1. General description

The PCA9626 is an $\mathrm{I}^{2} \mathrm{C}$-bus controlled 24 -bit LED driver optimized for voltage switch dimming and blinking 100 mA Red/Green/Blue/Amber (RGBA) LEDs. Each LED output has its own 8 -bit resolution (256 steps) fixed frequency individual PWM controller that operates at 97 kHz with a duty cycle that is adjustable from 0% to 99.6% to allow the LED to be set to a specific brightness value. An additional 8-bit resolution (256 steps) group PWM controller has both a fixed frequency of 190 Hz and an adjustable frequency between 24 Hz to once every 10.73 seconds with a duty cycle that is adjustable from 0% to 99.6 \% that is used to either dim or blink all LEDs with the same value.

Each LED output can be off, on (no PWM control), set at its individual PWM controller value or at both individual and group PWM controller values. The PCA9626 operates with a supply voltage range of 2.3 V to 5.5 V and the 100 mA open-drain outputs allow voltages up to 40 V .

The PCA9626 is one of the first LED controller devices in a new Fast-mode Plus (Fm+) family. Fm+ devices offer higher frequency (up to 1 MHz) and more densely populated bus operation (up to 4000 pF).

The active LOW Output Enable input pin ($\overline{\mathrm{OE}}$) blinks all the LED outputs and can be used to externally PWM the outputs, which is useful when multiple devices need to be dimmed or blinked together without using software control.

Software programmable LED Group and three Sub Call ${ }^{2} \mathrm{C}$-bus addresses allow all or defined groups of PCA9626 devices to respond to a common $1^{2} \mathrm{C}$-bus address, allowing for example, all red LEDs to be turned on or off at the same time or marquee chasing effect, thus minimizing ${ }^{2} \mathrm{C}$-bus commands. Seven hardware address pins allow up to 126 devices on the same bus.

The Software Reset (SWRST) Call allows the master to perform a reset of the PCA9626 through the $\mathrm{I}^{2} \mathrm{C}$-bus, identical to the Power-On Reset (POR) that initializes the registers to their default state causing the output NAND FETs to be OFF (LED off). This allows an easy and quick way to reconfigure all device registers to the same condition.

In addition to these features found in PCA9633, PCA9634, PCA9635, PCA9622 and PCA9624, a new feature to control LED output pattern is incorporated in the PCA9626. A new control byte called 'Chase Byte' allows enabling or disabling of selective LED outputs depending on the value of the Chase Byte. This feature greatly reduces the number of bytes to be sent to the PCA9626 when repetitive patterns need to be displayed as in creating a marquee chasing effect.

If the PCA9626 on-chip 100 mA NAND FETs do not provide enough current or voltage to drive the LEDs, then the PCA9635 and the PCA9635 with larger current or higher voltage external drivers can be used.

2. Features

3. Applications

- RGB or RGBA LED drivers
- LED status information
- LED displays
- LCD backlights
- Keypad backlights for cellular phones or handheld devices

4. Ordering information

Table 1. Ordering information

Type number	Topside mark	Package		
	Name	Description	Version	
PCA9626B	PCA9626	LQFP48	plastic low profile quad flat package; 48 leads; body $7 \times 7 \times 1.4$ mm	SOT313-2
PCA9626BS	PCA9626	HVQFN48	plastic thermal enhanced very thin quad flat package; no leads; 48 terminals; body $6 \times 6 \times 0.85 \mathrm{~mm}$	SOT778-4

Fig 1. Block diagram of PCA9626

6. Pinning information

6.1 Pinning

Fig 2. Pin configuration for LQFP48

Fig 3. Pin configuration for HVQFN48

6.2 Pin description

Table 2. Pin description

Symbol	Pin	Type	Description
LED22	43	O	LED driver 22
LED23	44	0	LED driver 23
$\mathrm{V}_{\text {SS }}$	$\begin{aligned} & 1,6,7,12,16,21,25, \\ & 30,31,36,37,45,48[\underline{[1]} \end{aligned}$	power supply	supply ground
A0	46	1	address input 0
A1	47	1	address input 1
LED0	2	0	LED driver 0
LED1	3	0	LED driver 1
LED2	4	0	LED driver 2
LED3	5	0	LED driver 3
LED4	8	0	LED driver 4
LED5	9	0	LED driver 5
LED6	10	0	LED driver 6
LED7	11	0	LED driver 7
A2	13	1	address input 2
A3	14	1	address input 3
A4	15	1	address input 4
LED8	17	0	LED driver 8
LED9	18	0	LED driver 9
LED10	19	0	LED driver 10
LED11	20	0	LED driver 11
A5	22	I	address input 5
A6	23	1	address input 6
OE	24	1	active LOW output enable
LED12	26	0	LED driver 12
LED13	27	0	LED driver 13
LED14	28	0	LED driver 14
LED15	29	0	LED driver 15
LED16	32	0	LED driver 16
LED17	33	0	LED driver 17
LED18	34	0	LED driver 18
LED19	35	0	LED driver 19
SCL	38	1	serial clock line
SDA	39	I/O	serial data line
$V_{\text {DD }}$	40	power supply	supply voltage
LED20	41	0	LED driver 20
LED21	42	0	LED driver 21

[1] HVQFN48 package supply ground is connected to both V_{SS} pins and exposed center pad. V_{SS} pins must be connected to supply ground for proper device operation. For enhanced thermal, electrical, and board level performance, the exposed pad needs to be soldered to the board using a corresponding thermal pad on the board and for proper heat conduction through the board, thermal vias need to be incorporated in the PCB in the thermal pad region.

7. Functional description

Refer to Figure 1 "Block diagram of PCA9626".

7.1 Device addresses

Following a START condition, the bus master must output the address of the slave it is accessing.

There are a maximum of 128 possible programmable addresses using the 7 hardware address pins. Two of these addresses, Software Reset and LED All Call, cannot be used because their default power-up state is ON, leaving a maximum of 126 addresses. Using other reserved addresses, as well as any other Sub Call address, will reduce the total number of possible addresses even further.

7.1.1 Regular $\mathrm{I}^{2} \mathrm{C}$-bus slave address

The $\mathrm{I}^{2} \mathrm{C}$-bus slave address of the PCA9626 is shown in Figure 4. To conserve power, no internal pull-up resistors are incorporated on the hardware selectable address pins and they must be pulled HIGH or LOW externally.

Remark: Using reserved $\mathrm{I}^{2} \mathrm{C}$-bus addresses will interfere with other devices, but only if the devices are on the bus and/or the bus will be open to other $\mathrm{I}^{2} \mathrm{C}$-bus systems at some later date. In a closed system where the designer controls the address assignment these addresses can be used since the PCA9626 treats them like any other address. The LED All Call, Software Rest and PCA9564 or PCA9665 slave address (if on the bus) can never be used for individual device addresses.

- PCA9626 LED All Call address (1110 000) and Software Reset (0000 0110) which are active on start-up
- PCA9564 (0000 000) or PCA9665 (1110 000) slave address which is active on start-up
- 'reserved for future use' ${ }^{2}$ ²-bus addresses (0000 011, 1111 1XX)
- slave devices that use the 10-bit addressing scheme (1111 0XX)
- slave devices that are designed to respond to the General Call address (0000 000)
- High-speed mode (Hs-mode) master code (0000 1XX)

Fig 4. Slave address

The last bit of the address byte defines the operation to be performed. When set to logic 1 a read is selected, while a logic 0 selects a write operation.

7.1.2 LED All Call ${ }^{2} \mathrm{C}$-bus address

- Default power-up value (ALLCALLADR register): EOh or 1110000
- Programmable through $\mathrm{I}^{2} \mathrm{C}$-bus (volatile programming)
- At power-up, LED All Call ${ }^{2} \mathrm{C}$-bus address is enabled. PCA9626 sends an ACK when $E 0 h(R / \bar{W}=0)$ or $E 1 h(R / \bar{W}=1)$ is sent by the master.

See Section 7.3.9 "ALLCALLADR, LED All Call \underline{L}^{2} C-bus address" for more detail.
Remark: The default LED All Call ${ }^{2} \mathrm{C}$-bus address (EOh or 1110 000) must not be used as a regular $I^{2} \mathrm{C}$-bus slave address since this address is enabled at power-up. All of the PCA9626s on the $\mathrm{I}^{2} \mathrm{C}$-bus will acknowledge the address if sent by the $\mathrm{I}^{2} \mathrm{C}$-bus master.

