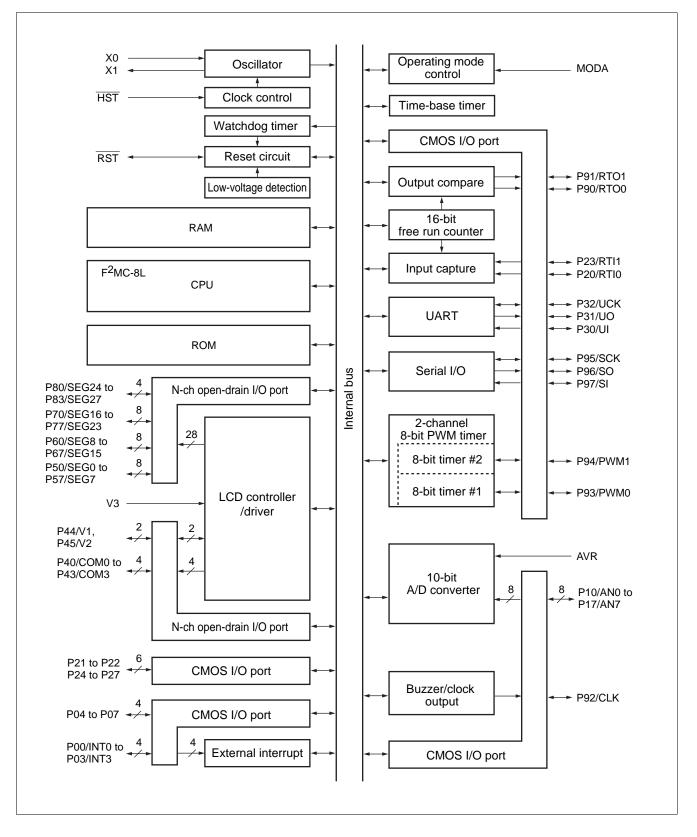
2. Programming Socket Adapter


To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) listed below.

Package	Adapter socket part number
LCC-32(Rectangle)	ROM-32LC-28DP-YG
LCC-32(Square)	ROM-32LC-28DP-S

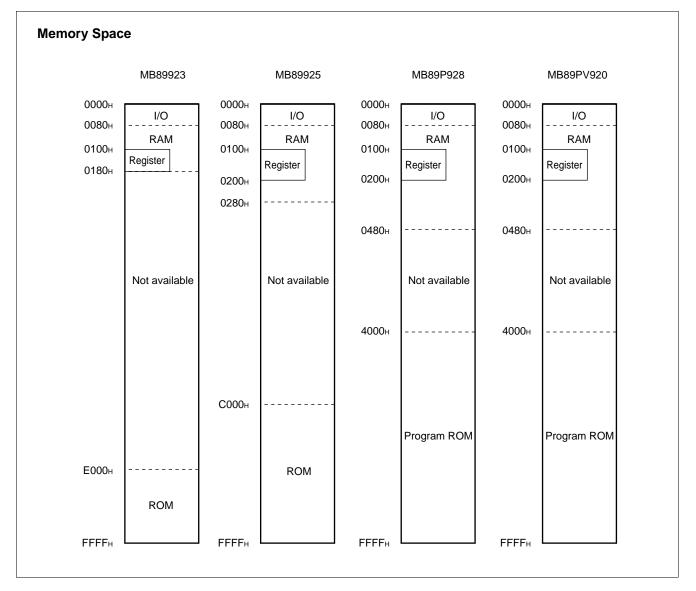
Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760

3. Memory Space


Memory space in each mode is diagrammed below.

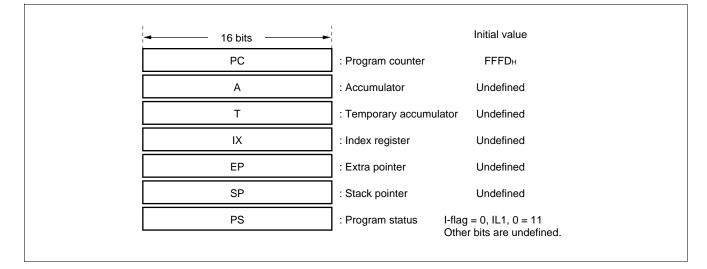
4. Programming to the EPROM

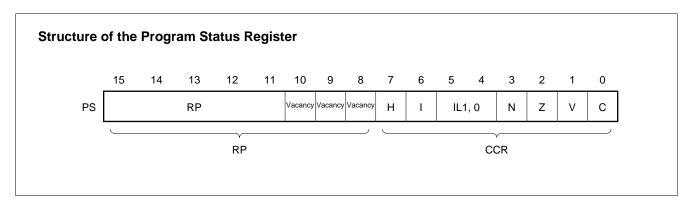
- (1) Set the EPROM programmer to the MBM27C512.
- (2) Load program data into the EPROM programmer at 4000_H to FFFF_H.
- (3) Program to 4000_{H} to FFFF_H with the EPROM programmer.


BLOCK DIAGRAM

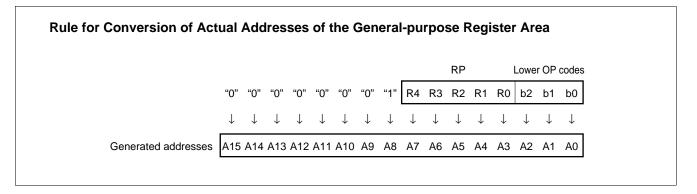
■ CPU CORE

1. Memory Space


The microcontrollers of the MB89920 series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89920 series is structured as illustrated below.


2. Registers

The F²MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:


Program counter (PC):	A 16-bit register for indicating instruction storage positions
Accumulator (A):	A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8-bit data processing instruction, the lower byte is used.
Temporary accumulator (T):	A 16-bit register which performs arithmetic operations with the accumulator When the instruction is an 8-bit data processing instruction, the lower byte is used.
Index register (IX):	A 16-bit register for index modification
Extra pointer (EP):	A 16-bit pointer for indicating a memory address
Stack pointer (SP):	A 16-bit register for indicating a stack area
Program status (PS):	A 16-bit register for storing a register pointer, a condition code

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

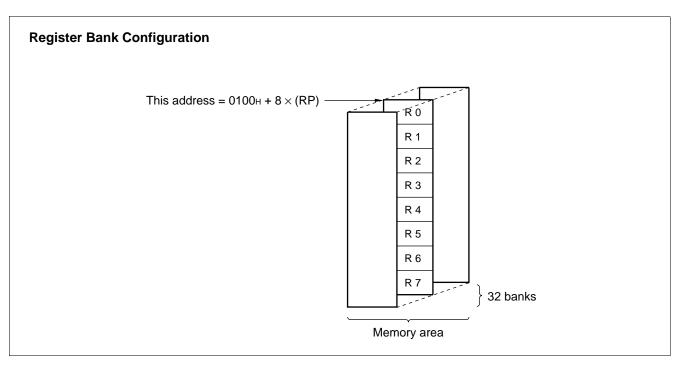
The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

- H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions.
- I-flag: Interrupt is allowed when this flag is set to 1. Interrupt is prohibited when the flag is set to 0. Set to 0 when reset.
- IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	ILO	Interrupt level	High-low
0	0	1	High
0	1	- I	t
1	0	2	
1	1	3	Low = no interrupt

N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0.

Z-flag: Set when an arithmetic operation results in 0. Cleared otherwise.


- V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does not occur.
- C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise. Set to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided:

General-purpose registers: An 8-bit register for storing data

The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 16 banks can be used on the MB89925. Up to a total of 16 banks can be used on the MB89923. The bank currently in use is indicated by the register bank pointer (RP).

