13-Bit to 26-Bit Registered Buffer PC2700-/PC3200-Compliant

Features

- Differential clock inputs up to $\mathbf{2 8 0} \mathbf{~ M H z}$
- Supports LVTTL switching levels on the RESET\# pin
- Output drivers have controlled edge rates, so no external resistors are required.
- Two KV ESD protection
- Latch-up performance exceeds 100 mA per JESD78, Class II
- 64-pin TSSOP/JEDEC and 56-pin QFN package availability
- JEDEC specification supported

Description

This 13 -bit to 26 -bit registered buffer is designed for 2.3 V to 2.7 VDD operations.

All inputs are compatible with the JEDEC Standard for SSTL-2, except the LVCMOS reset (RESET\#) input. All outputs are SSTL_2, Class II compatible.

The CY2SSTV16859 operates from a differential clock (CLK and CLK\#) of frequency up to 280 MHz . Data are registered at crossing of CLK going high and CLK\# going low.
When RESET\# is low, the differential input receivers are disabled, and undriven (floating) data and clock inputs are allowed. The LVCMOS RESET\# input must always be held at a valid logic high or low level.
To ensure defined outputs from the register before a stable clock has been supplied, RESET\# must be held in the low state during power up.
In the DDR DIMM application, RESET\# is completely asynchronous with respect to CLK\# and CLK. Therefore, no timing relationship can be guaranteed between the two. When entering reset, the register is cleared and the outputs are driven low quickly, relative to the time to disable the differential input receivers, thus ensuring no glitches on the output. However, when coming out of reset, the register becomes active quickly, relative to the time to enable the differential input receivers.

Pin Configuration

Pin Configuration (continued)

Pin Description

Pin	Name	Description	
TSSOP			
51	38	RESET\#	Disable Clocking and Reset Latch
$7,15,34,39,43,50,54,58,63$	37,48	GND	Ground
$37,46,60$	$26,33,45$	VDD	Supply Voltage
$6,18,27,33,38,47,59,64$	$9,17,23,27,34,44,49,55$	VDDQ	Supply Voltage, Quiet
45	32	VREF	Reference Voltage for Data Inputs D(1:13)
$16,14,13,12,11,10,9,8,5,4,3,2,1$	$7,6,5,4,3,2,1,56,54,53,52,51,50$	QA(1:13)	Data Outputs
$32,31,30,29,28,25,24,23,22,21,20$, 19,17	$22,21,20,19,18,16,15,14,13,12$ $11,10,8$	QB(1:13)	Data Outputs
$35,36,40,41,42,44,52,53,55,56,57$, 61,62	$24,25,28,29,30,31,39,40,41,42$ $43,46,47$	D(1:13)	Data Inputs
48,49	35,36	CLK, CLK\#	Differential Clock Signals

Table 1. Function Table ${ }^{[1,2,3]}$

INPUTS				OUTPUT
RESET\#	CLK	CLK\#	D	Q
H	\uparrow	\downarrow	L	L
H	\uparrow	\downarrow	H	H
H	L or H	L or H	X	Q_{0}
L	X or floating	X or floating	X or floating	L

Notes:

1. $\mathrm{H}=$ High voltage level
2. $L=$ Low voltage level.
3. $X=$ Don't care

Absolute Maximum Conditions ${ }^{[4,5]}$

Parameter	Description	Condition	Min.	Max.	Unit
$\mathrm{V}_{\text {TERM }}{ }^{[6]}$	Terminal Voltage with respect to $\mathrm{V}_{\text {SS }}$		-0.5	3.6	V
$\mathrm{~V}_{\text {TERM }}{ }^{[7]}$	Terminal Voltage with respect to V_{SS}		-0.5	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
$\mathrm{~T}_{\text {STG }}$	Storage Temperature		-65°	$150^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {OUT }}$	DC Output Current		-50	50	mA
I_{IK}	Continuous Clamp Current	$\mathrm{V}_{1}<0$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{SS}}$	-50	50	mA
I_{OK}	Continuous Clamp Current	$\mathrm{V}_{\mathrm{O}}<0$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{DD}}$	-50	50	mA
$\mathrm{I}_{\text {dd }}$					
I_{SS}	Continuous Current through each $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DDQ}}$ or V_{SS}		-100	100	mA

