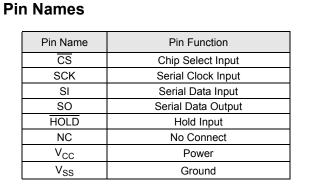


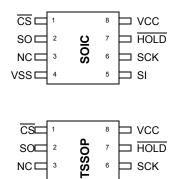
256Kb Low Power Serial SRAMs

32K × 8 bit Organization

Overview

The ON Semiconductor serial SRAM family includes several integrated memory devices including this 256Kb serially accessed Static Random Access Memory, internally organized as 32K words by 8 bits. The devices are designed and fabricated using ON Semiconductor's advanced CMOS technology to provide both high-speed performance and low power. The devices operate with a single chip select (\overline{CS}) input and use a simple Serial Peripheral Interface (SPI) serial bus. A single data in and data out line is used along with a clock to access data within the devices. The N25S830HA devices include a HOLD pin that allows communication to the device to be paused. While paused, input transitions will be ignored. The devices can operate over a wide temperature range of -40°C to +85°C and can be available in several standard package offerings.

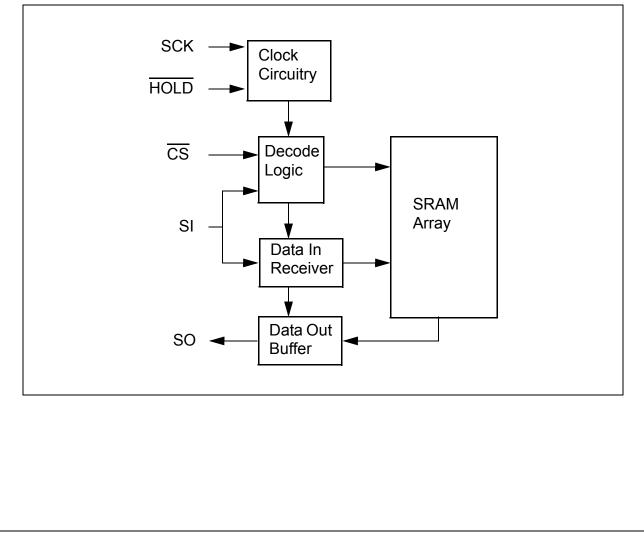

Features


- Power Supply Range 2.7 to 3.6V
- Very low standby current Typical lsb as low as 1uA
- Very low operating current As low as 3mA
- Simple memory control Single chip select (CS) Serial input (SI) and serial output (SO)
- Flexible operating modes Word read and write Page mode (32 word page) Burst mode (full array)
- Organization
 32K x 8 bit
- Self timed write cycles
- Built-in write protection (CS high)
- HOLD pin for pausing communication
- High reliability Unlimited write cycles
- RoHS Compliant Packages
 Green SOIC and TSSOP

Device Options

Part Number	Density	Power Supply (V)	Speed (MHz)	Package	Typical Standby Current	Read/Write Operating Current
N25S830HAS2	256Kb	3.0	20	SOIC	1uA	2 m (@ 1 Mbz
N25S830HAT2	20000	3.0	20	TSSOP	TUA	3 mA @ 1Mhz

Package Configurations



5 🗖 SI

VSS⊏

Functional Block Diagram

Absolute Maximum Ratings¹

Item	Symbol	Rating	Unit
Voltage on any pin relative to V_{SS}	V _{IN,OUT}	–0.3 to V _{CC} +0.3	V
Voltage on V_{CC} Supply Relative to V_{SS}	V _{CC}	–0.3 to 4.5	V
Power Dissipation	PD	500	mW
Storage Temperature	T _{STG}	-40 to 125	°C
Operating Temperature	T _A	-40 to +85	°C
Soldering Temperature and Time	T _{SOLDER}	260ºC, 10sec	°C

 Stresses greater than those listed above may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