Note: The number of register banks that can be used varies with the RAM size.

■ I/O MAP

Address	Read/write	Register	Register description	Intial value
00н	(R/W)	PDR0	Port 0 data register	XXXX XXXXB
01н	(W)	DDR0	Port 0 data direction register	0000 0000B
02н	(R/W)	PDR1	Port 1 data register	XXXX XXXXB
03н	(W)	DDR1	Port 1 data direction register	0000 0000B
04н			Vacancy	1
05н			Vacancy	
06н			Vacancy	
07н			Vacancy	
08н	(R/W)	STBC	Standby control register	0001 X X X X B
09н	(R/W)	WDTE	Watchdog timer control register	XXXX XXXXB
0Ан	(R/W)	TBCR	Time-base timer control register	X X X 0 0000B
0Вн	(R/W)	LVRC	Low-voltage detection reset control register	0 X 1 1 X 0 0 X B
0Сн	(R/W)	PDR3	Port 3 data/peripheral I/O control register	0000 – X X X B
0Dн	(VV)	DDR3	Port 3 data direction register	000 B
0Ен	(R/W)	PDR4	Port 4 data register	11 1111B
0Fн	(R/W)	PDR5	Port 5 data register	1111 1111 B
10 н	(R/W)	PDR6	Port 6 data register	1111 1111 B
11 н	(R/W)	PDR7	Port 7 data register	1111 1111 B
12н	(R/W)	PDR8	Port 8 data register	1 1 1 1 B
13 н	(R/W)	PDR9	Port 9 data register	ХХХХ ХХХХВ
14 н	(W)	DDR9	Port 9 data direction register	0000 0000B
15 н	(R/W)	PDR2	Port 2 data register	XXXX XXXXB
16 н	(R/W)	DDR2	Port 2 data direction register	0000 0000B
17 н	(R/W)	BUZR	Buzzer control register	X X X X 0000B
18 ⊦	(R/W)	ADC1	AD converter control register 1	0000 0000B
19 н	(R/W)	ADC2	AD converter control register 2	X0000001B
1Ан	(R/W)	ADCH	AD converter data register "H"	X X B
1Bн	(R/W)	ADCL	AD converter data register "L"	XXXX XXXXB
1Сн	(R/W)	SMR	Serial mode register	0000 0000B
1Dн	(R/W)	SDR	Serial data register	ХХХХ ХХХХВ
1Eн			Vacancy	
1Fн	(W)	ICR1	Port 1 input control register	0000 0000B

-: Unused X: Undefined

Note: Do not use vacancies

Address	Read/write	Register	Register description	Initial value
20н	(R/W)	CNTR1	PWM timer control register 1	0000 0000 B
21н	(R/W)	CNTR2	PWM timer control register 2	0000 0000B
22н	(R/W)	CNTR3	PWM timer control register 3	000X 0000B
23н	(W)	COMR2	PWM timer compare register 2	X X X X X X X X B
24н	(W)	COMR1	PWM timer compare register 1	X X X X X X X X B
25н			Vacancy	
26н			Vacancy	
27н			Vacancy	
28н	(R/W)	TMCR	Timer control register	00XX 0000B
29н	(R)	TCHR	Timer count register (H)	0000 0000B
2Ан	(R)	TCLR	Timer count register (L)	0000 0000B
2Вн	(R/W)	OPCR	Output control register	0000 0000B
2Сн	(R/W)	CPR0H	Output compare register 0 (H)	0000 0000 B
2Dн	(R/W)	CPR0L	Output compare register 0 (L)	0000 0000 B
2Ен	(R/W)	CPR1H	Output compare register 1 (H)	0000 0000 B
2 F н	(R/W)	CPR1L	Output compare register 1 (L)	0000 0000 B
30н	(R/W)	ICCR	Input capture control register	X000 X000B
31н	(R/W)	ICIC	Input capture interrupt control register	X 0 0 0 0 X 0 0 B
32н	(R)	ICR0H	Input capture register 0 (H)	X X X X X X X X B
33н	(R)	ICR0L	Input capture register 0 (L)	X X X X X X X X B
34н	(R)	ICR1H	Input capture register 1 (H)	X X X X X X X X B
35н	(R)	ICR1L	Input capture register 1 (L)	X X X X X X X X B
36н			Vacancy	
37н			Vacancy	
38н	(R/W)	EIC1	External interrupt control register 1	0000 0000 B
39н	(R/W)	EIC2	External interrupt control register 2	0000 0000 B
ЗАн			Vacancy	
3Вн			Vacancy	
3Сн			Vacancy	
3Dн			Vacancy	
3Ен			Vacancy	
3Fн			Vacancy	

-: Unused X: Undefined

Note: Do not use vacancies

(Continued)

Address	Read/write	Register	Register description	Initial value
40н	(R/W)	USMR	UART mode register	0000 0000B
41н	(R/W)	USCR	UART control register	0000 0000 B
42н	(R/W)	USTR	UART status register	00001XXXB
43н	(R) (W)	RXDR TXDR	UART receiver data register UART transmitter data register	XXXX XXXXB XXXX XXXXB
44 _H			Vacancy	
45н	(R/W)	RRDR	Baud rate generator/reload data register	XXXXXXXXB
46 H			Vacancy	
47н			Vacancy	
48 to 5Fн			Vacancy	
60 to 6Dн	(R/W)	VRAM	Display data RAM	XXXXXXXX
70н	(R/W)	LCR1	LCD controller/driver control register 1	0000 0000 B
71н	(R/W)	LCR2	LCD controller/driver control register 2	0 0 0 B
72н	(R/W)	LCR3	LCD controller/driver control register 3	0000 0000 B
73 to 7Вн			Vacancy	
7Сн	(W)	ILR1	Interrupt level setting register 1	1111 1111B
7Dн	(W)	ILR2	Interrupt level setting register 2	1111 1111B
7 Ен	(W)	ILR3	Interrupt level setting register 3	11111111B
7 F н			Vacancy	

-: Unused X: Undefined

Note: Do not use vacancies

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

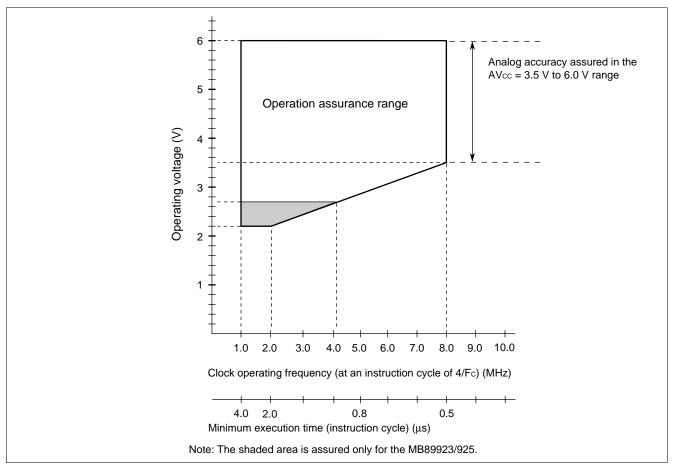
(Vss = 0.0 V)

Deremeter	Symbol	Va	lue	Unit	Remarks
Parameter	Symbol	Min.	Max.	Unit	Remarks
	Vcc	Vss-0.3	Vss + 7.0	V	
Power supply voltage	AVcc	Vss-0.3	Vcc + 0.3	V	*1
	AVR	Vss-0.3	Vss + 7.0	V	AVR must not exceed AVcc + 0.3 V.
LCD power supply voltage	V1 to V3	Vss-0.3	Vss + 7.0	V	$V1 \le V2 \le V3^{*2}$
Input voltage	VI1	Vss-0.3	Vcc + 0.3	V	
	V ₀₁	Vss-0.3	Vcc + 0.3	V	P00 to P07, P10 to P17, P20 to P27, P30 to P32, P90 to P97
Output voltage	V ₀₂	Vss-0.3	Vss + 7.0	V	P40 to P45, P50 to P57, P60 to P67, P70 to P77, P80 to P83 Must not exceed "V3 + 0.3 V"
"L" level maximum output current	Iol		20	mA	Peak value
"L" level average output current	IOLAV		4	mA	Average value
"L" level total maximum output current	ΣIol		100	mA	Peak value
"L" level total average output current	\sum Iolav		40	mA	Average value
"H" level maximum output current	Іон		-20	mA	Peak value
"H" level average output current	Іонач		-4	mA	Average value
"H" level total maximum output current	∑Іон		-50	mA	Peak value
"H" level total average output current	ΣΙομαν		-20	mA	Average value
Power consumption	PD		300	mW	
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	-55	+150	°C	

*1: Use AVcc and Vcc set at the same voltage.

