

Structure Silicon Monolithic Integrated Circuit

Product Series 7-Channel Switching Regulator Controller for Digital Camera

Type **BD9759MWV**

Package Fig. 1
Pin Assignment Fig. 2
Block Diagram Fig. 3
Application Fig. 4

Function • 3.3V minimum input operating

- Contains cross converter (1ch), step-down converter (3ch), inverting (1ch), step-up converter (1ch), step-up converter for LED (1ch),
- Contains LD0 (1ch), constant current driver for LED (1ch)
- Contains load switch for step-up converter
- Contains output interception circuit when over load
- It is possible separately control except CH1, CH2, CH3
- Thermally enhanced UQFN056V7070 package(7mm x 7mm, 0.4mm pitch)

O Absolute maximum ratings (Ta=25°C)

Parameter	Symbol	Limits	Units
Power Supply Voltage	VCC, PVCC	− 0. 3 ~ 12	٧
Power Supply Voltage	PVCCH, PVCCL	−0. 3 ~ 15	٧
	HX2, 3, 4	− 0. 3 ~ 12	٧
	LX11	− 0. 3 ~ 12	٧
Power Input Voltage	VOUT1, LX12	− 0. 3 ~ 7	٧
	LX6, 7	− 0. 3 ~ 20	٧
	SWIN6, 7	− 0. 3 ~ 20	٧
	REGIN, LEDIN	-0.3~12	٧
Power Dissipation	Pd	420 (*1)	mW
rower Dissipation	ı u	930 (*2)	mW
Operating Temperature	Topr	−25~+85	°C
Junction Temperature	Tstg	−55~+150	°C

^(*1)Without external heat sink, the power dissipation reduces by 4.2mW/°C over 25°C.

O Recommended operating conditions

O Recommended operating conditions						
Parameter	Cumbal		Limits			
	Symbol	MIN	TYP	MAX	Units	
VREF Pin Connecting Capacitor	CVREF	0. 47	1.0	4. 7	μF	
VREGA Pin Connecting Capacitor	CVREGA	0. 47	1.0	4. 7	μF	
SOP Pin Connecting Capacitor	CSCP	0. 001	_	2. 2	μF	
REGOUT Pin Connecting Capacitor	CREGOUT	0. 47	1.0	10	μF	
LEDOUT Pin Connecting Capacitor	CLEDOUT	0. 47	1.0	10	μF	
[Oscillator]						
Oscillator Frequency	Fosc	0.6	1. 2	1.5	MHz	
OSC Timing Resistor	RT	47	68	120	kΩ	
[Driver]						
LX11 Pin Input Voltage	VLX11	_	_	10	٧	
CH1 Output set up area	WOUT1	3. 9	_	5. 5	٧	
HX2, 3, 4 Pin Input Voltage	VHX2, 3, 4	_	_	10	٧	
CH1 Output Current	loutch1	-	_	1	Α	
CH2 Output Current	loutch2	_	_	600	mA	
CH3, 4 Output Current	loutch3, 4	-	_	500	mA	
CH6 Output Current	loutch6	_	_	100	mA	
CH7 Output Current	loutch7	_	_	50	mA	
[SW Circuit]						
SWOUT6 Pin Source Current	ISWOUT6	_	_	100	mA	
SWOUT7 Pin Source Current	ISWOUT7	_	_	50	mA	

It is strongly recommended that a capacitor be connect to VREF, VREGA pin to prevent oscillation.
 The IC may not operate correctly by an unsettled state of the internal logic when voltage is applied on VCC rapidly while STB pin is ON. Make sure STB pin is OFF in this case.

O Recommended operating conditions

Parameter	Symbo I	Limit	Unit
	VCC, PVCC	3.3 ~ 10	٧
Power Supply Voltage	PVCCL	3. 75 ~ 14	٧
	PVCCH	VCC+3. 75 ∼ 14	٧

Status of this document

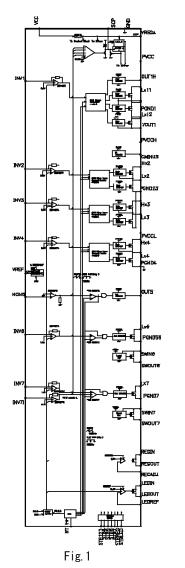
The Japanese version of this document is the official specification. Please use the translation version of this document as a reference to expedite understanding of the official version. If these are any uncertainty in translation version of this document, official version takes priority.