7.1.3 LED Sub Call ${ }^{2} \mathrm{C}$-bus addresses

- 3 different $\mathrm{I}^{2} \mathrm{C}$-bus addresses can be used
- Default power-up values:
- SUBADR1 register: E2h or 1110001
- SUBADR2 register: E4h or 1110010
- SUBADR3 register: E8h or 1110100
- Programmable through $\mathrm{I}^{2} \mathrm{C}$-bus (volatile programming)
- At power-up, Sub Call ${ }^{2} \mathrm{C}$-bus addresses are disabled. PCA9626 does not send an ACK when E2h ($R / \bar{W}=0$) or E3h ($R / \bar{W}=1$), E4h $(R / \bar{W}=0)$ or E5h ($R / \bar{W}=1$), or E8h $(R / \bar{W}=0)$ or E9h $(R / \bar{W}=1)$ is sent by the master.

See Section 7.3.8 "SUBADR1 to SUBADR3, I2C-bus subaddress 1 to 3" for more detail.
Remark: The default LED Sub Call ${ }^{12}$ C-bus addresses may be used as regular ${ }^{12} \mathrm{C}$-bus slave addresses as long as they are disabled.

7.1.4 Software Reset $\mathrm{I}^{2} \mathrm{C}$-bus address

The address shown in Figure 5 is used when a reset of the PCA9626 needs to be performed by the master. The Software Reset address (SWRST Call) must be used with $R / \bar{W}=$ logic 0 . If $R / \bar{W}=$ logic 1 , the PCA9626 does not acknowledge the SWRST. See Section 7.6 "Software reset" for more detail.

Fig 5. Software Reset address
Remark: The Software Reset $\mathrm{I}^{2} \mathrm{C}$-bus address is a reserved address and cannot be used as a regular ${ }^{2} \mathrm{C}$-bus slave address or as an LED All Call or LED Sub Call address.

7.2 Control register

Following the successful acknowledgement of the slave address, LED All Call address or LED Sub Call address, the bus master will send a byte to the PCA9626, which will be stored in the Control register.

The lowest 6 bits are used as a pointer to determine which register will be accessed (D[5:0]). The highest bit is used as Auto-Increment Flag (AIF).

This bit along with the MODE1 register bit 5 and bit 6 provide the Auto-Increment feature. Bit 6 of the Control register is not used.

reset state $=80 \mathrm{~h}$
Remark: The Control register does not apply to the Software Reset $\mathrm{I}^{2} \mathrm{C}$-bus address.
Fig 6. Control register
When the Auto-Increment Flag is set (AIF = logic 1), the six low order bits of the Control register are automatically incremented after a read or write. This allows the user to program the registers sequentially. Four different types of Auto-Increment are possible, depending on AI1 and AIO values of MODE1 register.

Table 3. Auto-Increment options

AIF	Al1[1]	AlO[1]	Function
0	0	0	no Auto-Increment
1	0	0	Auto-Increment for all registers. $\mathrm{D}[5: 0]$ roll over to Oh after the last register 26h is accessed.
1	0	1	Auto-Increment for individual brightness registers only. $\mathrm{D}[5: 0]$ roll over to 2h after the last register (19h) is accessed.
1	1	0	Auto-Increment for global control registers and CHASE register. D[5:0] roll over to 1Ah after the last register (1Ch) is accessed.
1	1	1	Auto-Increment for individual brightness registers; global control registers and CHASE register. $\mathrm{D}[5: 0]$ roll over to 2 h after the last register (1Ch) is accessed.

[1] Al1 and AI0 come from MODE1 register.
Remark: Other combinations not shown in Table 3 (AIF + AI[1:0] = 001b, 010b, 011b and $111 b$) are reserved and must not be used for proper device operation.

AIF + AI[1:0] = 000b is used when the same register must be accessed several times during a single $\mathrm{I}^{2} \mathrm{C}$-bus communication, for example, changes the brightness of a single LED. Data is overwritten each time the register is accessed during a write operation.

AIF $+\operatorname{Al}[1: 0]=100 \mathrm{~b}$ is used when all the registers must be sequentially accessed, for example, power-up programming.

AIF + AI[$1: 0]=101 \mathrm{~b}$ is used when the 16 LED drivers must be individually programmed with different values during the same $\mathrm{I}^{2} \mathrm{C}$-bus communication, for example, changing color setting to another color setting.

AIF + AI[1:0] = 110b is used when the LED drivers must be globally programmed with different settings during the same $\mathrm{I}^{2} \mathrm{C}$-bus communication, for example, global brightness or blinking change.

AIF $+\operatorname{AI}[1: 0]=111 \mathrm{~b}$ is used when the 16 LED drivers must be individually programmed with different values in addition to global programming.

Only the 6 least significant bits D[5:0] are affected by the AIF, AI1 and AIO bits.
When the Control register is written, the register entry point determined by $D[5: 0]$ is the first register that will be addressed (read or write operation), and can be anywhere between Oh and 26h (as defined in Table 4). When AIF = 1, the Auto-Increment Flag is set and the rollover value at which the register increment stops and goes to the next one is determined by AIF, AI1 and AI2. See Table 3 for rollover values. For example, if MODE1 register bit AI1 = 0 and $A I 0=1$ and if the Control register $=10010010$, then the register addressing sequence will be (in hex):
$20 \rightarrow 21 \rightarrow \ldots \rightarrow 26 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \ldots \rightarrow 19 \rightarrow 02 \rightarrow 03 \rightarrow \ldots \rightarrow 19 \rightarrow 02 \ldots$ as long as the master keeps sending or reading data.

7.3 Register definitions

Table 4. Register summary ${ }^{[1][2]}$

Register number (hex)	D5	D4	D3	D2	D1	D0	Name	Type	Function
00	0	0	0	0	0	0	MODE1	read/write	Mode register 1
01	0	0	0	0	0	1	MODE2	read/write	Mode register 2
02	0	0	0	0	1	0	PWM0	read/write	brightness control LED0
03	0	0	0	0	1	1	PWM1	read/write	brightness control LED1
04	0	0	0	1	0	0	PWM2	read/write	brightness control LED2
05	0	0	0	1	0	1	PWM3	read/write	brightness control LED3
06	0	0	0	1	1	0	PWM4	read/write	brightness control LED4
07	0	0	0	1	1	1	PWM5	read/write	brightness control LED5
08	0	0	1	0	0	0	PWM6	read/write	brightness control LED6
09	0	0	1	0	0	1	PWM7	read/write	brightness control LED7
OA	0	0	1	0	1	0	PWM8	read/write	brightness control LED8
OB	0	0	1	0	1	1	PWM9	read/write	brightness control LED9
OC	0	0	1	1	0	0	PWM10	read/write	brightness control LED10
OD	0	0	1	1	0	1	PWM11	read/write	brightness control LED11
OE	0	0	1	1	1	0	PWM12	read/write	brightness control LED12
OF	0	0	1	1	1	1	PWM13	read/write	brightness control LED13
10	0	1	0	0	0	0	PWM14	read/write	brightness control LED14
11	0	1	0	0	0	1	PWM15	read/write	brightness control LED15
12	0	1	0	0	1	0	PWM16	read/write	brightness control LED16
13	0	1	0	0	1	1	PWM17	read/write	brightness control LED17

Table 4. Register summary ${ }^{[1][2]}$...continued

Register number (hex)	D5	D4	D3	D2	D1	D0	Name	Type	Function
14	0	1	0	1	0	0	PWM18	read/write	brightness control LED18
15	0	1	0	1	0	1	PWM19	read/write	brightness control LED19
16	0	1	0	1	1	0	PWM20	read/write	brightness control LED20
17	0	1	0	1	1	1	PWM21	read/write	brightness control LED21
18	0	1	1	0	0	0	PWM22	read/write	brightness control LED22
19	0	1	1	0	0	1	PWM23	read/write	brightness control LED23
1A	0	1	1	0	1	0	GRPPWM	read/write	group duty cycle control
1B	0	1	1	0	1	1	GRPFREQ	read/write	group frequency
1C	0	1	1	1	0	0	CHASE	read/write	chase control
1D	0	1	1	1	0	1	LEDOUTO	read/write	LED output state 0
1E	0	1	1	1	1	0	LEDOUT1	read/write	LED output state 1
1F	0	1	1	1	1	1	LEDOUT2	read/write	LED output state 2
20	1	0	0	0	0	0	LEDOUT3	read/write	LED output state 3
21	1	0	0	0	0	1	LEDOUT4	read/write	LED output state 4
22	1	0	0	0	1	0	LEDOUT5	read/write	LED output state 5
23	1	0	0	0	1	1	SUBADR1	read/write	${ }^{1} 2 \mathrm{C}$-bus subaddress 1
24	1	0	0	1	0	0	SUBADR2	read/write	${ }^{1} 2 \mathrm{C}$-bus subaddress 2
25	1	0	0	1	0	1	SUBADR3	read/write	$1^{2} \mathrm{C}$-bus subaddress 3
26	1	0	0	1	1	0	ALLCALLADR	read/write	LED All Call ${ }^{2} \mathrm{C}$-bus address

[1] Only $D[5: 0]=000000$ to 100110 are allowed and will be acknowledged. $D[5: 0]=100111$ to 111111 are reserved and may not be acknowledged.
[2] When writing to the Control register, bit 6 should be programmed with logic 0 for proper device operation.