Take care so that AVcc does not exceed Vcc, such as when power is turned on.

*2: Vcc must not exceed V3.


Precautions: Permanent device damage may occur if the above "Absolute Maximum Ratings" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. Recommended Operating Conditions

					(Vss = 0.0 V)
Deremeter	Symbol	Va	alue	Unit	Remarks
Parameter	Symbol	Min.	Max.	Unit	Remarks
		2.2* ¹	6.0	V	Normal operation assurance range
Power supply voltage	Vcc	2.7*1	6.0	V	MB89PV920/P928
		1.5	6.0	V	Retains the RAM state in stop mode
A/D converter reference input voltage	AVR	3.0	AVcc	V	
LCD power supply voltage	V1 to V3	Vss	Vss + 6.0	V	$V1 \le V2 \le V3^{*2}$
Operating temperature	Та	-40	+85	°C	

*1: These values vary with the operating frequency, instruction cycle, and analog assurance range. See Figure 1 and "5. A/D Converter Electrical Characteristics."

*2: Vcc must not exceed V3.

Figure 1 Operating Voltage vs. Clock Operating Frequency

Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of 4/Fc. Since the operating voltage range is dependent on the instruction cycle, see minimum execution time if the operating speed is switched using a gear.

3. DC Characteristics

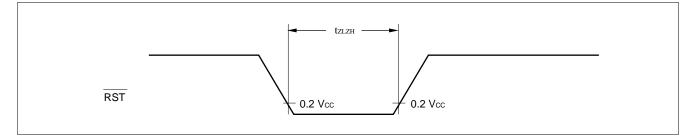
		Т	$(V_{CC} = 5.0 \text{ V}, \text{ V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C} \text{ to } +80^{\circ}\text{C} \text{ to } +80^{\circ}$							
Parameter	Sym-	Pin	Condition		Value		Unit	Remarks		
Falametei	bol		Condition	Min.	Тур.	Max.	Unit	IVEIIIdi KS		
"H" level input voltage	Vін	P00 to P07, P10 to P17, P20 to P27, P30 to P32, P40 to P45, P50 to P57, P60 to P67, P70 to P77, P80 to P83, P90 to P97	_	0.7 Vcc		Vcc + 0.3	V			
•	Vihs	RST, MODA, HST	_	0.8 Vcc	_	Vcc + 0.3	V	Peripheral input of the port 0, 2, 3, and 9		
"L" level input voltage	VIL	P00 to P07, P10 to P17, P20 to P27, P30 to P32, P40 to P45, P50 to P57, P60 to P67, P70 to P77, P80 to P83, P90 to P97	_	V _{ss} - 0.3	_	0.3 Vcc	V			
	Vils	RST, MODA, HST	_	V _{ss} - 0.3	_	0.2 Vcc	V	Peripheral input of the port 0, 2, 3, and 9		
Open-drain output pin application voltage	VD	P40 to P45, P50 to P57, P60 to P67, P70 to P77, P80 to P83 ⁻¹	_	V _{SS} – 0.3	_	Vss + 6.0	V			
"H" level output	Vон1	P00 to P07, P10 to P17, P30 to P32, P90 to P97	Iон = -2.0 mA	4.0	—	_	V			
voltage	Vон2	P20 to P27	Iон = -5.0 mA	2.4			V			
"L" level output voltage	Vol1	P00 to P07, P10 to P17, P30 to P32, P40 to P45, P50 to P57, P60 to P67, P70 to P77, P80 to P83, P90 to P97	IoL = 4.0 mA	_	_	0.4	V			
U	Vol2	P20 to P27	lo∟= 5.0 mA			0.4	V			
	Vol3	RST	IoL = 4.0 mA			0.4	V			
Input leakage current (Hi-z output leakage current)	ILI1	P00 to P07, P10 to P17, P20 to P27, P30 to P32, P40 to P45, P50 to P57, P60 to P67, P70 to P77, P80 to P83, P90 to P97, MODA	0.45 V < Vı < Vcc	_	_	±5	μΑ	Without pull- up resistor		
Pull-up resistance	Rpulu	P00 to P07, P20 to P27, P30 to P32, P90 to P97	VI = 0.0 V	25	50	100	kΩ	Without pull- up resistor		

(Vcc = 5.0						V, Vss = 0.0 V,		40°C to +85°C)
Parameter	Sym-	Pin	Condition		Value		Unit	Remarks
Falameter	bol	FIII	Condition	Min.	Тур.	Max.	Unit	itema ks
	Icc		Vcc = 5.0 V		12	20	mA	$t_{\text{inst}} = 0.5 \ \mu s$
	Iccs	Vcc	Vcc = 5.0 V		3	7	mA	Sleep mode
	ICCS	VCC	Vcc = 5.0 V	_	3	'	mA	$t_{\text{inst}} = 0.5 \ \mu s$
	Іссн		T _A = +25°C		_	1	μΑ	Stop mode
Power supply current ^{*2}	IA		when A/D conversion is activated	_	6	8	mA	
	Іан	AVcc	when A/D conversion is stopped $T_A = +25^{\circ}C$	_	_	1	μΑ	
LCD divided resistance	RLCD	Between V3 and Vss		200	300	450	kΩ	
COM0 to 3 output impedance	Rvсом	COM0 to 3	V1 to V 3 = 5.0 V		_	2.5	kΩ	
SEG0 to 27 output impedance	Rvseg	SEG0 to 27	V1 to V 3 = 5.0 V	_	_	15	kΩ	
LCD controller/ driver leakage current		V1 to V3, COM0 to 3, SEG0 to 27	V1 to V 3 = 5.0 V	_	_	±1	μΑ	
Input capacitance	CIN	Other than AVcc, AVss, Vcc, and Vss	f = 1 MHz	_	10	—	pF	

 $(V_{CC} = 5.0 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C})$

*1: V_D must not exceed V3.

*2: The measurement conditions of power supply current are as follows: the external clock and $T_A = +25^{\circ}C$. In the case of the MB89PV920, the current consumed by the connected EPROM and ICE is not included.

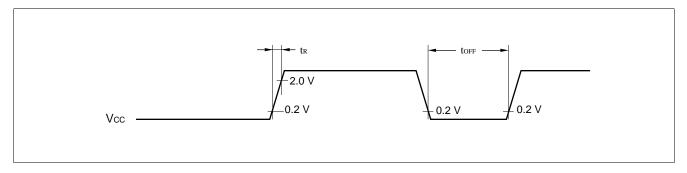

Note: For pins which serve as the LCD and ports (P40 to P45, P50 to P57, P60 to P67, P70 to P77, and P80 to P83), see the port parameter when these pins are used as ports and the LCD parameter when they are used as LCD pins.