Recommended Operating Conditions ${ }^{[8]}$

Parameter	Description		Min.	Typ.	Max.	Unit
$V_{D D}$	Supply voltage		2.3	2.5	2.7	V
$\mathrm{V}_{\text {DDQ }}$	Output supply voltage	PC1600,PC2100,PC2700	2.3	2.5	2.7	V
		PC3200	2.5	2.6	2.7	V
$V_{\text {REF }}$	Reference voltage$\left(\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{DDQ}} / 2\right)$	PC1600,PC2100,PC2700	1.15	1.25	1.35	V
		PC3200	1.25	1.3	1.35	V
$\mathrm{V}_{T T}$	Termination voltage		$\mathrm{V}_{\text {REF }}-40 \mathrm{mV}$	$V_{\text {REF }}$	$\mathrm{V}_{\text {REF }}+40 \mathrm{mV}$	V
V_{1}	Input voltage		0	-	V_{DD}	V
V_{IH}	AC Data Input high-level voltage		$\mathrm{V}_{\mathrm{REF}}+310 \mathrm{mV}$	-	-	V
$\mathrm{V}_{\text {IL }}$	AC Data Input low-level voltage		-	-	$\mathrm{V}_{\text {REF }}-310 \mathrm{mV}$	V
V_{IH}	DC Data Input high-level voltage		$\mathrm{V}_{\mathrm{REF}}+150 \mathrm{mV}$	-	-	V
$\mathrm{V}_{\text {IL }}$	DC Data Input low-level voltage		-	-	$\mathrm{V}_{\text {REF }}-150 \mathrm{mV}$	V
$\mathrm{V}_{\text {IH }}$	RESET\# Input high-level voltage		1.7	-	-	V
$\mathrm{V}_{\text {IL }}$	RESET\# Input low-level voltage		-	-	0.7	V
$V_{\text {ICR }}$	CLK, CLK\# Common-mode input voltage range		0.97	-	1.53	V
$\mathrm{V}_{\text {I(PP) }}$	CLK, CLK\# Peak-to-peak input voltage		360	-	-	mV
IOH	High-level output current		-	-	-20	mA
I_{OL}	Low-level output current		-	-	20	mA
T_{A}	Operating free-air temperature		0	-	85	${ }^{\circ} \mathrm{C}$

DC Electrical Specifications

Parameter	Description	Condition	VDD	Min.	Typ. ${ }^{[9]}$	Max.	Unit
V_{IK}	Clamp Voltage	$\mathrm{I}_{1}=-18 \mathrm{~mA}$	2.3 V	-	-	-1.2	V
V_{OH}	High level output voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	2.3 to 2.7 V	$\mathrm{V}_{\mathrm{DD}}-0.2$	-	-	V
		$\mathrm{l}_{\mathrm{OH}}=-16 \mathrm{~mA}$	2.3 V	1.95	-	-	V
$\mathrm{V}_{\text {OL }}$	Low level output voltage	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	2.3 to 2.7 V	-	-	0.2	V
		$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$	2.3	-	-	0.35	V
1	All Inputs	$V_{1}=V_{D D}$ or $V_{S S}$	2.7 V	-	-	± 5	$\mu \mathrm{A}$
IDD	Static Standby	RESET\# $=\mathrm{V}_{\text {SS }} \quad 1 \mathrm{I}_{\mathrm{O}}=0$	2.7 V	-	-	10	$\mu \mathrm{A}$
	Static Operating	RESET\# = $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}(\mathrm{AC})}$ or $\mathrm{V}_{\mathrm{IL}(\mathrm{AC})}$	2.7	-	-	40.0	mA

Notes:

4. The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.
5. Stresses greater than those listed under Absolute Maximum Conditions may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.
6. $V_{D D} / V_{D D Q}$ terminals.
7. All terminals except $V_{D D}$.
8. The RESET\# input of the device must be held at $\mathrm{V}_{D D}$ or $\mathrm{V}_{S S}$ to ensure proper device operation.
9. All typical values are measured at $\mathrm{T}_{\mathrm{AMB}}=25^{\circ} \mathrm{C}$

DC Electrical Specifications (continued)