7.3.1 Mode register 1, MODE1

Table 5. MODE1 - Mode register 1 (address 00h) bit description Legend: * default value.

Bit	Symbol	Access	Value	Description
7	Al2	read only	0	Register Auto-Increment disabled.
			1*	Register Auto-Increment enabled.
6	Al1	R/W	0*	Auto-Increment bit $1=0$. Auto-increment range as defined in Table 3.
			1	Auto-Increment bit $1=1$. Auto-increment range as defined in Table 3.
5	AIO	R/W	0*	Auto-Increment bit $0=0$. Auto-increment range as defined in Table 3 .
			1	Auto-Increment bit $0=1$. Auto-increment range as defined in Table 3.
4	SLEEP	R/W	0	Normal mode ${ }^{[1]}$.
			1^{*}	Low power mode. Oscillator off[2].
3	SUB1	R/W	0*	PCA9626 does not respond to $\mathrm{I}^{2} \mathrm{C}$-bus subaddress 1.
			1	PCA9626 responds to $I^{2} \mathrm{C}$-bus subaddress 1.
2	SUB2	R/W	0*	PCA9626 does not respond to $\mathrm{I}^{2} \mathrm{C}$-bus subaddress 2.
			1	PCA9626 responds to ${ }^{2} \mathrm{C}$-bus subaddress 2.
1	SUB3	R/W	0*	PCA9626 does not respond to $\mathrm{I}^{2} \mathrm{C}$-bus subaddress 3 .
			1	PCA9626 responds to $\mathrm{I}^{2} \mathrm{C}$-bus subaddress 3.
0	ALLCALL	R/W	0	PCA9626 does not respond to LED All Call ${ }^{2} \mathrm{C}$-bus address.
			1*	PCA9626 responds to LED All Call ${ }^{2} \mathrm{C}$-bus address.

[1] It takes 500μ s max. for the oscillator to be up and running once SLEEP bit has been set to logic 1 . Timings on LEDn outputs are not guaranteed if PWMx, GRPPWM or GRPFREQ registers are accessed within the $500 \mu s$ window.
[2] No blinking or dimming is possible when the oscillator is off.

7.3.2 Mode register 2, MODE2

Table 6. MODE2 - Mode register 2 (address 01h) bit description Legend: * default value.

Bit	Symbol	Access	Value	Description
7	-	read only	0^{*}	reserved
6	-	read only	0^{*}	reserved
5	DMBLNK	R/W	0^{*}	group control = dimming.
			1	group control = blinking.
4	INVRT	read only	0^{*}	reserved
3	OCH	R/W	0^{*}	outputs change on STOP command $\underline{[1]}$
2	-	read only	1^{*}	reserved
1	-	read only	0^{*}	reserved
0	-	read only	1^{*}	reserved

[1] Change of the outputs at the STOP command allows synchronizing outputs of more than one PCA9626. Applicable to registers from 02h (PWMO) to 08h (LEDOUT) only.

7.3.3 PWM0 to PWM23, individual brightness control

Table 7. PWM0 to PWM23 - PWM registers 0 to 23 (address 02h to 19h) bit description Legend: * default value.

Address	Register	Bit	Symbol	Access	Value	Description
02h	PWM0	7:0	IDC0[7:0]	R/W	0000 0000*	PWM0 Individual Duty Cycle
03h	PWM1	7:0	IDC1[7:0]	R/W	0000 0000*	PWM1 Individual Duty Cycle
04h	PWM2	7:0	IDC2[7:0]	R/W	0000 0000*	PWM2 Individual Duty Cycle
05h	PWM3	7:0	IDC3[7:0]	R/W	0000 0000*	PWM3 Individual Duty Cycle
06h	PWM4	7:0	IDC4[7:0]	R/W	0000 0000*	PWM4 Individual Duty Cycle
07h	PWM5	7:0	IDC5[7:0]	R/W	0000 0000*	PWM5 Individual Duty Cycle
08h	PWM6	7:0	IDC6[7:0]	R/W	0000 0000*	PWM6 Individual Duty Cycle
09h	PWM7	7:0	IDC7[7:0]	R/W	0000 0000*	PWM7 Individual Duty Cycle
OAh	PWM8	7:0	IDC8[7:0]	R/W	0000 0000*	PWM8 Individual Duty Cycle
OBh	PWM9	7:0	IDC9[7:0]	R/W	0000 0000*	PWM9 Individual Duty Cycle
OCh	PWM10	7:0	IDC10[7:0]	R/W	0000 0000*	PWM10 Individual Duty Cycle
ODh	PWM11	7:0	IDC11[7:0]	R/W	0000 0000*	PWM11 Individual Duty Cycle
OEh	PWM12	7:0	IDC12[7:0]	R/W	0000 0000*	PWM12 Individual Duty Cycle
OFh	PWM13	7:0	IDC13[7:0]	R/W	0000 0000*	PWM13 Individual Duty Cycle
10h	PWM14	7:0	IDC14[7:0]	R/W	0000 0000*	PWM14 Individual Duty Cycle
11h	PWM15	7:0	IDC15[7:0]	R/W	0000 0000*	PWM15 Individual Duty Cycle
12h	PWM16	7:0	IDC16[7:0]	R/W	0000 0000*	PWM16 Individual Duty Cycle
13h	PWM17	7:0	IDC17[7:0]	R/W	0000 0000*	PWM17 Individual Duty Cycle
14h	PWM18	7:0	IDC18[7:0]	R/W	0000 0000*	PWM18 Individual Duty Cycle
15h	PWM19	7:0	IDC19[7:0]	R/W	0000 0000*	PWM19 Individual Duty Cycle
16h	PWM20	7:0	IDC20[7:0]	R/W	0000 0000*	PWM20 Individual Duty Cycle
17h	PWM21	7:0	IDC21[7:0]	R/W	0000 0000*	PWM21 Individual Duty Cycle
18h	PWM22	7:0	IDC22[7:0]	R/W	0000 0000*	PWM22 Individual Duty Cycle
19h	PWM23	7:0	IDC23[7:0]	R/W	0000 0000*	PWM23 Individual Duty Cycle

A 97 kHz fixed frequency signal is used for each output. Duty cycle is controlled through 256 linear steps from 00h (0 \% duty cycle = LED output off) to FFh
(99.6 \% duty cycle = LED output at maximum brightness). Applicable to LED outputs programmed with LDRx $=10$ or 11 (LEDOUT0 to LEDOUT5 registers).

$$
\begin{equation*}
\text { duty cycle }=\frac{I D C x[7: 0]}{256} \tag{1}
\end{equation*}
$$

7.3.4 GRPPWM, group duty cycle control

Table 8. GRPPWM - Group brightness control register (address 1Ah) bit description Legend: * default value

Address	Register	Bit	Symbol	Access	Value	Description
1Ah	GRPPWM	$7: 0$	GDC[7:0]	R/W	11111111	GRPPWM register

When DMBLNK bit (MODE2 register) is programmed with logic 0, a 190 Hz fixed frequency signal is superimposed with the 97 kHz individual brightness control signal. GRPPWM is then used as a global brightness control allowing the LED outputs to be dimmed with the same value. The value in GRPFREQ is then a 'Don't care'.

General brightness for the 16 outputs is controlled through 256 linear steps from $00 h$ (0% duty cycle = LED output off) to FFh (99.6% duty cycle = maximum brightness). Applicable to LED outputs programmed with LDRx $=11$ (LEDOUT0 to LEDOUT5 registers).

When DMBLNK bit is programmed with logic 1, GRPPWM and GRPFREQ registers define a global blinking pattern, where GRPFREQ contains the blinking period (from 24 Hz to 10.73 s) and GRPPWM the duty cycle (ON/OFF ratio in \%).
duty cycle $=\frac{G D C[7: 0]}{256}$

7.3.5 GRPFREQ, group frequency

Table 9. GRPFREQ - Group Frequency register (address 1Bh) bit description Legend: * default value.