4. AC Characteristics

(1) Reset Timing

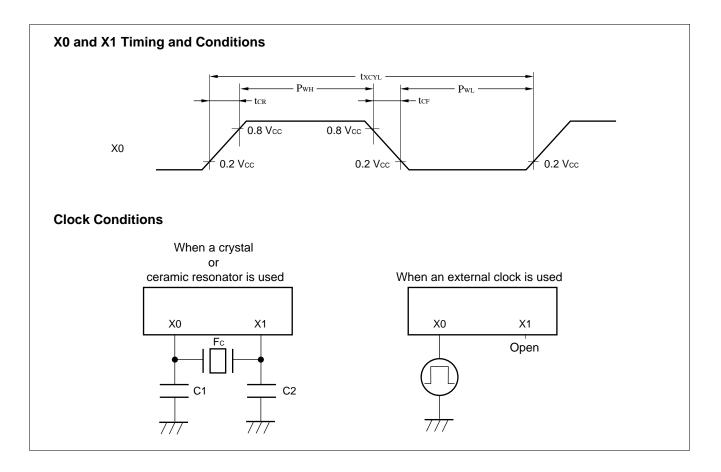
 $(AV_{SS} = V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Baramotor	Symbol	Condition	Valu	ue	Unit	Remarks
Parameter	Symbol	Condition	Min.	Max.	Unit	Remarks
RST "L" pulse width	t zlzh	_	48 t HCYL	—	ns	



(2) Power-on Reset

 $(AV_{SS} = V_{SS} = 0.0 \text{ V}, \text{ } T_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C})$

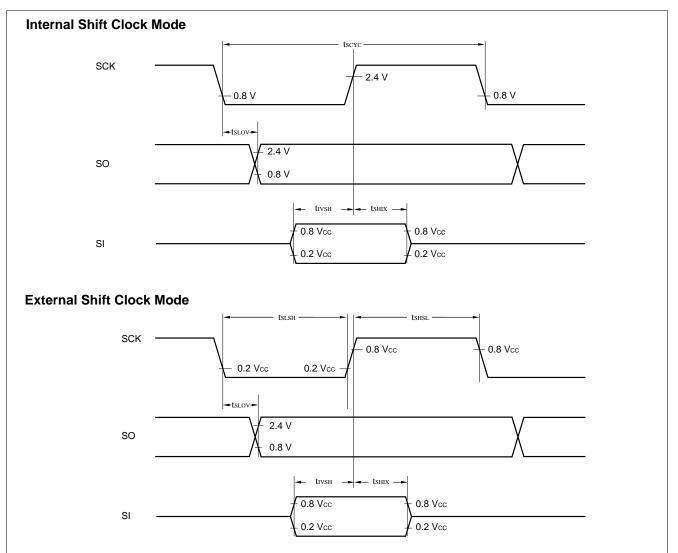

Parameter	Symbol	Condition	Value		Unit	Remarks	
Farameter	Symbol	Condition	Min.	Max.	Unit	Remarks	
Power supply rising time	tR			50	ms	Power-on reset function only	
Power supply cut-off time	t off		1		ms	Due to repeated operations	

Note: Make sure that power supply rises within the selected oscillation stabilization time. If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.

(3) Clock Timing

	$(AV_{SS} = V_{SS} = 0.0 \text{ V}, \text{T}_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}$										
Parameter	Symbol	Pin	Condition	Va	lue	Unit	Remarks				
Falameter				Min.	Max.		Itemarks				
Clock frequency	Fc	X0, X1		1	8	MHz					
Clock cycle time	txcyL	X0, X1		125	1000	ns					
Input clock pulse width	Р _{WH} РwL	X0		20	_	ns	External clock				
Input clock rising/falling time	tcr tcf	X0			10	ns	External clock				

(4) Instruction Cycle

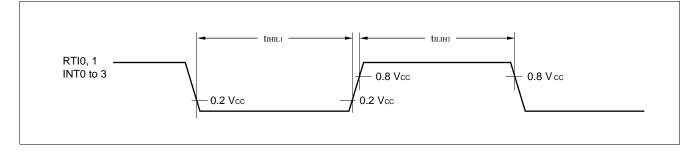

Parameter	Symbol	Value (typical)	Unit	Remarks
Instruction cycle (minimum execution time)	t inst	4/Fc	μs	(4/Fc) t_{inst} = 0.5 μs when operating at Fc = 8 MHz

(5) Serial I/O Timing

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
Farameter	Symbol	ГШ	Condition	Min.	Max.	Onit	Rellidiks
Serial clock cycle time	tscyc	SCK	Internal shift clock mode	2 tinst*	—	μs	
$SCK \downarrow \to SO \text{ time}$	t slov	SCK, SO		-200	200	ns	
Valid SI \rightarrow SCK \uparrow	tıvsн	SI, SCK		1/2 t _{inst} *	—	μs	
$SCK \uparrow \to valid \ SI \ hold \ time$	tsнix	SCK, SI	-	1/2 t _{inst} *	_	μs	
Serial clock "H" pulse width	t shsl	SCK		1 tinst*	_	μs	
Serial clock "L" pulse width	t slsh	SCK		1 tinst*	_	μs	
$SCK \downarrow \to SO \text{ time}$	t slov	SCK, SO	External shift clock mode	0	200	ns	
Valid SI \rightarrow SCK \uparrow	tıvsн	SI, SCK		1/2 tinst*	—	μs	
$SCK \uparrow \to valid \ SI \ hold \ time$	tsнix	SCK, SI		1/2 t _{inst} *	—	μs	

(AVcc = Vcc = +5.0 V±10%, AVss = Vss= 0.0 V, T_A = -40°C to +85°C)

* : For information on tinst, see "(4) Instruction Cycle."



(6) Peripheral Input Timing

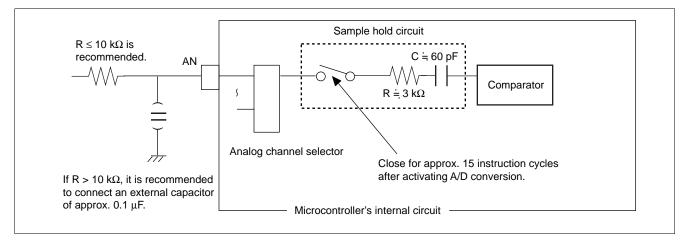
$(V_{CC} = +5.0 V \pm 10\%, AV_{SS} = V_{SS} = 0.0 V, T_A = -40\% C to +85$									
Parameter	Symbol	Pin	Value		Unit	Remarks			
Parameter	Symbol	F III	Min.	Max.	Unit	itemarks			
Peripheral input "H" pulse width 1	t iliH1	INT0 to INT3, RTI0, 1	2 tinst*	—	_				
Peripheral input "L" pulse width 1	t iHi∟1	INT0 to INT3, RTI0, 1	2 tinst*	—	_				

 (M_{c}) - <u>+</u>5 0 \/+10% Δ\/_α Ve -00VT10°C to ±85°C)

* : For information on tinst, see "(4) Instruction Cycle."