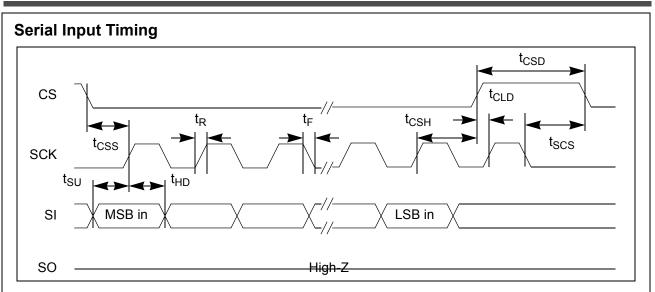
Operating Characteristics (Over Specified Temperature Range)

ltem	Symbol	Test Conditions	Min.	Typ ¹	Max	Unit
Supply Voltage	V _{CC}		2.7		3.6	V
Input High Voltage	V _{IH}		$0.7 \times V_{CC}$		V _{CC} +0.3	V
Input Low Voltage	V _{IL}		-0.3		0.8	V
Output High Voltage	V _{OH}	I _{OH} = -0.4mA	V _{CC} -0.5			V
Output Low Voltage	V _{OL}	I _{OL} = 1mA			0.2	V
Input Leakage Current	ILI	$\overline{\text{CS}} = \text{V}_{\text{CC}}, \text{V}_{\text{IN}} = 0 \text{ to } \text{V}_{\text{CC}}$			0.5	μA
Output Leakage Current	I _{LO}	$\overline{\text{CS}}$ = V _{CC} , V _{OUT} = 0 to V _{CC}			0.5	μA
	I _{CC1}	F = 1MHz, I _{OUT} = 0			3	mA
Read/Write Operating Current	I _{CC2}	F = 10MHz, I _{OUT} = 0			6	mA
Carlon	I _{CC3}	F = fCLK MAX, I _{OUT} = 0			10	mA
Standby Current	I _{SB}	$\overline{\text{CS}}$ = V _{CC} , V _{IN} = V _{SS} or V _{CC}		1	4	μA

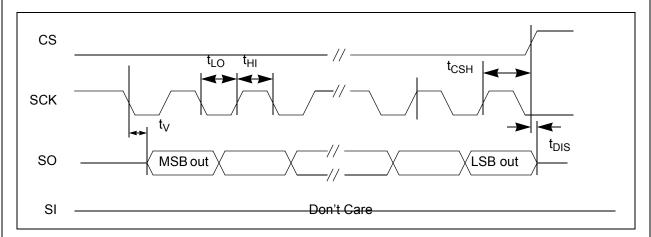
1. Typical values are measured at Vcc=Vcc Typ., $T_A=25^{\circ}C$ and are not 100% tested.

Capacitance¹

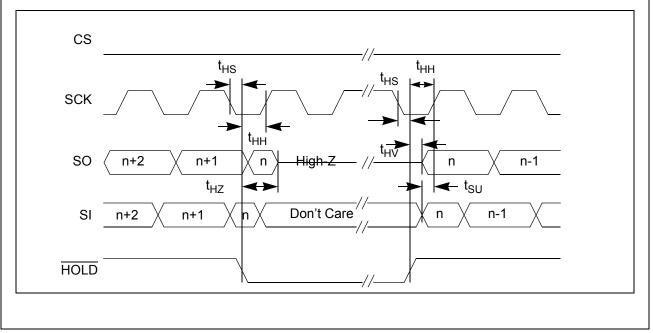
ltem	Symbol	Test Condition	Min	Мах	Unit
Input Capacitance	C _{IN}	V _{IN} = 0V, f = 1 MHz, T _A = 25 ^o C		7	pF
I/O Capacitance	C _{I/O}	V _{IN} = 0V, f = 1 MHz, T _A = 25 ^o C		7	pF


1. These parameters are verified in device characterization and are not 100% tested

Timing Test Conditions


Item	
Input Pulse Level	0.1V _{CC} to 0.9 V _{CC}
Input Rise and Fall Time	5ns
Input and Output Timing Reference Levels	0.5 V _{CC}
Output Load	CL = 100pF
Operating Temperature	-40 to +85 °C