^(*2) Reduced by 9.3mW/°C over 25°C, when mounted on a POB (70.0mm \times 70.0mm \times 1.6mm). Recommended operating conditions

O Electrical characteristics (Ta=25°C, VCC=5V, RT=68kohm, STB1 \sim 7=3V)

	Standard value		ie			Test	
Parameter	Symbol	MIN	TYP	MAX	Units	Conditions	circuit
[Internal Regulator]							1
Output Voltage	VREGA	2.4	2.5	2.6	٧	lreg=1mA	
Prevention Circuit o	f Miss Operatio	n by Low Vol	tage Input]				
Threshold Voltage 1	Vstd1	3. 35	3. 50	3. 65	٧	PVCCL Monitor	
Threshold Voltage 2	Vstd2	2.85	3.0	3. 15	٧	PVCC Monitor	
Threshold Voltage 3	Vstd3	-	2. 15	2.30	٧	VREGA Monitor	
[Short Circuit Protection]	•						
Timer Start Threshold Voltage	Vtc	2.1	2.2	2.3	٧	FB Pin Monitor	
SOP Out Source Voltage	Isop	0.5	1.0	1.5	μA	VSOP=0. 1V	
SOP Threshold Voltage	Vtsc	0. 45	0.50	0. 55	٧		
Stand by Voltage	Vssc	-	22	170	тV		
[Oscillator]	I.				ı		
Frequency CH1~4	fosc1	1.0	1.2	1.4	MHz	RT=68kΩ	
Frequency CH5~7	fosc2	0.5	0.6	0.7	MHz	RT=68kΩ	
Max duty 2, 3, 4 (Step Down)	Dmax1d	-	-	100	%	Vscp=0V ※	
Max duty 5, 6, 7	Dmax2	86	92	96	%		
Max duty CH1 Lx11	Dmax3	-	-	100	%		
Max duty CH1 Lx12	Dmax4	78	84	90	%		
[Error AMP]							
Input Bias Ourrent	IIW	-	0	50	nA	INV1~7, NON5=7. OV	
INV Threshold Voltage 1	VINV1	0. 79	0.80	0.81	٧	0H1~4	
INV Threshold Voltage 2	VINV2	0. 99	1.00	1.01	٧	CH6, 7V	
INV Threshold Voltage 3	VINV3	380	400	420	mV	CH71	
Base Bias Voltage Vref for Inverted Channel]							
CH5 Output Voltage	VOUT5	-6.09	-6.00	-5. 91	٧	NON5 12kΩ, 72kΩ	
Line Regulation	DVLi	-	4. 0	12.5	mV	VBAT=4.8~ 8.4V	
Load Regulation	DVLo	-	1.0	7.5	mV	Iref=10 <i>μ</i> A~ 100 <i>μ</i> A	
Output Current when shorted	los	0. 2	1.0	-	mA	Vref=0V	
[Soft Start]							
CH1, 2 Soft Start Time	Tss1, Tss2	3.4	4.4	5. 4	msec	RT=68kΩ	
CH3, 4 Soft Start Time	Tss3, Tss4	1.2	2.2	3. 2	msec	RT=68kΩ	
CH5 Soft Start Time	Tss5	4.4	5. 4	6.6	msec	RT=68kΩ	
CH6, 7 Soft Start Time	Tss6, Tss7	4.4	5. 4	6. 6	msec	RT=68kΩ	