5. A/D Converter Electrical Characteristics

Parameter	Sym-	Pin	Condition		Value		Unit
Farameter	bol	FIII	Condition	Min.	Тур.	Max.	Unit
Resolution				—		10	bit
Linearity error						±2.0	LSB
Differential linearity error		_				±1.5	LSB
Differential total error	-					±3.0	LSB
Zero transition voltage	Vот	AN0 to AN7	$AV_{cc} = AVR = AV_{ss} - 1.5 LSB$		AVss + 0.5 LSB	AVss + 2.5 LSB	mV
Full-scale transition voltage	Vfst	AN0 to AN7		AVR – 3.5 LSB	AVR – 1.5 LSB	AVR + 0.5 LSB	mV
Interchannel disparity			-			4	LSB
A/D mode conversion time		_				16.5	μs
Analog port input current	VAIN	AN0 to AN7	At 8-MHz oscillattion			10	μA
Analog input voltage		AN0 to AN7		0.0		AVR	V
Reference voltage		AVR		0.0		AVcc	V
Reference voltage supply current	IR	AVR	AVR = 5.0 V	_	200		μA


 $(AV_{CC} = V_{CC} = +3.5 \text{ V to } +6.0 \text{ V}$ E_C = 8 MHz $AV_{SS} = V_{SS} = 0.0 \text{ V}$ T_A = -40°C to +85°C)

Precautions: • The smaller | AVR – AVss |, the greater the error would become relatively.

• The output impedance of the external circuit for the analog input must satisfy the following conditions: Output impedance of the external circuit < Approx. 10 $k\Omega$

If the output impedance of the external circuit is too high, an analog voltage sampling time might be insufficient (sampling time = $7.5 \,\mu s$ at 8 MHz oscillation).

An analog input equivalent circuit is shown below.

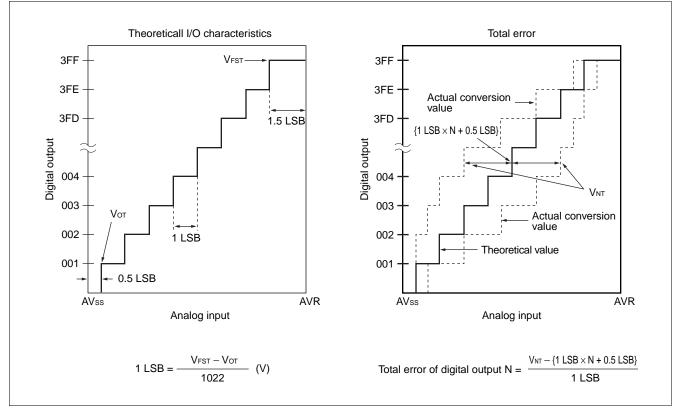
Since the A/D converter contains sample hold circuit, the level of the analog input pin might not stabilize within the sampling period after A/D activation, resulting in inaccurate A/D conversion values, if the input impedance to the analog pin is too high. Be sure to maintain an appropriate input impedance to the analog pin.

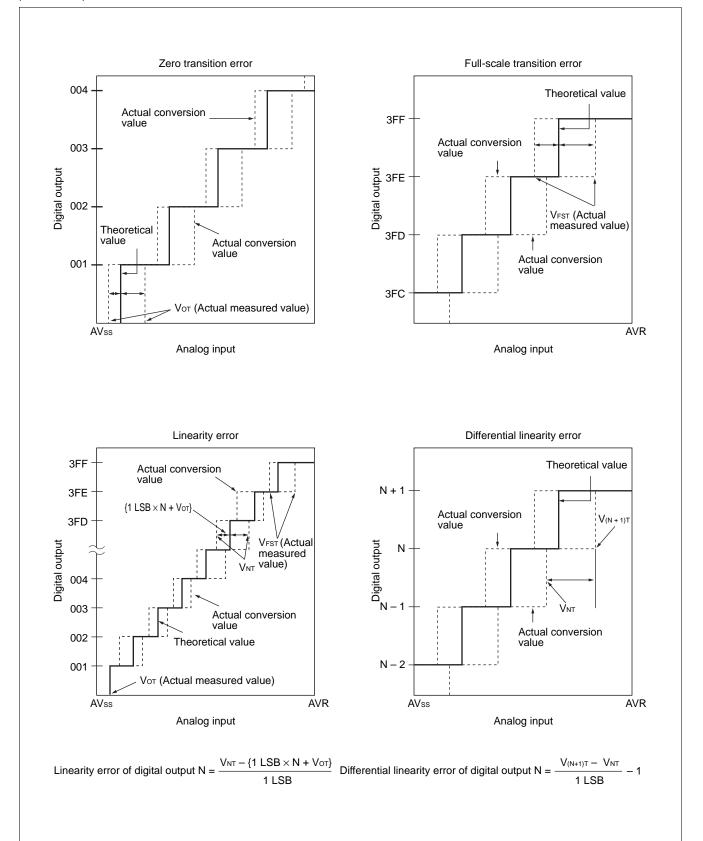
It is recommended to keep the input impedance to the analog pin not exceed 10 k Ω . If it exceeds 10 k Ω , it is recommended to connect a capacitor of about 0.1 µF for the analog input pin.

Except for the sampling period after A/D activation, the input leakage current of the analog input pin is less than 10 µA.

(1) A/D Converter Glossary

Resolution

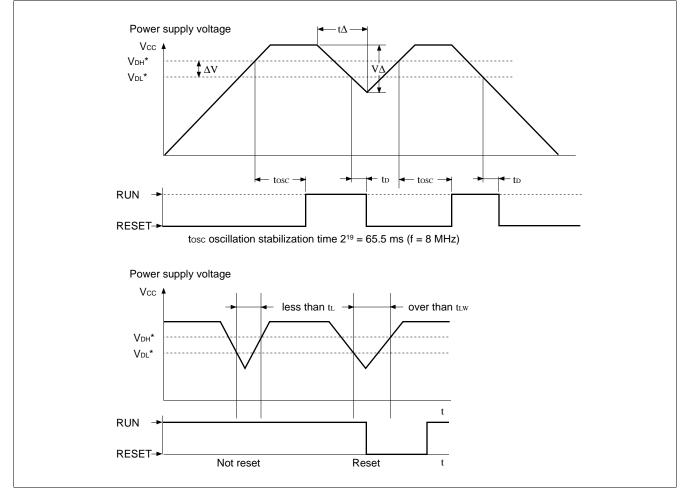

Analog changes that are identifiable with the A/D converter.


• Linearity error

The deviation of the straight line connecting the zero transition point ("00 0000 0000" \leftrightarrow "00 0000 0001") with the full-scale transition point ("11 1111 1111" \leftrightarrow "11 1111 1110") from actual conversion characteristics

- Differential linearity error The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value
- Total error

The difference between theoretical and actual conversion values, caused by the zero transition error, full-scale transition error, linearity error, quantization error, and noise.



6. Low-voltage Detection Reset

			(AVss=	Vss = 0.0 V	$T_{A} = -4$	0°C to +85°C)	
Parameter	Symbol	Condition	Va	lue	Unit	Remarks	
Faranielei	Symbol	Condition	Min.	n. Max.		Nellial N5	
	VDL1		3.00	3.60	V		
Voltage detected at power supply voltage drop	Vdl2		3.30	3.90	V		
	Vdl3		3.70	4.30	V	*1	
	V _{DH1}		3.10	3.80	V		
Voltage detected at power supply voltage rise	V _{DH2}		3.40	4.10	V		
	Vdh3		3.80	4.50	V		
Hysteresis width	ΔV		0.10	-	V		
Reset ignore time	t∟		0.3	_	μs		
Reset sense time	tLW		16 txcyL		ns		
Reset detection deley time	to		_	2.0	μs		
Voltage regulation (V Δ /t Δ)	VCR			0.10	V/µs		

*1: VDH and VDL can be set for the MB89923 and MB89925 by mask options; for the MB89PV920 and MB89P928 by registers.

■ INSTRUCTIONS (136 INSTRUCTIONS)

Execution instructions can be divided into the following four groups:

- Transfer
 Arithmetic operation
- ٠ Branch Others

Table 1 lists symbols used for notation of instructions.