Timing


Item	Symbol	Min.	Max.	Units
Clock Frequency	f _{CLK}		20	MHz
Clock Rise Time	t _R		2	us
Clock Fall Time	t _F		2	us
Clock High Time	t _{HI}	25		ns
Clock Low Time	t _{LO}	25		ns
Clock Delay Time	t _{CLD}	25		ns
CS Setup Time	t _{CSS}	25		ns
CS Hold Time	t _{CSH}	50		ns
CS Disable Time	t _{CSD}	25		ns
SCK to CS	t _{scs}	5		ns
Data Setup Time	t _{SU}	10		ns
Data Hold Time	t _{HD}	10		ns
Output Valid From Clock Low	t _V		25	ns
Output Hold Time	t _{HO}	0		ns
Output Disable Time	t _{DIS}		20	ns
HOLD Setup Time	t _{HS}	10		ns
HOLD Hold Time	t _{HH}	10		ns
HOLD Low to Output High-Z	t _{HZ}	10		ns
HOLD High to Output Valid	t _{HV}		50	ns

Serial Output Timing

Hold Timing

Signal	Name	I/O	Description
CS	Chip Select	I	A low level selects the device and a high level puts the device in standby mode. If \overline{CS} is brought high during a program cycle, the cycle will complete and then the device will enter standby mode. When \overline{CS} is high, SO is in high-Z. \overline{CS} must be driven low after power-up prior to any sequence being started.
SCK	Serial Clock	Ι	Synchronizes all activities between the memory and controller. All incoming addresses, data and instructions are latched on the rising edge of SCK. Data out is updated on SO after the falling edge of SCK.
SI	Serial Data In	Ι	Receives instructions, addresses and data on the rising edge of SCK.
SO	Serial Data Out	0	Data is transferred out after the falling edge of SCK.
HOLD	Hold	I	A high level is required for normal operation. Once the device is selected and a serial sequence is started, this input may be taken low to pause serial communication without resetting the serial sequence. The pin must be brought low while SCK is low for immediate use. If SCK is not low, the Hold function will not be invoked until the next SCK high to low transition. The device must remain selected during this sequence. SO is high-Z during the Hold time and SI and SCK are inputs are ignored. To resume operations, HOLD must be pulled high while the SCK pin is low.

Control Signal Descriptions

Functional Operation

Basic Operation

The 256Kb serial SRAM is designed to interface directly with a standard Serial Peripheral Interface (SPI) common on many standard micro-controllers. It may also interface with other non-SPI ports by programming discrete I/O lines to operate the device.

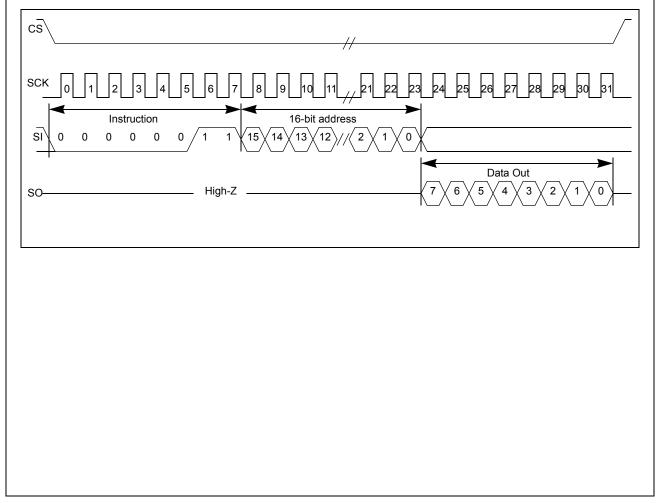
The serial SRAM contains an 8-bit instruction register and is accessed via the SI pin. The \overline{CS} pin must be low and the HOLD pin must be high for the entire operation. Data is sampled on the first rising edge of SCK after \overline{CS} goes low. If the clock line is shared, the user can assert the HOLD input and place the device into a Hold mode. After releasing the HOLD pin, the operation will resume from the point where it was held.