Address	Register	Bit	Symbol	Access	Value	Description
1Bh	GRPFREQ	$7: 0$	GFRQ[7:0]	R/W	00000000^{*}	GRPFREQ register

GRPFREQ is used to program the global blinking period when DMBLNK bit (MODE2 register) is equal to 1 . Value in this register is a 'Don't care' when DMBLNK $=0$. Applicable to LED outputs programmed with LDRx $=11$ (LEDOUT0 to LEDOUT5 registers).

Blinking period is controlled through 256 linear steps from 00h (41 ms, frequency 24 Hz) to FFh (10.73 s).
global blinking period $=\frac{G F R Q[7: 0]+1}{24}(s)$

7.3.6 CHASE control

Table 10. CHASE - Chase pattern control register (address 1Ch) bit description Legend: * default value.

Address	Register	Bit	Symbol	Access	Value	Description
1Ch	CHASE	$7: 0$	CHC[7:0]	R/W	00000000^{*}	CHASE register

CHASE is used to program the LED output ON/OFF pattern. The contents of the CHASE register is used to enable one of the LED output patterns, as indicated in Table 11.

By repeated, sequential access to this table via the CHASE register, a chase pattern, e.g., marquee effect, can be easily programmed with minimal number of commands. Once the CHASE register is accessed, the data bytes that follow will be used as an index value to pick the LED output patterns defined by Table 11 "CHASE sequence".

This register always updates on ACK. It is used to gate the $\overline{\mathrm{OE}}$ signal at each of the LEDn pins such that:

- $\overline{\mathrm{OE}}=1$: all LEDs are off
- $\overline{\mathrm{OE}}=0$: those LEDs corresponding to the ' X 's in Table 11 are on

Any write to this register takes effect at the ACK.

\% Table 11. CHASE sequence ...continued

 융 X = enabled; empty cell = disabled.
Command Hex LED channel

Description

\section*{| | 00 | 01 | 02 |
:---	:---	:---	:---	} $03 \quad 04 \quad 0$		05	06
:---	:---	:---	07 0 09	10	11	12	
:---	:---	:---	\qquad 14	15	16	17	
:---	:---	:---	18 19	20	21	22	23
:---	:---	:---	:---	X \times X $X \quad 4 \times$ Left to Right_END $5 \times$ Left to Right_START			

\qquad X X X X X

Table 11. CHASE sequence ...continued $X=$ enabled; empty cell = disabled.

Command Hex LED channel

Description

| 03 | 04 | 05 |
| :--- | :--- | :--- | 0506 $06 \quad 07$ $08 \quad 09$ 10 | 0 | 11 | 12 |
| :--- | :--- | :--- |

12 $13 \quad 14$ 415 17 \qquad 19 | 20 | 21 | 22 | 23 |
| :--- | :--- | :--- | :--- | X X X $3 \times$ Implode_START X X X

Table 11. CHASE sequence ...continued $X=$ enabled; empty cell = disabled.

Command Hex LED channel
Description

00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23

00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X						
X	X	X	X	X	X	X	X	X	X															
X	X	X	X																					
X	X	X	X	X	X																			
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X								
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Left to Right_WIPE_END

X Right to Left_WIPE_START X＝enabled；empty cell＝disabled．

Command	Hex	LED channel																								Description
		00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
142	8E		X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
143	8F	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Right to Left＿WIPE＿END
144	90																									All LED outputs disabled for CHASE byte＝90h to FFh． Reserved for future use． CHASE byte＝FFh is used to exit the CHASE mode．［1］

［1］When the PCA9626 exits from the CHASE mode，the previous states of the LED outputs will be retained

7.3.7 LEDOUT0 to LEDOUT5, LED driver output state

Table 12. LEDOUT0 to LEDOUT5 - LED driver output state register (address 1Dh to 22h) bit description
Legend: * default value.

Address	Register	Bit	Symbol	Access	Value	Description
1Dh	LEDOUTO	7:6	LDR3	R/W	00*	LED3 output state control
		5:4	LDR2	R/W	00*	LED2 output state control
		3:2	LDR1	R/W	00*	LED1 output state control
		1:0	LDR0	R/W	00*	LED0 output state control
1Eh	LEDOUT1	7:6	LDR7	R/W	00*	LED7 output state control
		5:4	LDR6	R/W	00*	LED6 output state control
		3:2	LDR5	R/W	00*	LED5 output state control
		1:0	LDR4	R/W	00*	LED4 output state control
1Fh	LEDOUT2	7:6	LDR11	R/W	00*	LED11 output state control
		5:4	LDR10	R/W	00*	LED10 output state control
		3:2	LDR9	R/W	00*	LED9 output state control
		1:0	LDR8	R/W	00*	LED8 output state control
20h	LEDOUT3	7:6	LDR15	R/W	00*	LED15 output state control
		5:4	LDR14	R/W	00*	LED14 output state control
		3:2	LDR13	R/W	00*	LED13 output state control
		1:0	LDR12	R/W	00*	LED12 output state control
21h	LEDOUT4	7:6	LDR19	R/W	00*	LED19 output state control
		5:4	LDR18	R/W	00*	LED18 output state control
		3:2	LDR17	R/W	00*	LED17 output state control
		1:0	LDR16	R/W	00*	LED16 output state control
22h	LEDOUT5	7:6	LDR23	R/W	00*	LED23 output state control
		5:4	LDR22	R/W	00*	LED22 output state control
		3:2	LDR21	R/W	00*	LED21 output state control
		1:0	LDR20	R/W	00*	LED20 output state control

LDRx $=00$ - LED driver x is off (default power-up state).
LDRx = 01 - LED driver x is fully on (individual brightness and group dimming/blinking not controlled).
LDRx = $\mathbf{1 0}$ - LED driver x individual brightness can be controlled through its PWMx register.

LDRx = 11 - LED driver x individual brightness and group dimming/blinking can be controlled through its PWMx register and the GRPPWM registers.

7.3.8 SUBADR1 to SUBADR3, ${ }^{12}$ C-bus subaddress 1 to 3

Table 13. SUBADR1 to SUBADR3 $-I^{2} \mathrm{C}$-bus subaddress registers 0 to 3 (address 23 h to 25 h) bit description
Legend: * default value.

Address	Register	Bit	Symbol	Access	Value	Description
23h	SUBADR1	7:1	A1[7:1]	R/W	1110 001*	$\mathrm{I}^{2} \mathrm{C}$-bus subaddress 1
		0	A1[0]	R only	0 *	reserved
24h	SUBADR2	7:1	A2[7:1]	R/W	1110 010*	$\mathrm{I}^{2} \mathrm{C}$-bus subaddress 2
		0	A2[0]	R only	0 *	reserved
25h	SUBADR3	7:1	A3[7:1]	R/W	1110 100*	$1^{2} \mathrm{C}$-bus subaddress 3
		0	A3[0]	R only	0 *	reserved

Subaddresses are programmable through the $I^{2} \mathrm{C}$-bus. Default power-up values are E2h, E4h, E8h, and the device(s) will not acknowledge these addresses right after power-up (the corresponding SUBx bit in MODE1 register is equal to 0).

Once subaddresses have been programmed to their right values, SUBx bits need to be set to logic 1 in order to have the device acknowledging these addresses (MODE1 register).

Only the 7 MSBs representing the $I^{2} \mathrm{C}$-bus subaddress are valid. The LSB in SUBADRx register is a read-only bit (0).

When SUBx is set to logic 1 , the corresponding $\mathrm{I}^{2} \mathrm{C}$-bus subaddress can be used during either an $\mathrm{I}^{2} \mathrm{C}$-bus read or write sequence.

7.3.9 ALLCALLADR, LED All Call ${ }^{2} \mathrm{C}$-bus address

Table 14. ALLCALLADR - LED All Call $\mathrm{I}^{2} \mathrm{C}$-bus address register (address 26h) bit description
Legend: * default value.

Address	Register	Bit	Symbol	Access	Value	Description
26h	ALLCALLADR	$7: 1$	AC[7:1]	R/W	1110000^{*}	ALLCALL IC-bus address register
		0	AC[0]	R only	0^{*}	reserved

The LED All Call $\mathrm{I}^{2} \mathrm{C}$-bus address allows all the PCA9626s on the bus to be programmed at the same time (ALLCALL bit in register MODE1 must be equal to logic 1 (power-up default state)). This address is programmable through the $\mathrm{I}^{2} \mathrm{C}$-bus and can be used during either an $\mathrm{I}^{2} \mathrm{C}$-bus read or write sequence. The register address can also be programmed as a Sub Call.