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
#vct	Vector table number (3 bits)
#d8	Immediate data (8 bits)
#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
A	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
Т	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri (8 bits, i = 0 to 7)
×	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(×)	Indicates that the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
((×))	The address indicated by the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
Columns Mnemor	s indicate the following: nic: Assembler notation of an instruction

The number of instructions ~:

The number of bytes #:

Operation of an instruction Operation:

TĹ, TH, AH:

- A content change when each of the TL, TH, and AH instructions is executed. Symbols in the column indicate the following:
 "-" indicates no change.
 dH is the 8 upper bits of operation description data.

 - AL and AH must become the contents of AL and AH prior to the instruction executed.
 - 00 becomes 00.

N, Z, V, C: An instruction of which the corresponding flag will change. If + is written in this column, the relevant instruction will change its corresponding flag.

OP code: Code of an instruction. If an instruction is more than one code, it is written according to the following rule:

Example: 48 to $4F \leftarrow$ This indicates 48, 49, ... 4F.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	45 46 61 47 04 05 06 60 92 07 08 to 0F 85 86 87 88 to 8F D5 D6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	61 47 04 05 06 60 92 07 08 to 0F 85 86 87 88 to 8F D5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	47 18 to 4F 04 05 06 60 92 07 08 to 0F 85 86 87 88 to 8F D5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18 to 4F 04 05 06 60 92 07 08 to 0F 85 86 87 38 to 8F D5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	04 05 06 92 07 08 to 0F 85 86 87 88 to 8F D5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	05 06 60 92 07 08 to 0F 85 86 87 88 to 8F D5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	06 60 92 07 08 to OF 85 86 87 88 to 8F D5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	60 92 07 08 to 0F 85 86 87 88 to 8F D5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	92 07 08 to 0F 85 86 87 08 to 8F D5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	07 08 to 0F 85 86 87 08 to 8F D5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	08 to 0F 85 86 87 88 to 8F D5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	85 86 87 88 to 8F D5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	86 87 88 to 8F D5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	87 88 to 8F D5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	87 88 to 8F D5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	88 to 8F D5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	20
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
MOVW @EP,A41 $((EP)) \leftarrow (AH), ((EP) + 1) \leftarrow (AL)$ MOVW EP,A21 $(EP) \leftarrow (A)$	D4
MOVW EP,A 2 1 $(EP) \leftarrow (A)$ 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	D7
	E3
$ MOVWA,#d16 3 3 (A) \leftarrow d16 AL AH dH ++ $	E4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C5
	C5 C6
	00
$ \begin{vmatrix} (AL) \leftarrow ((IX) + off + 1) \\ MOVW A, ext \\ 5 \\ 3 \\ (AH) \leftarrow (ext), (AL) \leftarrow (ext + 1) \\ AL \\ AH \\ dH \\ + + \end{vmatrix} $	C4
	93
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	C7 F3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	E7
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	E2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	F2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	E1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	F1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	82
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	83
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	E6
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	70
$MOVW PS,A \qquad 2 1 (PS) \leftarrow (A) \qquad - - - + + + +$	71
$ MOVW SP, #d16 3 3 (SP) \leftarrow d16 - - - - - - - - - $	E5
$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $	10
	8 to AF
	0 to A7
XCH A,T21 $(AL) \leftrightarrow (TL)$ AL	42
XCHW A,T31 $(A) \leftrightarrow (T)$ ALAHdH $$	43
XCHW A,EP31 $(A) \leftrightarrow (EP)$ $ dH$ $ -$	F7
XCHW A,IX31 $(A) \leftrightarrow (IX)$ $ dH$ $ -$	F6
XCHW A, SP31 $(A) \leftrightarrow (SP)$ $ dH$ $ -$	F5
$ MOVW \mathbf{A}, PC 2 1 (\mathbf{A}) \leftarrow (PC) - - dH dH $	F0

Table 2 Transfer Instructions (48 instructions)

Note During byte transfer to A, T ← A is restricted to low bytes. Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of F²MC-8 family)

ADDC A,#d8 2 2 2 4 ADDC A,dir 3 2 4 ADDC A,@IX +off 4 2 4 ADDC A,@EP 3 1 4 ADDC A,@EP 3 1 4	$\begin{array}{l} (A) \leftarrow (A) + (Ri) + C \\ (A) \leftarrow (A) + d8 + C \\ (A) \leftarrow (A) + (dir) + C \\ (A) \leftarrow (A) + ((IX) + off) + C \\ (A) \leftarrow (A) + ((EP)) + C \\ (A) \leftarrow (A) + (T) + C \\ (AL) \leftarrow (AL) + (TL) + C \end{array}$	- - -	-	-	++++ ++++	28 to 2F
ADDC A,dir 3 2 0 ADDC A,@IX +off 4 2 0 ADDC A,@EP 3 1 0 ADDCW A 3 1 0		- - -	_	_		
ADDC A,@IX +off 4 2 0 ADDC A,@EP 3 1 0 ADDCW A 3 1 0		_ _	_		++++	24
ADDC A, @EP 3 1 (A ADDCW A 3 1 (A		-		—	+ + + +	25
ADDCWA 3 1 (A	$(A) \leftarrow (A) + (T) + C$		-	—	++++	26
		-	-	—	++++	27
	$(A) \leftarrow (A) + () + (C)$	-	-	dH	++++	23
		—	-	—	++++	22
	$(A) \leftarrow (A) - (Ri) - C$	—	-	-	++++	38 to 3F
	$(A) \leftarrow (A) - d8 - C$	-	-	-	+ + + +	34
	$(A) \leftarrow (A) - (dir) - C$	_	-	_	+ + + +	35
	$(A) \leftarrow (A) - ((IX) + off) - C$	-	-	-	+ + + +	36
	$(A) \leftarrow (A) - ((EP)) - C$	_	-		++++	37
	$(A) \leftarrow (T) - (A) - C$	—	-	dH	++++	33
	$(AL) \leftarrow (TL) - (AL) - C$	—	-	-	++++	32
	$(Ri) \leftarrow (Ri) + 1$	_	_	_	+++-	C8 to CF
	$(EP) \leftarrow (EP) + 1$	_	_	_		C3 C2
N 1	$(IX) \leftarrow (IX) + 1$	_	_	- 41		C2 C0
	$(A) \leftarrow (A) + 1$	_	_	dH	++	D8 to DF
	$(Ri) \leftarrow (Ri) - 1$	_	-	_	+++-	D8 10 DF D3
	$(EP) \leftarrow (EP) - 1$	_	_	_		D3 D2
	$(IX) \leftarrow (IX) - 1$ $(A) \leftarrow (A) - 1$	_	_	dH		D2 D0
	$(A) \leftarrow (A) - 1$ $(A) \leftarrow (AL) \times (TL)$	_	_	dH	++	D0 01
	$(A) \leftarrow (AL) \times (TL) (A) \leftarrow (T) / (AL), MOD \rightarrow (T)$	_ dL	00	00		11
	$(A) \leftarrow (I) \land (AL), \text{MOD} \rightarrow (I)$ $(A) \leftarrow (A) \land (T)$	uL _	_	dH	+ + R –	63
	$(A) \leftarrow (A) \land (T)$ $(A) \leftarrow (A) \lor (T)$		_	dH	+ + R –	73
	$(A) \leftarrow (A) \lor (T)$ $(A) \leftarrow (A) \lor (T)$	_	_	dH	++R-	53
CMP A 2 1	(TL) - (AL)	_	_	_	++++	12
CMPW A 3 1	$(T_{L})^{(T_{L})}$ $(T_{L})^{(T_{L})}$	_	_	_	++++	13
RORC A 2 1	$rac{1}{r}$ $rac{$	_	_	_	++-+	03
ROLC A 2 1	$-C \leftarrow A \leftarrow$	-	-	-	+ + - +	02
CMP A,#d8 2 2	(A) – d8	-	-	_	+ + + +	14
CMP A,dir 3 2	(A) – (dir)	-	-	—	+ + + +	15
CMP A,@EP 3 1	(A) – ((EP))	-	-	-	++++	17
CMP A,@IX +off 4 2	(A) - ((IX) + off)	—	-	—	+ + + +	16
CMP A,Ri 3 1	(A) – (Ri)	-	-	-	++++	18 to 1F
	Decimal adjust for addition	—	-	—	+ + + +	84
	Decimal adjust for subtraction	—	-	—	+ + + +	94
	$(A) \leftarrow (AL) \; \forall \; (TL)$	—	-	—	+ + R –	52
	$(A) \leftarrow (AL) \forall d8$	-	-	-	+ + R –	54
	$(A) \leftarrow (AL) \forall (dir)$	-	-	-	+ + R –	55
	$(A) \leftarrow (AL) \forall ((EP))$	-	-	—	+ + R –	57
	$(A) \leftarrow (AL) \forall ((IX) + off)$	-	-	—	+ + R –	56
	$(A) \leftarrow (AL) \ \forall \ (Ri)$	-	-	—	+ + R –	58 to 5F
	$(A) \leftarrow (AL) \land (TL)$	-	-	—	+ + R –	62
	$(A) \leftarrow (AL) \land d8$	-	-	_	++R-	64
AND A,dir 3 2 (A	$(A) \leftarrow (AL) \land (dir)$	-	—	-	+ + R –	65