Parameter	Description	Condition		VDD	Min.	Typ. ${ }^{[9]}$	Max.	Unit
IDDD	Dynamic operating-clock only	RESET\# $=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}(\mathrm{AC})}$ or $\mathrm{V}_{\mathrm{IL}(\mathrm{AC})}$, CLK and CLK\# switching 50% duty cycle	$\mathrm{I}_{\mathrm{O}}=0$	2.7V	-	30.0	-	$\begin{gathered} \mu \mathrm{A} \\ \text { clock } \\ \mathrm{MHz} \end{gathered}$
	Dynamic operating - per each data input	RESET\# $=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}(\mathrm{AC})}$ or $\mathrm{V}_{\mathrm{IL}(\mathrm{AC})}$, CLK and CLK\# switching 50% duty cycle. One data input switching at half clock frequency, 50% duty cycles.		2.7	-	15.0	-	$\mu \mathrm{A} /$ clock MHz /data input
r_{OH}	Output high	$\mathrm{IOH}=-20 \mathrm{~mA}$		2.3 to 2.7 V	7	-	20	Ω
r_{OL}	Output low	$\mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$		2.3 to 2.7 V	7	-	20	Ω
$\mathrm{r}_{\mathrm{O}(\Delta)}$	$\left\|\mathrm{rOH}^{-r_{\mathrm{OL}}}\right\|$ each separate bit	$\mathrm{l}_{\mathrm{O}}=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.5 V	-	-	4	Ω
C_{i}	Data Inputs	$\mathrm{V}_{1}=\mathrm{V}_{\text {REF }} \pm 310 \mathrm{mV}$		2.5	2.5	-	3.5	pF
	CLK and CLK\#	$\mathrm{V}_{\text {ICR }}=1.25 \mathrm{~V}, \mathrm{~V}_{\text {I(PP) }}=360 \mathrm{mV}$		2.5	2.5	-	3.5	pF
	RESET\#	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{S S}$		2.5	2.5	-	3.5	pF

AC Electrical Specifications

Parameter	Description		$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$		Unit
			Min.	Max.	
$\mathrm{f}_{\text {clock }}$	Clock Frequency		-	280	MHz
t_{w}	Pulse duration, CLK, CLK\# high or low		2.0	-	ns
$\mathrm{tact}^{\text {act }}$	Differential inputs active time (data inputs must be held low after RESET\# is taken high).		-	22	ns
$\mathrm{t}_{\text {inact }}$	Differential inputs inactive time (data and clock inputs must be held at valid levels (not floating) after RESET\# is taken low).		-	22	ns
$\mathrm{t}_{\text {su }}$	Set-up time, fast slew rate ${ }^{[10,12]}$	Data before CLK \uparrow, CLK\# \downarrow	0.75	-	ns
	Set-up time, slow slew rate ${ }^{[11,12]}$		0.9	-	ns
$t_{\text {h }}$	Hold time, fast slew rate ${ }^{[10,12]}$	Data after CLK \uparrow, CLK\# \downarrow	0.75	-	ns
	Hold time, slow slew rate ${ }^{[11, ~ 12]}$		0.9	-	ns

Table 2. Switching Characteristics Over Recommended Operating Conditions ${ }^{[13]}$

Parameter	From (Input)	To (Output)	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$		Unit
			Min.	Max.	
$\mathrm{f}_{\text {max }}$			280	-	MHz
$\mathrm{t}_{\text {PHL }}$	RESET\#	Q		5	ns
$\mathrm{t}_{\text {PD }}$	CLK and CLK\#	Q	1.1	2.8	ns

Notes:
10. For data signal input slew rate $\geq 1 \mathrm{~V} / \mathrm{ns}$.
11. For data signal input slew rate $\geq \mathrm{V} / \mathrm{ns}$ and $<1 \mathrm{~V} / \mathrm{ns}$.
12. CLK and CLK\# signals input slew rates are $\geq 1 \mathrm{~V} / \mathrm{ns}$
13. See test circuits and waveforms. $\mathrm{TA}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Output Buffer Characteristics
Table 3. Output Buffer Voltage vs. Current (V/I) Characteristics