Only the 7 MSBs representing the All Call ${ }^{2} \mathrm{C}$-bus address are valid. The LSB in ALLCALLADR register is a read-only bit (0).

If ALLCALL bit $=0$, the device does not acknowledge the address programmed in register ALLCALLADR.

7.4 Active LOW output enable input

The active LOW output enable ($\overline{\mathrm{OE}})$ pin, allows to enable or disable all the LED outputs at the same time.

- When a LOW level is applied to $\overline{O E}$ pin, all the LED outputs are enabled as defined by the CHASE register.
- When a HIGH level is applied to $\overline{\mathrm{OE}}$ pin, all the LED outputs are high-impedance.

The $\overline{\mathrm{OE}}$ pin can be used as a synchronization signal to switch on/off several PCA9626 devices at the same time. This requires an external clock reference that provides blinking period and the duty cycle.

The $\overline{O E}$ pin can also be used as an external dimming control signal. The frequency of the external clock must be high enough not to be seen by the human eye, and the duty cycle value determines the brightness of the LEDs.

Remark: Do not use $\overline{\mathrm{OE}}$ as an external blinking control signal when internal global blinking is selected (DMBLNK = 1, MODE2 register) since it will result in an undefined blinking pattern. Do not use $\overline{\mathrm{OE}}$ as an external dimming control signal when internal global dimming is selected (DMBLNK $=0$, MODE2 register) since it will result in an undefined dimming pattern.

Remark: During power-down, slow decay of voltage supplies may keep LEDs illuminated. Consider disabling LED outputs using HIGH level applied to $\overline{\mathrm{OE}}$ pin.

7.5 Power-on reset

When power is applied to V_{DD}, an internal power-on reset holds the PCA9626 in a reset condition until V_{DD} has reached $\mathrm{V}_{\text {POR }}$. At this point, the reset condition is released and the PCA9626 registers and $\mathrm{I}^{2} \mathrm{C}$-bus state machine are initialized to their default states (all zeroes) causing all the channels to be deselected. Thereafter, V_{DD} must be lowered below 0.2 V to reset the device.

7.6 Software reset

The Software Reset Call (SWRST Call) allows all the devices in the ${ }^{2} \mathrm{C}$-bus to be reset to the power-up state value through a specific formatted $\mathrm{I}^{2} \mathrm{C}$-bus command. To be performed correctly, it implies that the $\mathrm{I}^{2} \mathrm{C}$-bus is functional and that there is no device hanging the bus.

The SWRST Call function is defined as the following:

1. A START command is sent by the $\mathrm{I}^{2} \mathrm{C}$-bus master.
2. The reserved SWRST ${ }^{2} \mathrm{C}$-bus address ' 0000011 ' with the $\mathrm{R} / \overline{\mathrm{W}}$ bit set to ' 0 ' (write) is sent by the $\mathrm{I}^{2} \mathrm{C}$-bus master.
3. The PCA9626 device(s) acknowledge(s) after seeing the SWRST Call address '0000 0110' (06h) only. If the R/W bit is set to ' 1 ' (read), no acknowledge is returned to the $\mathrm{I}^{2} \mathrm{C}$-bus master.
4. Once the SWRST Call address has been sent and acknowledged, the master sends 2 bytes with 2 specific values (SWRST data byte 1 and byte 2):
a. Byte $1=A 5 h$: the PCA9626 acknowledges this value only. If byte 1 is not equal to A5h, the PCA9626 does not acknowledge it.
b. Byte $2=5$ Ah: the PCA9626 acknowledges this value only. If byte 2 is not equal to 5Ah, then the PCA9626 does not acknowledge it.
If more than 2 bytes of data are sent, the PCA9626 does not acknowledge any more.
5. Once the right 2 bytes (SWRST data byte 1 and byte 2 only) have been sent and correctly acknowledged, the master sends a STOP command to end the SWRST Call: the PCA9626 then resets to the default value (power-up value) and is ready to be addressed again within the specified bus free time ($t_{B U F}$).

The $\mathrm{I}^{2} \mathrm{C}$-bus master must interpret a non-acknowledge from the PCA9626 (at any time) as a 'SWRST Call Abort'. The PCA9626 does not initiate a reset of its registers. This happens only when the format of the SWRST Call sequence is not correct.

7.7 Individual brightness control with group dimming/blinking

A 97 kHz fixed frequency signal with programmable duty cycle (8 bits, 256 steps) is used to control individually the brightness for each LED.

On top of this signal, one of the following signals can be superimposed (this signal can be applied to the 4 LED outputs):

- A lower 190 Hz fixed frequency signal with programmable duty cycle (8 bits, 256 steps) is used to provide a global brightness control.
- A programmable frequency signal from 24 Hz to $1 / 10.73 \mathrm{~Hz}$ (8 bits, 256 steps) with programmable duty cycle (8 bits, 256 steps) is used to provide a global blinking control.

Fig 7. Brightness + Group Dimming signals

8. Characteristics of the $\mathrm{I}^{2} \mathrm{C}$-bus

The $\mathrm{I}^{2} \mathrm{C}$-bus is for 2-way, 2-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

8.1 Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals (see Figure 8).

Fig 8. Bit transfer

8.1.1 START and STOP conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line while the clock is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P) (see Figure 9).

Fig 9. Definition of START and STOP conditions

8.2 System configuration

A device generating a message is a 'transmitter'; a device receiving is the 'receiver'. The device that controls the message is the 'master' and the devices which are controlled by the master are the 'slaves' (see Figure 10).

Fig 10. System configuration

8.3 Acknowledge

The number of data bytes transferred between the START and the STOP conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter, whereas the master generates an extra acknowledge related clock pulse.

A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse; set-up time and hold time must be taken into account.

A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event, the transmitter must leave the data line HIGH to enable the master to generate a STOP condition.

Fig 11. Acknowledgement on the $\mathrm{I}^{2} \mathrm{C}$-bus

9. Bus transactions

(1) See Table 4 for register definition.

Fig 12. Write to a specific register

Fig 13. Write to all registers using the Auto-Increment feature

This example assumes that AIF + AI[1:0] = 101b
Fig 14. Multiple writes to Individual Brightness registers only using the Auto-Increment feature

Fig 15. Read all registers using the Auto-Increment feature

(1) In this example, several PCA9626s are used and the same sequence (A) (above) is sent to each of them.
(2) ALLCALL bit in MODE1 register is previously set to 1 for this example.
(3) OCH bit in MODE2 register is previously set to 1 for this example.

Fig 16. LED All Call $I^{2} \mathrm{C}$-bus address programming and LED All Call sequence example
10. Application design-in information

(1) $\overline{\mathrm{OE}}$ requires pull-up resistor if control signal from the master is open-drain.
$I^{2} \mathrm{C}$-bus address $=0010101 \mathrm{x}$.
Remark: During power-down, slow decay of voltage supplies may keep LEDs illuminated. Consider disabling LED outputs using HIGH level applied to $\overline{\mathrm{OE}}$ pin.
Fig 17. Typical application

10.1 Junction temperature calculation

A device junction temperature can be calculated when the ambient temperature or the case temperature is known.

When the ambient temperature is known, the junction temperature is calculated using Equation 4 and the ambient temperature, junction to ambient thermal resistance and power dissipation.
$T_{j}=T_{a m b}+R_{t h(j-a)} \times P_{t o t}$
where:

```
\(\mathrm{T}_{\mathrm{j}}=\) junction temperature
\(\mathrm{T}_{\mathrm{amb}}=\) ambient temperature
\(\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{a})}=\) junction to ambient thermal resistance
\(P_{\text {tot }}=\) (device) total power dissipation
```

When the case temperature is known, the junction temperature is calculated using Equation 5 and the case temperature, junction to case thermal resistance and power dissipation.
$T_{j}=T_{\text {case }}+R_{t h(j-c)} \times P_{\text {tot }}$
where:

$$
\begin{aligned}
& T_{j}=j u n c t i o n ~ t e m p e r a t u r e ~ \\
& T_{\text {case }}=\text { case temperature } \\
& R_{\text {th }(j-c)}=\text { junction to case thermal resistance } \\
& P_{\text {tot }}=(\text { device }) \text { total power dissipation }
\end{aligned}
$$

Here are two examples regarding how to calculate the junction temperature using junction to case and junction to ambient thermal resistance. In the first example (Section 10.1.1), given the operating condition and the junction to ambient thermal resistance, the junction temperature of PCA9626B, in the LQFP48 package, is calculated for a system operating condition in $50^{\circ} \mathrm{C}^{1}$ ambient temperature. In the second example (Section 10.1.2), based on a specific customer application requirement where only the case temperature is known, applying the junction to case thermal resistance equation, the junction temperature of the PCA9626B, in the LQFP48 package, is calculated.