 Table 3
 Arithmetic Operation Instructions (62 instructions)

Mnemonic	~	#	Operation	TL	ΤН	AH	NZVC	OP code
AND A,@EP	3	1	$(A) \leftarrow (AL) \land ((EP))$	-	_	_	+ + R –	67
AND A,@IX +off	4	2	$(A) \leftarrow (AL) \land ((IX) + off)$	_	_	_	+ + R –	66
AND A,Ri	3	1	$(A) \leftarrow (AL) \land (Ri)$	_	_	_	+ + R –	68 to 6F
OR A	2	1	$(A) \leftarrow (AL) \lor (TL)$	—	_	_	+ + R –	72
OR A,#d8	2	2	$(A) \leftarrow (AL) \lor d8$	_	_	_	+ + R –	74
OR A,dir	3	2	$(A) \leftarrow (AL) \lor (dir)$	_	_	_	+ + R –	75
OR A,@EP	3	1	$(A) \leftarrow (AL) \lor ((EP))$	—	_	_	+ + R –	77
OR A,@IX +off	4	2	$(A) \leftarrow (AL) \lor ((IX) + off)$	_	_	_	+ + R –	76
OR A,Ri	3	1	$(A) \leftarrow (AL) \lor (Ri)$	—	_	_	+ + R –	78 to 7F
CMP dir,#d8	5	3	(dir) – d8	—	_	_	++++	95
CMP @EP,#d8	4	2	((EP)) – d8	_	_	_	++++	97
CMP @IX +off,#d8	5	3	((IX) + off) – d8	—	_	_	++++	96
CMP Ri,#d8	4	2	(Ri) – d8	—	_	_	++++	98 to 9F
INCW SP	3	1	$(SP) \leftarrow (SP) + 1$	_	_	_		C1
DECW SP	3	1	$(SP) \leftarrow (SP) - 1$	-	-	-		D1

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
BZ/BEQ rel	3	2	If Z = 1 then PC \leftarrow PC + rel	_	_	_		FD
BNZ/BNE rel	3	2	If Z = 0 then PC \leftarrow PC + rel	_	_	_		FC
BC/BLO rel	3	2	If C = 1 then PC \leftarrow PC + rel	_	_	_		F9
BNC/BHS rel	3	2	If C = 0 then PC \leftarrow PC + rel	_	_	_		F8
BN rel	3	2	If N = 1 then PC \leftarrow PC + rel	_	_	_		FB
BP rel	3	2	If N = 0 then PC \leftarrow PC + rel	_	_	_		FA
BLT rel	3	2	If V \forall N = 1 then PC \leftarrow PC + rel	_	_	_		FF
BGE rel	3	2	If $V \forall N = 0$ then $PC \leftarrow PC + rel$	_	_	_		FE
BBC dir: b,rel	5	3	If (dir: b) = 0 then PC \leftarrow PC + rel	_	_	_	-+	B0 to B7
BBS dir: b,rel	5	3	If (dir: b) = 1 then PC \leftarrow PC + rel	_	_	_	-+	B8 to BF
JMP @A	2	1	$(PC) \leftarrow (A)$	_	_	_		E0
JMP ext	3	3	$(PC) \leftarrow ext$	_	_	_		21
CALLV #vct	6	1	Vector call	_	_	_		E8 to EF
CALL ext	6	3	Subroutine call	_	_	_		31
XCHW A,PC	3	1	$(PC) \leftarrow (A), (A) \leftarrow (PC) + 1$	_	_	dH		F4
RET	4	1	Return from subrountine	_	_	—		20
RETI	6	1	Return form interrupt	-	-	-	Restore	30

Table 5	Other Instructions (9 in	structions)
---------	--------------------------	-------------

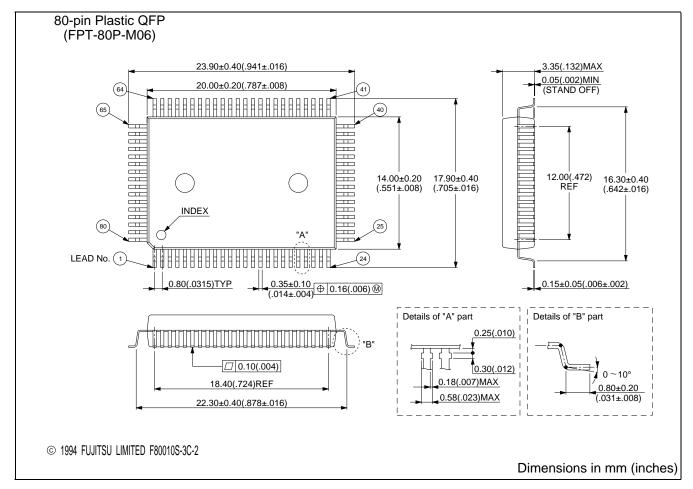
Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
PUSHW A	4	1		_	_	_		40
POPW A	4	1		_	_	dH		50
PUSHW IX	4	1		_	_	_		41
POPW IX	4	1		_	_	_		51
NOP	1	1		_	_	_		00
CLRC	1	1		_	_	_	R	81
SETC	1	1		_	_	_	S	91
CLRI	1	1		—	—	—		80
SETI	1	1		—	—	—		90