			Standard value					Total
	Parameter		MIN	TYP	MAX	Units	Conditions	Test circuit
[Output [[Output Driver]							
OUT1H Driv	er Output Voltage H	Vout1H	PV00-1.0	PV00-0.5	-	٧	IOUT1H=50mA	
OUT1H Driv	ver Output Voltage L	Vout1L	-	0.5	1.0	٧	IOUT1L=50mA	
OH1 Lx11 F	Pin Lowside SW	RON11N	-	300	450	mΩ	PV00=5V	
	Pin Highside SW	RON12p	-	250	400	mΩ	VOUT1=5. OV	
	Pin Lowside SW	RON12N	-	150	300	mΩ	PV00=5V	
CH2, 3, 4 Hi	ighside SW	R0N2345p	-	300	450	mΩ	Hx=5V, PV0C=5V PV00H=10V	
CH2, 3, 4 Lo	owside SW	RON2345N	-	300	450	mΩ	Hx=5V, PV0C=5V PV00H=10V	
	SW ON Resistance	RON6N	-	500	700	mΩ	PVCCL=5V	
CH7 NMOS S	SW ON Resistance	RON7N	-	700	900	mΩ	PVCCL=5V	
CH5 Driver	Output Voltage H	Vout5H	PV00-1.0	PV00-0.5	-	٧	10UT5=50mA, NON5=0. 2V PV0C=5V	
CH5 Driver	Output Voltage L	Vout5L	-	0.5	1.0	٧	10UT5=-50mA, NON5=-0. 2V	
[Regulato	or]						•	
Feed back	voltage 1	WF1	0.98	1.0	1.02	٧		
Maximum ou	itput current 1	Imax1	-	-	150	mA		
Difference voltage 1	e of input/output	ΔV1	-	150	300	тV	lo=50mA	
Load stabi	ility 1	∆vol1	-	10	50	тV	lo=0. 1∼10mA	
Ripple rej	jection	RR1	40	50	-	dВ	f=120Hz, VRR=-20dBV, lo=1mA	
[Constant	t current driver]							
Feed back	Voltage 2	VNF2	380	400	420	mV		
Maximum ou	utput current 2	Imax2	-	-	50	mA		
Difference voltage 2	e of input/output	ΔV2	-	100	200	mV	lo=10mA	
[Power or	n switch]							
SWOUT6	Driver Output Voltage	VSAT	VSWIN6 -0.3	VSWIN6 -0.1	-	٧	lo=20mA VSWIN6=5V	
SWOUTE	OFF Leak Ourrent	ILEAK	-	0	5	μΑ	STB6=0V	
CUD IT7	Driver Output Voltage	VSAT	VSWIN7 -0. 3	VSWIN7 -0.1	-	٧	lo=10mA VSWIN7=10V	
SWOUT7	OFF Leak Ourrent	ILEAK	1	0	5	μΑ	STB7=0V	
[STB]								
STB	Active	VSTBH1	2.0	-	11	٧	CIDIO A E C 7	
control Voltage 1	Non Active	VSTBL1	-0.3	-	0.3	٧	STB123, 4, 5, 6, 7	
STB Pull o	down Resistance 1	RSTB1	250	400	700	kΩ	STB123, 4, 5, 6, 7	
STB	Active	VSTBH2	2.0	-	11	٧	CIEDEC I ED	
control Voltage 2	Non Active	VSTBL2	-0.3	-	0.3	٧	STBREG, LED	
STB Pull o	down Resistance 2	RSTB2	250	400	700	kΩ	STBREG, LED	
(Circuit Current)								
STAND-by (ISTB1	-	-	5	μΑ	STB1~7=0V	
	rrent 1 10C current when supplied for the	loc1	-	10	15	mA	INV=2. 5V, NON=-0. 3V	
supplied f	urrent when voltage for the terminal)	loc2	-	95	150	MA	INV=2. 5V, NON=-0. 3V PVCCL=5. 0V	
	urrent 3 urrent when voltage for the terminal)	loc3	-	150	300	μА	INV=2. 5V, NON=-0. 3V PVOCH=10V	


^(%1)The protective circuit start working when circuit is operated by 100% duty. So it is possible to use only for transition time shorter than charge time for SCP.

This product is not designed for normal operation with in a radioactive environment.

00000000000000

O Block Diagram

O Pin Description

Pin Name	Description	Pin Name	Description
VCC	Power supply	VOUT1	CH1 output voltage
PVCC	Power supply for the output circuit	Lx2, 3, 4, 6, 7	Terminal for connecting inductors
PVCCH	Power supply for the output circuit (High side)	INV 1~4, 6, 7	Error AMP inverted input
PVCCL	Power supply for the output circuit (Low side)	INV7I	Error AMP inverted input
PGND1, 23, 4, 56 , 7	Ground terminal for internal FET	NON5	Error AMP non inverted input
GND	Ground terminal	Lx11	Terminal for connecting inductor for CH1 input
VREGA	VREGA output	Lx12	Terminal for connecting inductor for CH1 output
OUTH) OUT5	Terminal for connecting gate of OUT1H, OUT5 PMOS	RT	For connecting a register to set the OSC frequency
REGIN	Input terminal for REG	SOP	For connecting a capacitor to set up the delay time of the SCP
REGOUT	Output terminal for REG	STBREG	REG ON/OFF switch Active H'
REGADJ	Feed back terminal for REG	STBLED	LED ON/OFF switch Active H'
LEDIN	Input terminal for LED	STB123, 4, 5, 6, 7	OH1∼OH7 ON/OFF switch Active H
LEDOUT	Output terminal for LED	SWIN6, 7	Input terminal for Lord SW
LEDREF	Feed back terminal for LED	SWOUT6, 7	Output Terminal for Load SW
Hx2, 3, 4	Input terminal for synchronous High side switch	CMINUS	Terminal for connecting capacitor for Charge Pump
VREF5	Base bias voltage	-	-