[^0]10.1.1 Example 1: T_{j} calculation when $\mathrm{T}_{\mathrm{amb}}$ is known (PCA9626B, LQFP48)
$\mathrm{R}_{\text {th(}(\text {-a) }}=63^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {amb }}=50^{\circ} \mathrm{C}$
LED output low voltage (LED VoL) $=0.5 \mathrm{~V}$
LED output current per channel $=80 \mathrm{~mA}$
Number of outputs $=24$
$l_{\mathrm{DD}(\text { max })}=18 \mathrm{~mA}$
$V_{D D(\text { max })}=5.5 \mathrm{~V}$
$1^{2} \mathrm{C}$-bus clock (SCL) maximum sink current $=25 \mathrm{~mA}$
$1^{2} \mathrm{C}$-bus data (SDA) maximum sink current $=25 \mathrm{~mA}$

1. Find $\mathrm{P}_{\text {tot }}$ (device total power dissipation):

- output total power $=30 \mathrm{~mA} \times 24 \times 0.5 \mathrm{~V}=960 \mathrm{~mW}$
- chip core power consumption $=18 \mathrm{~mA} \times 5.5 \mathrm{~V}=99 \mathrm{~mW}$
- SCL power dissipation $=25 \mathrm{~mA} 0.4 \mathrm{~V}=10 \mathrm{~mW}$
- SDA power dissipation $=25 \mathrm{~mA} \quad 0.4 \mathrm{~V}=10 \mathrm{~mW}$
$P_{\text {tot }}=(960+99+10+10) \mathrm{mW}=\mathbf{1 0 7 9} \mathbf{~ m W}$

2. Find T_{j} (junction temperature):

$$
\mathrm{T}_{\mathrm{j}}=\left(\mathrm{T}_{\mathrm{amb}}+\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{a})} \times \mathrm{P}_{\mathrm{tot}}\right)=\left(50^{\circ} \mathrm{C}+63^{\circ} \mathrm{C} / \mathrm{W} \times 1079 \mathrm{~mW}\right)=118^{\circ} \mathrm{C}
$$

10.1.2 Example 2: T_{j} calculation where only $\mathrm{T}_{\text {case }}$ is known

This example uses a customer's specific application of the PCA9626B, 24-channel LED controller in the LQFP48 package, where only the case temperature ($\mathrm{T}_{\text {case }}$) is known.
$T_{j}=T_{\text {case }}+R_{\text {th }(j-c)} \times P_{\text {tot }}$, where $:$
$R_{\text {th }(j-\mathrm{c})}=18^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {case }}($ measured $)=94.6^{\circ} \mathrm{C}$
V_{OL} of LED ~ 0.5 V
$I_{D D(\max)}=18 \mathrm{~mA}$
$V_{D D(\text { max })}=5.5 \mathrm{~V}$
LED output voltage LOW $=0.5 \mathrm{~V}$
LED output current:
60 mA on 1 port $=(60 \mathrm{~mA} \times 1)$
50 mA on 6 ports $=(50 \mathrm{~mA} \times 6)$
40 mA on 2 ports $=(40 \mathrm{~mA} \times 2)$
20 mA on 12 ports $=(20 \mathrm{~mA} \times 12)$
1 mA on 3 ports $=(1 \mathrm{~mA} \times 3)$
$\mathrm{I}^{2} \mathrm{C}$-bus maximum sink current on clock line $=25 \mathrm{~mA}$
$\mathrm{I}^{2} \mathrm{C}$-bus maximum sink current on data line $=25 \mathrm{~mA}$

1. Find $P_{\text {tot }}$ (device total power dissipation)

- output current ($60 \mathrm{~mA} \times 1$ port); output power $(60 \mathrm{~mA} \times 1 \times 0.5 \mathrm{~V}$) $=30 \mathrm{~mW}$
- output current ($50 \mathrm{~mA} \times 6$ ports); output power ($50 \mathrm{~mA} \times 6 \times 0.5 \mathrm{~V}$) $=150 \mathrm{~mW}$
- output current ($40 \mathrm{~mA} \times 2$ ports); output power $(40 \mathrm{~mA} \times 2 \times 0.5 \mathrm{~V}$) $=40 \mathrm{~mW}$
- output current ($20 \mathrm{~mA} \times 12$ ports); output power $(20 \mathrm{~mA} \times 12 \times 0.5 \mathrm{~V}$) $=120 \mathrm{~mW}$
- output current ($1 \mathrm{~mA} \times 3$ ports); output power $(1 \mathrm{~mA} \times 3 \times 0.5 \mathrm{~V})=1.5 \mathrm{~mW}$

Output total power $=\mathbf{3 4 1 . 5} \mathbf{~ m W}$

- chip core power consumption $=18 \mathrm{~mA} \times 5.5 \mathrm{~V}=99 \mathrm{~mW}$
- SCL power dissipation $=25 \mathrm{~mA} \times 0.4 \mathrm{~V}=10 \mathrm{~mW}$
- SDA power dissipation $=25 \mathrm{~mA} \times 0.4 \mathrm{~V}=10 \mathrm{~mW}$
$P_{\text {tot }}$ (device total power dissipation) $=\mathbf{4 6 0 . 5} \mathbf{~ m W}$

2. Find T_{j} (junction temperature):
$\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\text {case }}+\mathrm{R}_{\text {th }(\mathrm{j}-\mathrm{a})} \times \mathrm{P}_{\text {tot }}=94.6^{\circ} \mathrm{C}+18{ }^{\circ} \mathrm{C} / \mathrm{W} \times 460.5 \mathrm{~mW}=102.9^{\circ} \mathrm{C}$

11. Limiting values

Table 15. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{\text {DD }}$	supply voltage		-0.5	+6.0	V
$\mathrm{V}_{\text {I/ }}$	voltage on an input/output pin		$\mathrm{V}_{\text {SS }}-0.5$	5.5	V
$\mathrm{V}_{\operatorname{drv}(\text { LED })}$	LED driver voltage		$\mathrm{V}_{\text {SS }}-0.5$	40	V
$\mathrm{l}_{\mathrm{O}(\text { LEDn) }}$	output current on pin LEDn		-	100	mA
lol(tot)	total LOW-level output current	LED driver outputs; $\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	[1] 2400	-	mA
$\mathrm{I}_{\text {SS }}$	ground supply current	per $\mathrm{V}_{\text {SS }}$ pin	-	800	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	-	1.8	W
		$\mathrm{T}_{\text {amb }}=85^{\circ} \mathrm{C}$	-	0.72	W
P/ch	power dissipation per channel	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	-	100	mW
		$\mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}$	-	45	mW
T_{j}	junction temperature		[2] -	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	ambient temperature	operating	-40	+85	${ }^{\circ} \mathrm{C}$

[^1]Table 16. LQFP48 versus HVQFN48 power dissipation and output current capability

Measurement	LQFP48	HVQFN48
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$		
maximum power dissipation (chip + output drivers)	1590 mW	2780 mW
maximum power dissipation (output drivers only)	1460 mW	2650 mW
maximum drive current per channel	$<\frac{1460 \mathrm{~mW}}{24-\text { bit } \times 0.5 \mathrm{~V}}=121.7 \mathrm{~mA} \underline{[1]}$	$<\frac{2650 \mathrm{~mW}}{24-\text { bit } \times 0.5 \mathrm{~V}}=220.8 \mathrm{~mA} \underline{[1]}$
$\mathrm{T}_{\text {amb }}=60^{\circ} \mathrm{C}$		
maximum power dissipation (chip + output drivers)	1030 mW	1810 mW
maximum power dissipation (output drivers only)	901 mW	1680 mW
maximum drive current per channel	$<\frac{901 \mathrm{~mW}}{24-\text { bit } \times 0.5 \mathrm{~V}}=75.1 \mathrm{~mA}$	$<\frac{1680 \mathrm{~mW}}{24-\mathrm{bit} \times 0.5 \mathrm{~V}}=140 \mathrm{~mA} \underline{[1]}$
$\mathrm{T}_{\text {amb }}=80^{\circ} \mathrm{C}$		
maximum power dissipation (chip + output drivers)	714 mW	1250 mW
maximum power dissipation (output drivers only)	585 mW	1120 mW
maximum drive current per channel	$<\frac{585 \mathrm{~mW}}{24-\text { bit } \times 0.5 \mathrm{~V}}=48.8 \mathrm{~mA}$	$<\frac{1120 \mathrm{~mW}}{24-b i t \times 0.5 \mathrm{~V}}=93.3 \mathrm{~mA}$

[1] This value signifies package's ability to handle more than 100 mA per output driver. The device's maximum current rating per output is 100 mA .