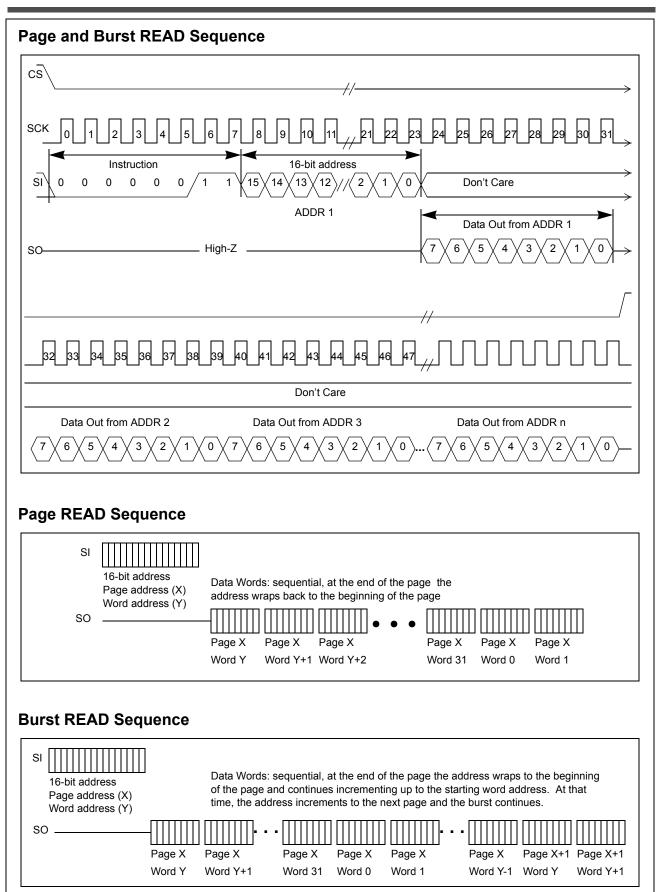
The following table contains the possible instructions and formats. All instructions, addresses and data are transferred MSB first and LSB last.

Instruction Set

Instruction	Instruction Format	Description
READ	0000 0011	Read data from memory starting at selected address
WRITE	0000 0010	Write data to memory starting at selected address
RDSR	0000 0101	Read status register
WRSR	0000 0001	Write status register

READ Operations


The serial SRAM READ is selected by enabling \overline{CS} low. First, the 8-bit READ instruction is transmitted to the device followed by the 16-bit address with the MSB being a don't care. After the READ instruction and addresses are sent, the data stored at that address in memory is shifted out on the SO pin after the output valid time from the clock edge.

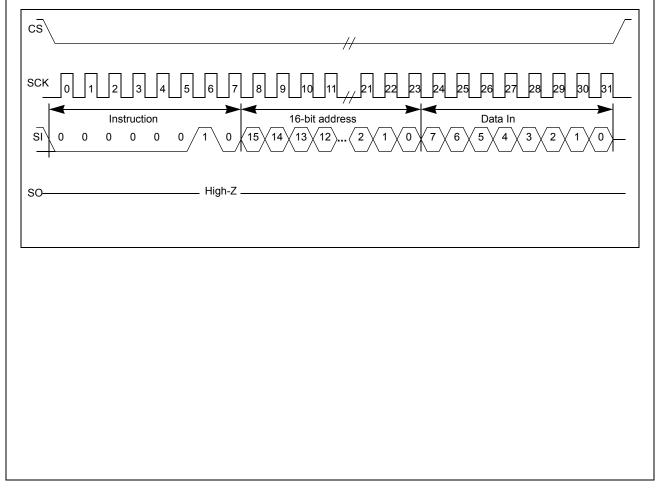

If operating in page mode, after the initial word of data is shifted out, the data stored at the next memory location on the page can be read sequentially by continuing to provide clock pulses. The internal address pointer is automatically incremented to the next higher address on the page after each word of data is read out. This can be continued for the entire page length of 32 words long. At the end of the page, the addresses pointer will be wrapped to the 0 word address within the page and the operation can be continuously looped over the 32 words of the same page.