Voltage (V)	Pull-Down		Pull-Up	
	Min. I(mA)	Max. I(mA)	Min. I(mA)	Max. I(mA)
0	0	0	-55	-162
0.1	6	13	-55	-161
0.2	10	25	-54	-160
0.3	15	38	-54	-159
0.4	19	49	-54	-157
0.5	23	60	-54	-156
0.6	27	71	-53	-154
0.7	30	81	-53	-152
0.8	34	91	-53	-149
0.9	36	100	-52	-146
1.0	38	108	-52	-143
1.1	40	115	-52	-140
1.2	42	123	-51	-137
1.3	43	130	-50	-134
1.4	44	137	-48	-130
1.5	44	144	-46	-125
1.6	45	150	-44	-120
1.7	45	158	-40	-112
1.8	45	165	-38	-104
1.9	45	172	-35	-96
2.0	45	179	-31	-83
2.1	46	185	-28	-72
2.2	46	191	-23	-60
2.3	46	196	-19	-49
2.4	46	201	-15	-38
2.5	46	206	-10	-27
2.6	46	211	-5	-15
2.7	46	216	0	0

Table 4. Output Buffer Slew-Rate Characteristics

dV/dt	Min.	Max.
Rise	$0.85 \mathrm{~V} / \mathrm{ns}$	$15.9 \mathrm{~V} / \mathrm{ns}$
Fall	$1.00 \mathrm{~V} / \mathrm{ns}$	$18.9 \mathrm{~V} / \mathrm{ns}$

Parameter Measurement Information ${ }^{[14]}$

$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$

Timing Diagrams

Figure 1. Load Circuit ${ }^{[15]}$

Figure 2. Voltage Waveforms Set-up and Hold Times

Figure 3. Voltage Waveforms Propagation Delay Times ${ }^{[16,17]}$

Figure 4. Voltage Waveforms Propagation Delay Times

Figure 5. Voltage Waveforms Pulse Duration ${ }^{[18,19]}$

Figure 6. Voltage Waveforms Enable and Disable Times Low- and High-level Enabling

Ordering Information

Part Number	Package Type	Product Flow
CY2SSTV16859ZC	64-pin TSSOP	Commercial, 0° to $70^{\circ} \mathrm{C}$
CY2SSTV16859ZCT	64-pin TSSOP- Tape and Reel	Commercial, 0° to $70^{\circ} \mathrm{C}$
CY2SSTV16859ZI	64-pin TSSOP	Industrial, -40° to $85^{\circ} \mathrm{C}$
CY2SSTV16859ZIT	64-pin TSSOP - Tape and Reel	Industrial, -40° to $85^{\circ} \mathrm{C}$
CY2SSTV16859LFC	56 -pin QFN	Commercial, 0° to $70^{\circ} \mathrm{C}$
CY2SSTV16859LFCT	56-pin QFN - Tape and Reel	Commercial, 0° to $70^{\circ} \mathrm{C}$
CY2SSTV16859LFI	56-pin QFN	Industrial, -40° to $85^{\circ} \mathrm{C}$
CY2SSTV16859LFIT	56-pin QFN- Tape and Reel	Industrial, -40° to $85^{\circ} \mathrm{C}$

Notes:

14. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR}<10 \mathrm{MHz}, \mathrm{ZO}=50$-ohm output slew rate $=1 \mathrm{~V} / \mathrm{ns} \pm 20 \%$ (unless otherwise specified).
15. C_{L} includes probe and jig capacitance.
16. the outputs are measured one at a time with one transition per measurement.
17. ${ }^{*} V_{T T}=V_{R E F}=V_{D D Q} / 2$.
18. ${ }^{* *} \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{REF}}+350 \mathrm{mV}$ (AC voltage levels).
19. ${ }^{* * *} \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{REF}}-350 \mathrm{mV}$ (AC voltage levels).

Package Drawing and Dimension

64-lead Thin Shrunk Small Outline Package ($6 \mathrm{~mm} \times 17 \mathrm{~mm}$) Z64

While SLI has reviewed all information herein for accuracy and reliability, Spectra Linear Inc. assumes no responsibility for the use of any circuitry or for the infringement of any patents or other rights of third parties which would result from each use. This product is intended for use in normal commercial applications and is not warranted nor is it intended for use in life support, critical medical instruments, or any other application requiring extended temperature range, high reliability, or any other extraordinary environmental requirements unless pursuant to additional processing by Spectra Linear Inc., and expressed written agreement by Spectra Linear Inc. Spectra Linear Inc. reserves the right to change any circuitry or specification without notice.