12. Thermal characteristics

Table 17. Thermal characteristics

Symbol	Parameter	Conditions	Typ		Unit
$\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{a})}$	thermal resistance from junction to ambient	LQFP48	$\underline{[1]} 63$	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
		HVQFN48	$\underline{[1]} 36$	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
$\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{c})}$	thermal resistance from junction to case	LQFP48	$\underline{[1]} 18$	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
		HVQFN48	$\underline{[1]} 14$	${ }^{\circ} \mathrm{C} / \mathrm{W}$	

[1] Calculated in accordance with JESD 51-7.

13. Static characteristics

Table 18. Static characteristics
$V_{D D}=2.3 \mathrm{~V}$ to $5.5 \mathrm{~V} ; V_{S S}=0 \mathrm{~V} ; T_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Supply						
$V_{\text {DD }}$	supply voltage		2.3	-	5.5	V
$l_{\text {D }}$	supply current	on pin V_{DD}; operating mode; no load; $\mathrm{f}_{\mathrm{SCL}}=1 \mathrm{MHz}$				
		$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$	-	0.5	4	mA
		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$	-	1.5	6	mA
		$V_{D D}=5.5 \mathrm{~V}$	-	13	18	mA
$\mathrm{I}_{\text {stb }}$	standby current	on pin $V_{D D}$; no load; $\mathrm{f}_{\mathrm{SCL}}=0 \mathrm{~Hz}$; $\mathrm{I} / \mathrm{O}=$ inputs; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$				
		$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$	-	0.5	5	$\mu \mathrm{A}$
		$V_{D D}=3.6 \mathrm{~V}$	-	1.0	10	$\mu \mathrm{A}$
		$V_{D D}=5.5 \mathrm{~V}$	-	6	15	$\mu \mathrm{A}$
$V_{\text {POR }}$	power-on reset voltage	no load; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\text {SS }}$	[1] -	1.70	2.0	V
Input SCL; input/output SDA						
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage		-0.5	-	$+0.3 \mathrm{~V}_{\mathrm{DD}}$	V
$\mathrm{V}_{1 \mathrm{H}}$	HIGH-level input voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	5.5	V
loL	LOW-level output current	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$	20	-	-	mA
		$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	30	-	-	mA
IL	leakage current	$V_{I}=V_{D D}$ or $V_{S S}$	-1	-	+1	$\mu \mathrm{A}$
Ci_{i}	input capacitance	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {SS }}$	-	6	10	pF
LED driver outputs						
$\mathrm{V}_{\text {drv(LED) }}$	LED driver voltage		0	-	40	V
loL	LOW-level output current	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}} \geq 4.5 \mathrm{~V}$	[2] 100	-	-	mA
L LOH	HIGH-level output leakage current	$\mathrm{V}_{\operatorname{drv}(\text { LED })}=5 \mathrm{~V}$	-	-	± 1	$\mu \mathrm{A}$
		$\mathrm{V}_{\operatorname{drv}(\text { LED })}=40 \mathrm{~V}$	-	± 1	15	$\mu \mathrm{A}$
$\mathrm{R}_{\text {on }}$	ON-state resistance	$\mathrm{V}_{\mathrm{drv}}(\mathrm{LED})=40 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$	-	2	5	Ω
C_{0}	output capacitance		-	15	40	pF
$\overline{\text { OE input }}$						
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage		-0.5	-	+0.8	V
V_{IH}	HIGH-level input voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	5.5	V
I_{LI}	input leakage current		-1	-	+1	$\mu \mathrm{A}$
C_{i}	input capacitance		-	3.7	5	pF
Address inputs						
VIL	LOW-level input voltage		-0.5	-	$+0.3 \mathrm{~V}_{\mathrm{DD}}$	V
V_{IH}	HIGH-level input voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	5.5	V
I_{LI}	input leakage current		-1	-	+1	$\mu \mathrm{A}$
Ci_{i}	input capacitance		-	3.7	5	pF

[1] $V_{D D}$ must be lowered to 0.2 V in order to reset part.
[2] Each bit must be limited to a maximum of 100 mA and the total package limited to 2400 mA due to internal busing limits.

14. Dynamic characteristics

Table 19. Dynamic characteristics

Symbol	Parameter	Conditions		Standard-mod el ${ }^{2} \mathrm{C}$-bus		Fast-mode $\mathbf{I}^{2} \mathrm{C}$-bus		Fast-mode Plus $\mathrm{I}^{2} \mathrm{C}$-bus		Unit
				Min	Max	Min	Max	Min	Max	
$\mathrm{f}_{\text {SCL }}$	SCL clock frequency			0	100	0	400	0	1000	kHz
$\mathrm{t}_{\text {BUF }}$	bus free time between a STOP and START condition			4.7	-	1.3	-	0.5	-	$\mu \mathrm{s}$
$t_{\text {HD } ; \text { STA }}$	hold time (repeated) START condition			4.0	-	0.6	-	0.26	-	$\mu \mathrm{s}$
$t_{\text {SU;STA }}$	set-up time for a repeated START condition			4.7	-	0.6	-	0.26	-	$\mu \mathrm{s}$
tsu;STO	set-up time for STOP condition			4.0	-	0.6	-	0.26	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HD } ; \text { DAT }}$	data hold time			0	-	0	-	0	-	ns
tvd;ACK	data valid acknowledge time		[1]	0.3	3.45	0.1	0.9	0.05	0.45	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{VD} ; \mathrm{DAT}}$	data valid time		[2]	0.3	3.45	0.1	0.9	0.05	0.45	$\mu \mathrm{s}$
$t_{\text {SU; DAT }}$	data set-up time			250	-	100	-	50	-	ns
tow	LOW period of the SCL clock			4.7	-	1.3	-	0.5	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HIGH }}$	HIGH period of the SCL clock			4.0	-	0.6	-	0.26	-	$\mu \mathrm{s}$
t_{f}	fall time of both SDA and SCL signals		[3][4]	-	300	$20+0.1 C_{b} \underline{[5]}$	300	-	120	ns
t_{r}	rise time of both SDA and SCL signals			-	1000	$20+0.1 C_{b} \underline{[5]}$	300	-	120	ns
$\mathrm{t}_{\text {SP }}$	pulse width of spikes that must be suppressed by the input filter		[6]	-	50	-	50	-	50	ns
Output propagation delay										
$t_{\text {PLH }}$	LOW to HIGH propagation delay	$\overline{\mathrm{OE}}$ to LEDn; $\text { MODE2[1:0] = } 01$		-	-	-	-	-	150	ns
$\mathrm{t}_{\text {PHL }}$	HIGH to LOW propagation delay	$\overline{\mathrm{OE}}$ to LEDn; $\text { MODE2[1:0] = } 01$		-	-	-	-	-	150	ns

Table 19. Dynamic characteristics ...continued

Symbol	Parameter	Conditions	Standard-mod e $\mathrm{I}^{2} \mathrm{C}$-bus		Fast-mode $I^{2} \mathrm{C}$-bus		Fast-mode Plus $\mathrm{I}^{2} \mathrm{C}$-bus		Unit
			Min	Max	Min	Max	Min	Max	
Output port timing									
$\mathrm{t}_{\mathrm{d}(\mathrm{SCL}-\mathrm{Q})}$	delay time from SCL to data output	SCL to LEDn; MODE2[3] = 1; outputs change on ACK	-	-	-	-	-	450	ns
$\mathrm{t}_{\mathrm{d}(\text { SDA }- \text { Q })}$	delay time from SDA to data output	SDA to LEDn; MODE2[3] = 0; outputs change on STOP condition	-	-	-	-	-	450	ns

[1] $t_{V D ; A C K}=$ time for Acknowledgement signal from SCL LOW to SDA (out) LOW.
[2] $t_{V D ; D A T}=$ minimum time for SDA data out to be valid following SCL LOW.
[3] A master device must internally provide a hold time of at least 300 ns for the SDA signal (refer to the $\mathrm{V}_{\text {IL }}$ of the SCL signal) in order to bridge the undefined region of SCL's falling edge.
[4] The maximum t_{f} for the SDA and SCL bus lines is specified at 300 ns . The maximum fall time (t_{f}) for the SDA output stage is specified at 250 ns . This allows series protection resistors to be connected between the SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified t_{f}.
[5] $\quad C_{b}=$ total capacitance of one bus line in pF .
[6] Input filters on the SDA and SCL inputs suppress noise spikes less than 50 ns .