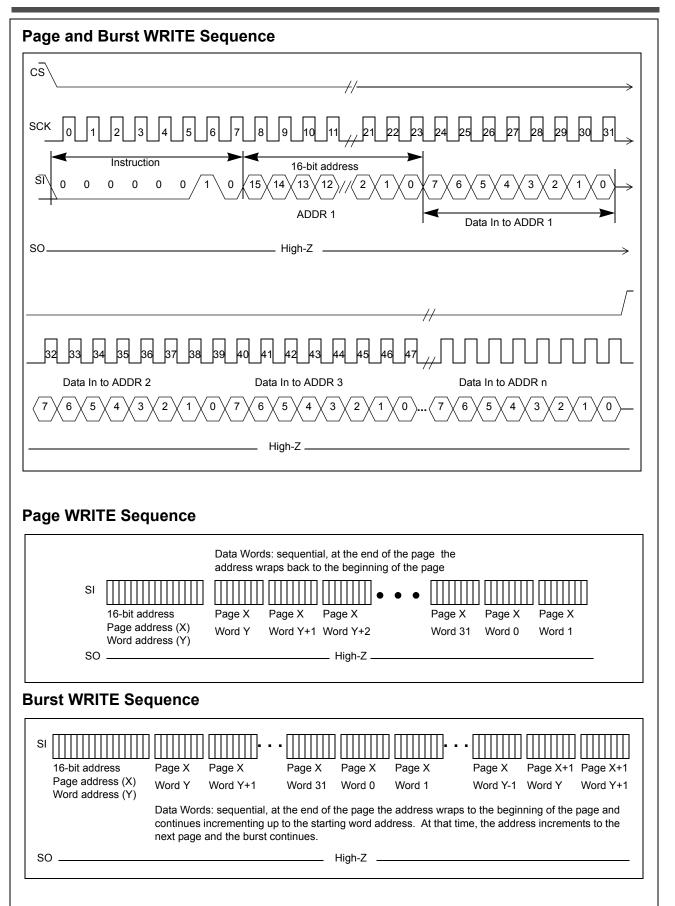
If operating in burst mode, after the initial word of data is shifted out, the data stored at the next memory location can be read sequentially by continuing to provide clock pulses. The internal address pointer is automatically incremented to the next higher address after each word of data is read out. This can be continued for the entire array and when the highest address is reached (7FFFh), the address counter wraps to the address 0000h. This allows the burst read cycle to be continued indefinitely.

All READ operations are terminated by pulling \overline{CS} high.

Word READ Sequence

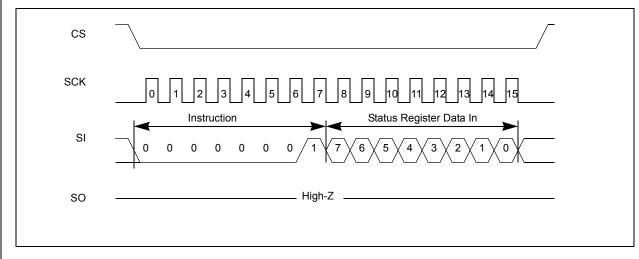
WRITE Operations

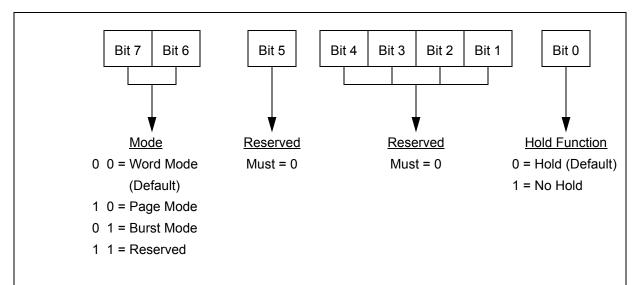

The serial SRAM WRITE is selected by enabling \overline{CS} low. First, the 8-bit WRITE instruction is transmitted to the device followed by the 16-bit address with the MSB being a don't care. After the WRITE instruction and addresses are sent, the data to be stored in memory is shifted in on the SI pin.