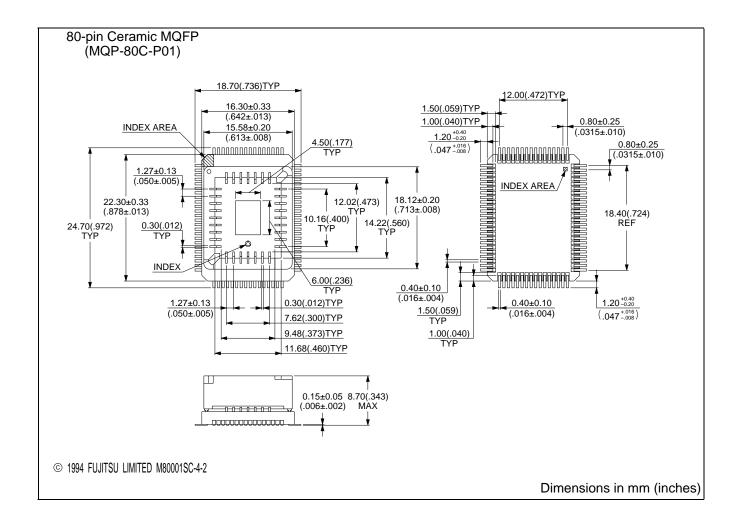
41

MB89920 Series

■ INSTRUCTION MAP

11131																
ш	MOVW A,PC	MOVW A,SP	MOVW A,IX	MOVW A,EP	XCHW A,PC	XCHW A,SP	XCHW A,IX	XCHW A,EP	BNC rel	BC rel	P Tel	BN rel	BNZ rel	Z rel	BGE rel	BLT rel
ш	@A	∢	A	⊲	9	9	9	9	Q	<u>Σ.</u>	LV BP #2	ŝ	4	LV BZ #5	ę	4
	JMP	MO	MOVW IX,	MOV	Μ	2	Σ	2	CALLV	, CALLV						
۵	DECWA	DECW SP	DECW	DECW EP	MOVW ext,A	MOVW dir,A	MOVW @IX +d,A	MOVW @EP,A	DEC R0	DEC R1	DEC R2	DEC R3	DEC R4	DEC R5	DEC R6	DEC R7
υ	INCW A	INCW SP	NCW IX	INCW	MOVW A,ext	MOVW A,dir	MOVW A,@IX +d	MOVW A,@EP	NC R0	NC R1	INC R2	INC R3	INC R4	INC R5	INC R6	INC R7
			_													
В	BBC dir: 0,rel	BBC dir: 1,rel	BBC dir: 2,rel	BBC dir: 3,rel	BBC dir: 4,rel	BBC dir: 5,rel	BBC dir: 6,rel	BBC dir: 7,rel	BBS dir: 0,rel	BBS dir: 1,rel	BBS dir: 2,rel	BBS dir: 3,rel	BBS dir: 4,rel	BBS dir: 5,rel	BBS dir: 6,rel	BBS dir: 7,rel
۷	CLRB dir: 0	CLRB dir: 1	CLRB dir: 2	CLRB dir: 3	CLRB dir: 4	CLRB dir: 5	CLRB dir: 6	CLRB dir: 7	SETB dir: 0	SETB dir: 1	SETB dir: 2	SETB dir: 3	SETB dir: 4	SETB dir: 5	SETB dir: 6	SETB dir: 7
6	SETI	SETC	MOV A,@A	MOVW A,@A	DAS	CMP dir,#d8	CMP @IX +d,#d8	CMP @EP,#d8	CMP R0,#d8	CMP R1,#d8	CMP R2,#d8	CMP R3,#d8	CMP R4,#d8	CMP R5,#d8	CMP R6,#d8	CMP R7,#d8
œ	CLRI	CLRC	MOV @A,T	MOVW @A,T	DAA	MOV dir,#d8	MOV @IX +d,#d8	MOV @EP,#d8	MOV R0,#d8	MOV R1,#d8	MOV R2,#d8	MOV R3,#d8	MOV R4,#d8	MOV R5,#d8	MOV R6,#d8	MOV R7,#d8
7	MOVW A,PS	MOVW PS,A	or A	orw A	OR A,#d8	OR A,dir	OR A,@IX +d	OR A,@EP	OR A,R0	OR A,R1	OR A,R2	OR A,R3	OR A,R4	OR A,R5	OR A,R6	OR A,R7
و	MOV A,ext	MOV ext,A	AND A	ANDW A	AND A,#d8	AND A,dir	AND A,@IX +d	AND A,@EP	AND A,R0	AND A,R1	AND A,R2	AND A,R3	AND A,R4	AND A,R5	AND A,R6	AND A,R7
5	POPW A	POPW IX	XOR A	XORW A	XOR A,#d8	XOR A,dir	XOR A,@IX +d	XOR A,@EP	XOR A,R0	XOR A,R1	XOR A,R2	XOR A,R3	XOR A,R4	XOR A,R5	XOR A,R6	XOR A,R7
4	PUSHW A	PUSHW IX	ХСН А, Т	XCHW A, T		MOV dir,A	MOV @IX +d,A	MOV @EP,A	MOV R0,A	MOV R1,A	MOV R2,A	MOV R3,A	MOV R4,A	MOV R5,A	MOV R6,A	MOV R7,A
ю	RETI	CALL addr16	subc A	subcw A	SUBC A,#d8	SUBC A,dir	SUBC A,@IX +d	SUBC A,@EP	SUBC A,R0	SUBC A,R1	SUBC A,R2	SUBC A,R3	SUBC A,R4	SUBC A,R5	SUBC A,R6	SUBC A,R7
2	RET	JMP addr16	ADDC A	ADDCW A	ADDC A,#d8	ADDC A,dir	ADDC A,@IX +d	ADDC A,@EP	ADDC A,R0	ADDC A,R1	ADDC A,R2	ADDC A,R3	ADDC A,R4	ADDC A,R5	ADDC A,R6	ADDC A,R7
-	SWAP	DIVU A	CMP A	CMPW A	CMP A,#d8	CMP A,dir	CMP A,@IX +d	CMP A,@EP	CMP A,R0	CMP A,R1	CMP A,R2	CMP A,R3	CMP A,R4	CMP A,R5	CMP A,R6	CMP A,R7
0	AON	MULU A	ROLC	RORC A	MOV A,#d8	MOV A,dir	MOV A,@IX +d	MOV A,@EP	MOV A,R0	MOV A,R1	MOV A,R2	MOV A,R3	MOV A,R4	MOV A,R5	MOV A,R6	MOV A,R7
LH	0	.	2	3	4	5	9	7	œ	6	A	۵	ပ	٥	ш	ш


■ MASK OPTIONS


No.	Part number	MB89923 MB89925	MB89P928	MB89PV920
	Specifying procedure	Specify when ordering masking	Set with EPROM programmer	Setting not possible
1	Pull-up resistors P00 to P07, P20 to P27, P30 to P32, P90 to P97	P00 to P07, P20 to P27, P30 to P32, P90 to P97 : Selectable by pin	Can be set per pin	No pull-up resistor
2	Power-on reset Power-on reset provided No power-on reset	Selectable	Can be set	With power-on reset
3	Oscillation stabilization time slection (at 8 Hz) Cystal oscillator (32.8 ms/8MHz) Ceramic oscillator (2.05 ms/8 MHz)	Selectable	Can be set	Crystal oscillator (32.8 ms/8 MHz)
4	Reset pin output Reset output provided No reset output	Selectable	Can be set	With reset output
5	Watchdog timer Activation prohibited Automatic activation	Selectable	Can be set	Inactive by default (Can be activated by software)
6	Low-voltage detection reset circuit Activation prohibited Automatic activation	Selectable	Can be set	Inactive by default (Can be activated by software)
7	Low-voltage detection reset output Output disabled Output enabled	Selectable	Can be set	Inactive by default (Can be activated by software)
8	Low-voltage detection voltage $3.3 V \pm 0.3 V$ $3.6 V \pm 0.3 V$ $4.0 V \pm 0.3 V$	Selectable	Can be set	Register setting
9	Low-voltage detection reset/watchdog timer function selection Register setting valid Option setting valid	Selectable	Can be set	Fixed to register setting

■ ORDERING INFORMATION

Part number	Package	Remarks
MB89923PF MB89925PF MB89P928PF	80-pin Plastic QFP (FPT-80P-M06)	
MB89PV920CF	80-pin Ceramic MQFP (MQP-80C-P01)	

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F0005 © FUJITSU LIMITED Printed in Japan