Fig 18. Definition of timing

protocol	START condition (S)	bit 7 MSB (A7)	bit 6 (A6)	

bit 1	bit 0 (D1)	acknowledge (A)	STOP condition (P)

SCL
SDA

002aab285

Rise and fall times refer to V_{IL} and V_{IH}.
Fig 19. $\mathrm{I}^{2} \mathrm{C}$-bus timing diagram

15. Test information

$R_{L}=$ Load resistor for LEDn. R_{L} for SDA and SCL > $1 \mathrm{k} \Omega$ (3 mA or less current).
$C_{L}=$ Load capacitance includes jig and probe capacitance.
$R_{T}=$ Termination resistance should be equal to the output impedance Z_{0} of the pulse generators.
Fig 20. Test circuitry for switching times

16. Package outline

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{D}	HE_{E}	L	L_{p}	v	w	y	$Z_{\text {D }}{ }^{(1)}$	$\mathrm{Z}_{\mathrm{E}}{ }^{(1)}$	θ
mm	1.6	0.20	1.45	0.25	0.27	0.18	7.1	7.1	0.5	9.15	9.15	1	0.75	0.2	0.12	0.1	0.95	0.95	7°
		0.05	1.35		0.17	0.12	6.9	6.9		8.85	8.85		0.45				0.55	0.55	0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT313-2	136E05	MS-026		\pm ¢	$\begin{aligned} & \hline 00-01-19 \\ & 03-02-25 \end{aligned}$

Fig 21. Package outline SOT313-2 (LQFP48)
PCA9626_2
Note

1. Plastic or metal protrusions of 0.075 mm maximum per side are not included

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT778-4	-- -	-- -	---		$\begin{aligned} & 04-07-30 \\ & 04-10-07 \end{aligned}$

Fig 22. Package outline SOT778-4 (HVQFN48)

17. Handling information

All input and output pins are protected against ElectroStatic Discharge (ESD) under normal handling. When handling ensure that the appropriate precautions are taken as described in JESD625-A or equivalent standards.

18. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note AN10365 "Surface mount reflow soldering description".

18.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

18.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than $\sim 0.6 \mathrm{~mm}$ cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- Board specifications, including the board finish, solder masks and vias
- Package footprints, including solder thieves and orientation
- The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus SnPb soldering

18.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- Solder bath specifications, including temperature and impurities

18.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see Figure 23) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with $\underline{\text { Table } 20 \text { and } 21}$

Table 20. SnPb eutectic process (from J-STD-020C)

Package thickness $(\mathbf{m m})$	Package reflow temperature $\left({ }^{\circ} \mathrm{C}\right)$	
	Volume $\left(\mathbf{m m}^{\mathbf{3}}\right)$	
	<350	≥ 350
	235	220
	220	220

Table 21. Lead-free process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (${ }^{\circ} \mathrm{C}$)		
	Volume (mm^{3})		
	< 350	350 to 2000	> 2000
< 1.6	260	260	260
1.6 to 2.5	260	250	245
> 2.5	250	245	245

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 23.

For further information on temperature profiles, refer to Application Note AN10365 "Surface mount reflow soldering description".

19. Abbreviations

Table 22. Abbreviations

Acronym	Description
ACK	Acknowledge
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
FET	Field-Effect Transistor
HBM	Human Body Model
I 2 C-bus	Inter-Integrated Circuit bus
LED	Light Emitting Diode
LSB	Least Significant Bit
MM	Machine Model
MSB	Most Significant Bit
PCB	Printed-Circuit Board
PWM	Pulse Width Modulation
RGB	Red/Green/Blue
RGBA	Red/Green/Blue/Amber
SMBus	System Management Bus

20. Revision history

Table 23. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
PCA9626_2	20090831	Product data sheet		PCA9626_1
Modifications:	- Table 11 "CHASE sequence" modified (corrected commands 02, 03, 04, 06; added additiona commands) - Section 7.4 "Active LOW output enable input": added $2^{\text {nd }}$ "Remark" - Figure 17 "Typical application": added "Remark" - Added (new) Section 10.1 "Junction temperature calculation" - Section 11 "Limiting values": - Table 15 "Limiting values": added " T_{j}, junction temperature" specification - Added (new) Table 16 "LQFP48 versus HVQFN48 power dissipation and output current capability" - Added (new) Table 17 "Thermal characteristics" - Table 18 "Static characteristics", sub-section "LED driver outputs": added I LOH specification			
PCA9626_1	20090602	Product data sheet		

21. Legal information

21.1 Data sheet status

Document status $[\underline{[1][2]}$	Product status $[3]$	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term 'short data sheet' is explained in section "Definitions".
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

21.2 Definitions

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information

Short data sheet - A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

21.3 Disclaimers

General - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.
Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.
Terms and conditions of sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control - This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

21.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.
$\mathbf{I}^{2} \mathbf{C}$-bus - logo is a trademark of NXP B.V.

22. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

23. Contents

1 General description 1
2 Features 213
3 Applications 31
4 Ordering information 315
5 Block diagram 416
6 Pinning information 5
6.1 Pinning 5
6.2 Pin description 6
7 Functional description7
7.1 Device addresses
7.1.1 Regular ${ }^{2} \mathrm{C}$-bus slave address 7
7.1.2 LED All Call $\mathrm{I}^{2} \mathrm{C}$-bus address8
7.1.3 LED Sub Call ${ }^{2} \mathrm{C}$-bus addresses 8
7.1.4 Software Reset ${ }^{2} \mathrm{C}$-bus address 8
7.2 Control register 9
7.3 Register definitions 10
7.3.1 Mode register 1, MODE1 12
7.3.2 Mode register 2, MODE2 12
7.3.3 PWM0 to PWM23, individual brightness control 13
7.3.4 GRPPWM, group duty cycle control 14
7.3.5 GRPFREQ, group frequency 14
7.3.6 CHASE control 15
7.3.7 LEDOUT0 to LEDOUT5, LED driver output state 22
7.3.8 SUBADR1 to SUBADR3, ${ }^{2} \mathrm{C}$-bus subaddress 1 to 3 23
7.3.9 ALLCALLADR, LED All Call ${ }^{2} \mathrm{C}$-bus address 23
7.4 Active LOW output enable input 24
7.5 Power-on reset 24
7.6 Software reset. 24
7.7 Individual brightness control with group dimming/blinking 25
8 Characteristics of the $\mathrm{I}^{2} \mathrm{C}$-bus. 26
8.1 Bit transfer 26
8.1.1 START and STOP conditions 26
8.2 System configuration 26
8.3 Acknowledge 27
9 Bus transactions 28
10 Application design-in information 31
10.1 Junction temperature calculation 32
10.1.1 Example 1: T_{j} calculation when $\mathrm{T}_{\text {amb }}$ is known (PCA9626B, LQFP48) 33
10.1.2 Example 2: T_{j} calculation where only $\mathrm{T}_{\text {case }}$ is known 33
11 Limiting values 34
Thermal characteristics 35
Static characteristics 36
Dynamic characteristics 37
Test information. 39
Package outline 40
Handling information 42
Soldering of SMD packages 42
Introduction to soldering 42
Wave and reflow soldering 42
18.3 Wave soldering. 42
Reflow soldering 43
Abbreviations 44
Revision history 45
21 Legal information 46
21.1 Data sheet status 46
21.2 Definitions 46
21.3 Disclaimers 46
21.4 Trademarks 46
22 Contact information 46
23 Contents 47

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'

© NXP B.V. 2009

All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 31 August 2009
Document identifier: PCA9626_2

[^0]: 1. $50^{\circ} \mathrm{C}$ is a typical temperature inside an enclosed system. The designers should feel free, as needed, to perform their own calculation using the examples.
[^1]: [1] Each bit must be limited to a maximum of 100 mA and the total package limited to 2400 mA due to internal busing limits.
 [2] Refer to Section 10.1 for calculation.