If operating in page mode, after the initial word of data is shifted in, additional data words can be written as long as the address requested is sequential on the same page. Simply write the data on SI pin and continue to provide clock pulses. The internal address pointer is automatically incremented to the next higher address on the page after each word of data is written in. This can be continued for the entire page length of 32 words long. At the end of the page, the addresses pointer will be wrapped to the 0 word address within the page and the operation can be continuously looped over the 32 words of the same page. The new data will replace data already stored in the memory locations.

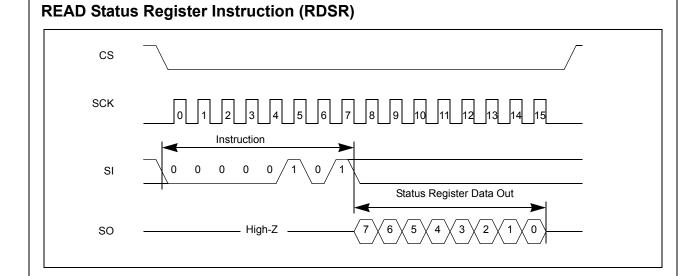
If operating in burst mode, after the initial word of data is shifted in, additional data words can be written to the next sequential memory locations by continuing to provide clock pulses. The internal address pointer is automatically incremented to the next higher address after each word of data is read out. This can be continued for the entire array and when the highest address is reached (7FFFh), the address counter wraps to the address 0000h. This allows the burst write cycle to be continued indefinitely. Again, the new data will replace data already stored in the memory locations.

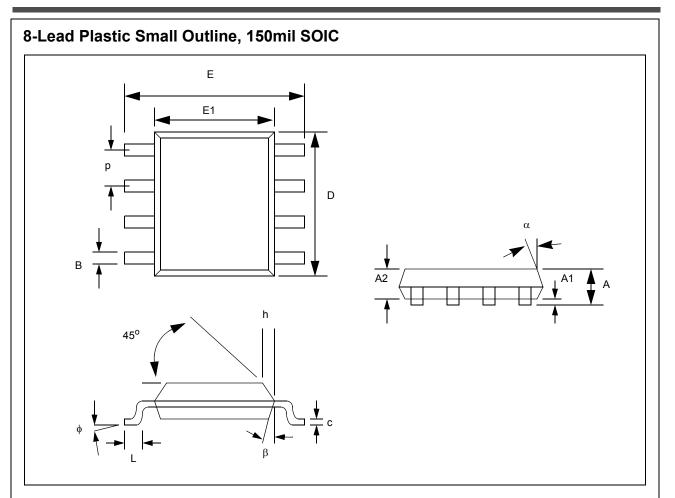
All WRITE operations are terminated by pulling \overline{CS} high.


Word WRITE Sequence


WRITE Status Register Instruction (WRSR)

This instruction provides the ability to write the status register and select among several operating modes. Several of the register bits must be set to a low '0' if any of the other bits are written. The timing sequence to write to the status register is shown below, followed by the organization of the status register.

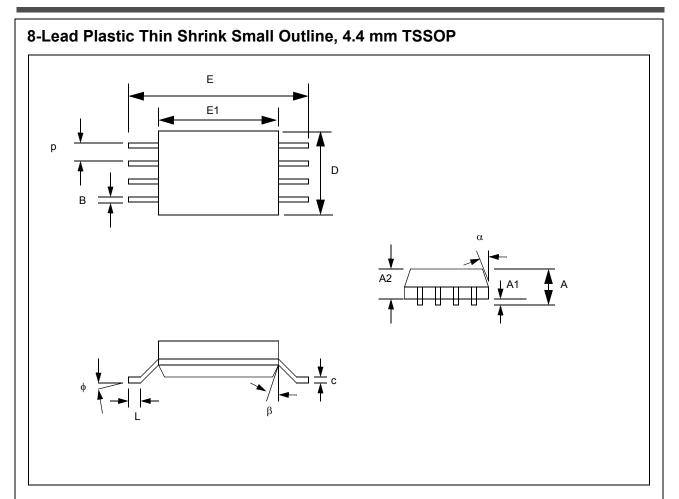

WRITE Status Register Sequence


READ Status Register Instruction (RDSR)

This instruction provides the ability to read the Status register. The register may be read at any time by performing the following timing sequence.

Power-Up State

The serial SRAM enters a know state at power-up time. The device is in low-power standby state with \overline{CS} = 1. A low level on \overline{CS} is required to enter a active state.



Parameter	Sym	Min	Nom	Мах
Pin Pitch	р		1.27	
Overall height	А	1.35	1.55	1.75
Molded Package Thickness	A2	1.32	1.42	1.55
Standoff	A1	0.10	0.18	0.25
Overall Width	E	5.79	6.02	6.20
Molded Package Width	E1	3.71	3.91	3.99
Overall Length	D	4.80	4.90	5.00
Chamfer Distance	h	0.25	0.38	0.51
Foot Length	L	0.48	0.62	0.76
Foot Angle	φ	0	4	8
Lead Thickness	С	0.20	0.23	0.25
Lead Width	В	0.33	0.42	0.51
Mold Draft Angle Top	α	0	12	15
Mold Draft Angle Bottom	β	0	12	15

Note:

1. All dimensions in Millimeters

2. Package dimensions exclude mold flash and protusions.

Parameter	Sym	Min	Nom	Max
Pin Pitch	р		0.65	
Overall height	A			1.10
Molded Package Thickness	A2	0.85	0.90	0.95
Standoff	A1	0.05	0.10	0.15
Overall Width	E	6.25	6.38	6.50
Molded Package Width	E1	4.30	4.40	4.50
Overall Length	D	2.90	3.00	3.10
Foot Length	L	0.50	0.60	0.70
Foot Angle	φ	0	4	8
Lead Thickness	С	0.09	0.15	0.20
Lead Width	В	0.19	0.25	0.30
Mold Draft Angle Top	α	0	5	10
Mold Draft Angle Bottom	β	0	5	10

Note:

1. All dimensions in Millimeters

2. Package dimensions exclude mold flash and protusions.

Ordering Information

Part Number	Package	Shipping Method
N25S830HAS22I	8-Pin SOIC (RoHS Compliant)	Tray
N25S830HAT22I	8-Pin TSSOP (RoHS Compliant)	Tray
N25S830HAS22IT	8-Pin SOIC (RoHS Compliant)	Tape & Reel
N25S830HAT22IT	8-Pin TSSOP (RoHS Compliant)	Tape & Reel

Revision History

Revision #	Date	Change Description
A	October 2005	Initial advance release
В	January 2006	Separated density, removed write protection and added page and burst modes
С	January 2006	Changed packages to green type
D	January 2006	Changed TSSOP pinout to match SOIC
E	September 2006	Split x8 and x16 devices Converted to AMI Semiconductor
F	May 2007	Updated DC parameters
G	October 2007	Maximum frequency changed to 16MHz for 1.8V device
Н	January 2008	Removed ADVANCE from datasheet Changed AMIS address
9	July 2008	Converted to ON Semiconductor and new part numbers

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor PO Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

 N. American Technical Support: 800-282-9855
 Toll
 ON Semiconductor Website: www.onsemi.com

 Free USA/Canada
 Europe, Middle East & Africa Technical Support: Phone
 Order Literature: http://www.onsemi.com/orderlit

 a 421-33-790-2910
 Japan Customer Focus Center: Phone 81-3-5773-3850
 For additional information, please contact your local Sales Representative