

UPDATED 07/25/2007

8.50-9.60 GHz 12-Watt Internally Matched Power FET

FEATURES

- 8.50-9.60GHz Bandwidth
- Input/Output Impedance Matched to 50 Ohms
- +41.5 dBm Output Power at 1dB Compression
- 7.0 dB Power Gain at 1dB Compression
- 34% Power Added Efficiency
- -46 dBc IM3 at PO = 30.5 dBm SCL
- 100% Tested for DC, RF, and R_{TH}

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

SYMBOL	PARAMETERS/TEST CONDITIONS ¹	MIN	TYP	MAX	UNITS
P _{1dB}	Output Power at 1dB Compression $f = 8.50-9.60GHz$ $V_{DS} = 10 \text{ V}, I_{DSQ} \approx 3200\text{mA}$	40.5	41.5		dBm
G _{1dB}	Gain at 1dB Compression $f = 8.50-9.60GHz$ $V_{DS} = 10 \text{ V}, I_{DSQ} \approx 3200\text{mA}$	6.0	7.0		dB
∆G	Gain Flatness $f = 8.50-9.60GHz$ $V_{DS} = 10 \text{ V}, I_{DSQ} \approx 3200\text{mA}$			±0.6	dB
PAE	Power Added Efficiency at 1dB Compression V_{DS} = 10 V, $I_{DSQ} \approx 3200$ mA f = 8.50-9.60GHz		34		%
ld₁ _{dB}	Drain Current at 1dB Compression f = 8.50-9.60GHz		3300	3700	mA
IM3	Output 3rd Order Intermodulation Distortion Δf = 10 MHz 2-Tone Test; Pout = 30.5 dBm S.C.L ² V_{DS} = 10 V, $I_{DSQ} \approx 65\%$ IDSS f = 9.60GHz	-43	-46		dBc
I _{DSS}	Saturated Drain Current V _{DS} = 3 V, V _{GS} = 0 V		6200	7800	mA
V_P	Pinch-off Voltage $V_{DS} = 3 \text{ V}, I_{DS} = 62 \text{ mA}$		-2.5	-4.0	V
R _{TH}	Thermal Resistance ³		2.5	3.0	°C/W

Note: 1. Tested with 50 Ohm gate resistor.

ABSOLUTE MAXIMUM RATING^{1,2}

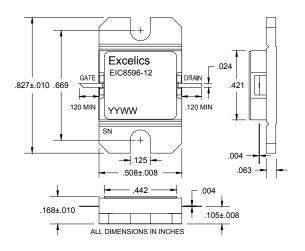
(5001011 III) ((III) (III)					
SYMBOLS	PARAMETERS	ABSOLUTE ¹	CONTINUOUS ²		
Vds	Drain-Source Voltage	15	10V		
Vgs	Gate-Source Voltage	-5	-3V		
lgsf	Forward Gate Current	129.6mA	43.2mA		
lgsr	Reserve Gate Current	-21.6mA	-7.2mA		
Pin	Input Power	40.5dBm	@ 3dB Compression		
Tch	Channel Temperature	175°C	175 °C		
Tstg	Storage Temperature	-65 to +175 °C	-65 to +175 °C		
Pt	Total Power Dissipation	50W	50W		

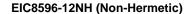
Note: 1. Exceeding any of the above ratings may result in permanent damage.

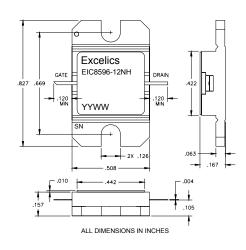
^{2.} S.C.L. = Single Carrier Level.

^{3.} Overall Rth depends on case mounting.

^{2.} Exceeding any of the above ratings may reduce MTTF below design goals.


UPDATED 07/25/2007


8.50-9.60 GHz 12-Watt Internally Matched Power FET


PACKAGES OUTLINE

Dimensions in inches, Tolerance + .005 unless otherwise specified

EIC8596-12 (Hermetic)

Caution! ESD sensitive device.

Caution! ESD sensitive device.

ORDERING INFORMATION

Part Number	Packages	Grade ¹	f _{Test} (GHz)	P _{1dB} (min)	IM ₃ (min) ²
EIC8596-12	Hermetic	Industrial	8.50-9.60GHz	40.5	-43
EIC8596-12NH	Non-Hermetic	Industrial	8.50-9.60GHz	40.5	-43

Notes:

- 1. Contact factory for military and hi-rel grades.
- 2. Exact test conditions are specified in "Electrical Characteristics" table.

DISCLAIMER

EXCELICS SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. EXCELICS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

LIFE SUPPORT POLICY

EXCELICS SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF EXCELICS SEMICONDUCTOR, INC. AS HERE IN:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness