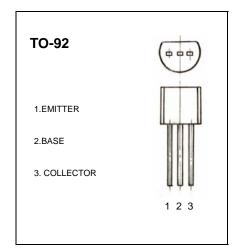


TRANSISTOR(PNP)

PRODUCT SUMMARY

TO-92 Plastic-Encapsulate Transistors

FEATURES


PNP silicon epitaxial planar transistor for switching and Amplifier applications

As complementary type, the NPN transistor 2N3904 is Recommended

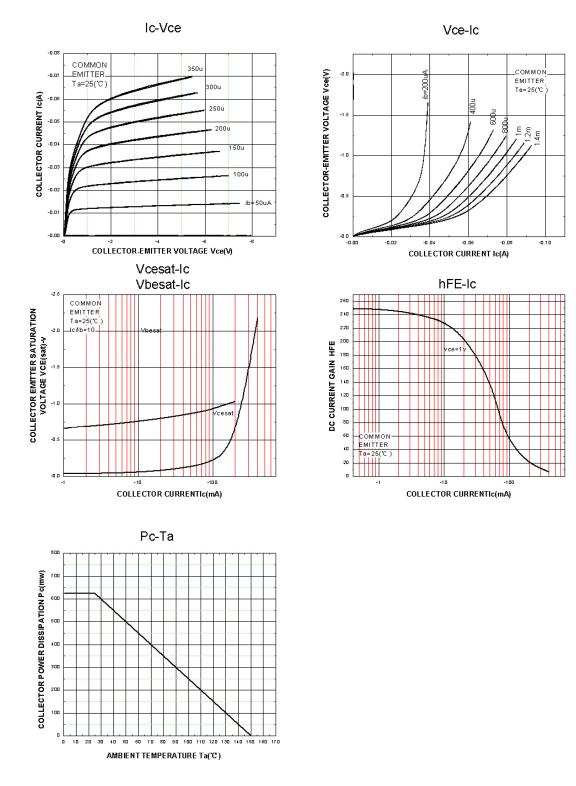
This transistor is also available in the SOT-23 case with the type designation MMBT3906

Symbol	Parameter	Value	Units	
V _{CBO}	Collector-Base Voltage	-40	V	
V _{CEO}	Collector-Emitter Voltage	-40	V	
V _{EBO}	Emitter-Base Voltage	-5	V	
lc	Collector Current -Continuous	-0.2	А	
Pc	Collector Power Dissipation	0.625	W	
TJ	Junction Temperature	150	°C	
T _{stg}	Storage Temperature	-55-150	°C	

MAXIMUM RATINGS (T_A=25 °C unless otherwise noted)

ELECTRICAL CHARACTERISTICS

(Tamb=25 ^oC unless otherwise specified)


Parameter	Symbol	Test conditions	MIN	ТҮР	MAX	UNIT
Collector-base breakdown voltage	V _{(BR)CBO}	$I_{C} = -10 \mu A, I_{E} = 0$	-40			V
Collector-emitter breakdown voltage	V _{(BR)CEO}	I _C =-1mA , I _B =0	-40			V
Emitter-base breakdown voltage	V _{(BR)EBO}	I _E = -10μΑ, I _C =0	-5			V
Collector cut-off current	I _{CBO}	V _{CB} = -40 V,I _E =0			-0.1	μA
Collector cut-off current	I _{CEX}	V _{CE} = -30 V,V _{BE(off)} =-3V			-50	nA
Emitter cut-off current	I _{EBO}	V_{EB} = -5 V , I _C =0			-0.1	μA
	h _{FE1}	V_{CE} =-1 V, I_{C} = -10mA	100		400	
DC current gain	h _{FE2}	V_{CE} =-1 V, I_{C} = -50mA	60			
	h _{FE3}	V_{CE} =-1 V, I_{C} = -100mA	30			
Collector-emitter saturation voltage	V _{CE(sat)}	I_C = -50mA, I_B = -5mA			-0.4	V
Base-emitter saturation voltage	V _{BE(sat)}	I_C = -50mA, I_B = -5mA			-0.95	V
Transition frequency	f⊤	V_{CE} =-20V, I _C = -10mA f = 100MHz	250			MHz
Delay Time	td	V _{CC} =-3V,V _{BE} =-0.5V,			35	ns
Rise Time	tr	I _C =-10mA,I _{B1} =-1mA			35	ns
Storage Time	ts	V _{CC} =-3V,Ic=-10mA			225	ns
Fall Time	tf	I _{B1} =I _{B2} =-1mA			75	ns

CLASSIFICATION OF h_{FE1}

Rank	0	Y	G
Range	100-200	200-300	300-400

TYPICAL CHARACTERISTICS

Information furnished by Silicon Standard Corporation is believed to be accurate and reliable. However, Silicon Standard Corporation makes no guarantee or warranty, expressed or implied, as to the reliability, accuracy, timeliness or completeness of such information and assumes no responsibility for its use, or for infringement of any patent or other intellectual property rights of third parties that may result from its use. Silicon Standard reserves the right to make changes as it deems necessary to any products described herein for any reason, including without limitation enhancement in reliability, functionality or design. No license is granted, whether expressly or by implication, in relation to the use of any products described herein or to the use of any information provided herein, under any patent or other intellectual property rights of Silicon Standard Corporation or any third parties.