O Package

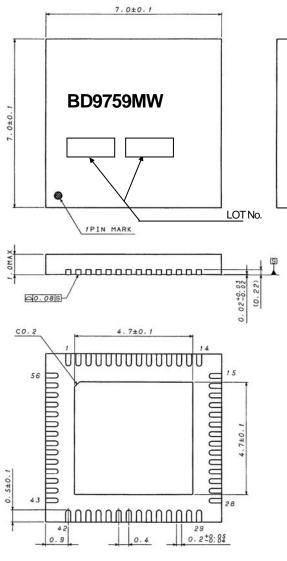


Fig. 2

O Pin Assignment

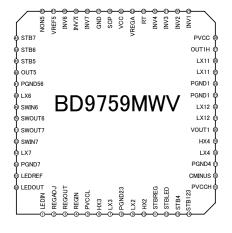


Fig. 3

O Operation Notes

1.) Absolute maximum ratings

This product is produced with strict quality control. However, the IC may be destroyed if operated beyond its absolute maximum ratings. If the device is destroyed by exceeding the recommended maximum ratings, the failure mode will be difficult to determine. (E.g. short mode, open mode) Therefore, physical protection counter-measures (like fuse) should be implemented when operating conditions beyond the absolute maximum ratings anticipated.

2.) GND potential

Make sure GND is connected at lowest potential. All pins except NON5, must not have voltage below GND. Also, NON5 pin must not have voltage below -0.3V on start up.

3) Setting of heat

Make sure that power dissipation does not exceed maximum ratings.

4.) Pin short and mistake fitting

Avoid placing the IC near hot part of the PCB. This may cause damage to IC. Also make sure that the output-to-output and output to GND condition will not happen because this may damage the IC.

5.) Actions in strong magnetic field

Exposing the IC within a strong magnetic field area may cause malfunction.

6.) Mutual impedance

Use short and wide wiring tracks for the main supply and ground to keep the mutual impedance as small as possible. Use inductor and capacitor network to keep the ripple voltage minimum.

7.) Voltage of STB pin

The threshold voltages of STB pin are 0.3V and 1.5V. STB state is set below 0.3V while action state is set beyond 1.5V. The region between 0.3V and 1.5V is not recommended and may cause improper operation.

The rise and fall time must be under 10msec. In case to put capacitor to STB pin, it is recommended to use under $0.01\,\mu\mathrm{F}$.

8) Thermal shutdown circuit (TSD circuit)

The IC incorporates a built-in thermal shutdown circuit (TSD circuit). The thermal shutdown circuit (TSD circuit) is designed only to shut the IC off to prevent runaway thermal operation. It is not designed to protect the IC or guarantee its operation. Do not continue to use the IC after operating this circuit or use the IC in an environment where the operation of this circuit is assumed.

9.) Rush current at the time of power supply injection.

An IC which has plural power supplies, or CMOS IC could have momentary rush current at the time of power supply injection. Please take care about power supply coupling capacity and width of power Supply and GND pattern wiring.

1 O.) IC Terminal Input

This IC is a monolithic IC that has a P- board and P+ isolation for the purpose of keeping distance between elements. A P-N junction is formed between the P-layer and the N-layer of each element, and various types of parasitic elements are then formed.

For example, an application where a resistor and a transistor are connected to a terminal (shown in Fig. 15):

OWhen GND > (terminal A) at the resistor and GND > (terminal B) at the transistor (NPN), the P-N junction operates as a parasitic diode.

OWhen GND > (terminal B) at the transistor (NPN), a parasitic NPN transistor operates as a result of the NHayers of other elements in the proximity of the aforementioned parasitic diode.

Parasitic elements are structurally inevitable in the IC due to electric potential relationships. The operation of parasitic elements Induces the interference of circuit operations, causing malfunctions and possibly the destruction of the IC. Please be careful not to use the IC in a way that would cause parasitic elements to operate. For example, by applying a voltage that is lower than the GND (P-board) to the input terminal.

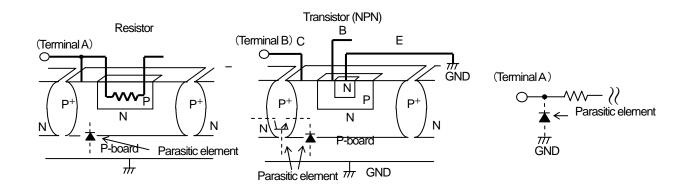


Fig. 3 Simplified structure of a Bipolar IC

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Thank you for your accessing to ROHM product informations.

More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/