Rotary Encoder (Incremental/Absolute)

E6C3

An Encoder That Offers
 Durability and Convenience

- IP65f drip-proof, oil-proof construction achieved with seal bearing.
- 8 -mm-dia stainless steel shaft withstands a shaft loading of 80 N and 50 N respectively in the radial and thrust directions.
- Absolute Rotary Encoders have a metal slit plate to ensure high resistance to shock.
- Combining Absolute Rotary Encoders with a Programmable Controller or Cam Positioner allows ideal angle control.
- Bears CE markings (EMC Directives) and conforms to EN/IEC standards, making it suitable for the Euro-
 pean market.

Ordering Information

Incremental Rotary Encoders

Supply voltage	Output configuration	Resolution (P/R)	Connection method	Model
12 to 24 VDC	Complementary output	100, 200	Pre-wired (1 m) (See note 2.)	E6C3-CWZ5GH
		300, 360, 500		
		600, 720, 800		
		1,000, 1,024, 1,200		
		1,500, 1,800, 2,000		
		2,048, 2,500, 3,600		
5 to 12 VDC	Voltage output	100, 200		E6C3-CWZ3EH
		300, 360, 500		
		600, 720, 800		
		1,000, 1,024, 1,200		
		1,500, 1,800, 2,000		
		2,048, 2,500, 3,600		
5 to 12 VDC	Line driver output	100, 200		E6C3-CWZ3XH
		300, 360, 500		
		600, 720, 800		
		1,000, 1,024, 1,200		
		1,500, 1,800, 2,000		
		2,048, 2,500, 3,600		

Note 1. When ordering, specify the resolution in addition to the model numbers. (Example: E6C3-CWZ5GH 300P/R 1M)
2. Models with $2-\mathrm{m}$ cables are also available as standard products. Specify the cable length at the end of the model number. (Example: E6C3CWZ5GH 300P/R 2M)

Absolute Rotary Encoders

Supply voltage	Output configuration	Output code	Resolution (P/R)	Connection method	Model
12 to 24 VDC	NPN open collector output	Gray code	256, 360	Connector	E6C3-AG5C-C
			256, 360, 720, 1,024	Pre-wired (1 m) (See note 2.)	E6C3-AG5C
		Binary	32, 40		E6C3-AN5C
		BCD	6, 8, 12		E6C3-AB5C
	PNP open collector output	Gray code	256, 360, 720, 1,024		E6C3-AG5B
		Binary	32, 40		E6C3-AN5B
		BCD	6, 8, 12		E6C3-AB5B
5 VDC	Voltage output	Binary	256		E6C3-AN1E
12 VDC					E6C3-AN2E

Note 1. When ordering, specify the resolution in addition to the model numbers. (Example: E6C3-AG5C 360P/R 1M)
2. Models with $2-\mathrm{m}$ cables are also available as standard products. Specify the cable length at the end of the model number. (Example: E6C3AG5C 360P/R 2M)
3. When connecting to the H8PS, be sure to use the E6C3-AG5C-C 256P/R

Accessories (Order Separately)

Item	Model	Remarks
Coupling	E69-C08B	---
	E69-C68B	Diameters of ends: 6 to 8 dia.
Flange	E69-FCA03	---
	E69-FCA04	E69-2 Servo Mounting Bracket provided.
Servo Mounting Bracket	E69-2	Provided with the E69-FCA04 Flange.
Extension Cable	E69-DF5	
	E69-DF10	10 m Cables are also available.
	E69-DF20	30 m

Specifications

Ratings/Characteristics

Incremental Rotary Encoders

Item		E6C3-CWZ5GH	E6C3-CWZ3EH	E6C3-CWZ3XH
Power supply voltage		12 VDC -10\% to 24 VDC +15\%	5 VDC -5\% to 12 VDC +10\%	
Current consumption (See note 1.)		100 mA max.		
Resolution (pulse/ rotation)		$100,200,300,360,500,600,720,800,1,000,1,024,1,200,1,500,1,800,2,000,2,048,2,500,3,600$		
Output phases		A, B, and Z		A, $\bar{A}, B, \bar{B}, Z, \bar{Z}$
Output configuration		Complementary output (See note 5.)	Voltage output (NPN output)	Line driver output (See note 2.)
Output capacity		```Output voltage: VH: Vcc - 3 V min. (lo: 30 mA) VL: 2 V max. (Io: -30 mA) Output current: }\pm30\textrm{mA```	Output resistance: $2 \mathrm{k} \Omega$ Output current: 35 mA max. Residual voltage: 0.7 V max.	AM26LS31 equivalent Output current: High level (lo): -10 mA Low level (Is): 10 mA Output voltage: Vo: 2.5 V min. Vs: 0.5 V max.
Max. response frequency (See note 3.)		125 kHz (65 kHz for phase-Z reset)		
Phase difference on output		$90^{\circ} \pm 45^{\circ}$ between A and $\mathrm{B}(1 / 4 \mathrm{~T} \pm 1 / 8 \mathrm{~T})$		
Rise and fall times of output		$1 \mu \mathrm{~s}$ max. (cable length: 2 m , output current: 30 mA)	$\begin{aligned} & 1 \mu \text { s max. } \\ & \text { (cable length: } 2 \mathrm{~m} \text {, output current: } \\ & 35 \mathrm{~mA} \text {) } \end{aligned}$	$1 \mu \mathrm{~s}$ max. (cable length: 2 m ; lo: -10 mA ; Is: 10 mA)
Starting torque		$10 \mathrm{mN} \cdot \mathrm{m}$ max. at room temperature; $30 \mathrm{mN} \cdot \mathrm{m}$ max. at low temperature		
Moment of inertia		$2.0 \times 10^{-6} \mathrm{~kg} \cdot \mathrm{~m}^{2} ; 1.9 \times 10^{-6} \mathrm{~kg} \cdot \mathrm{~m}^{2}$ at $500 \mathrm{P} / \mathrm{R}$ max.		
Shaft loading	Radial	80 N		
	Thrust	50 N		
Max. permissible revolution		5,000 rpm		
Protection circuits		Reversed power supply connection protection circuit, output load short-circuit protection circuit		---
Ambient temperature		Operating: $-10^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing) Storage: $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (with no icing)		
Ambient humidity		35% to 85\% (with no condensation)		
Insulation resistance		$20 \mathrm{M} \Omega$ min. (at 500 VDC) between current-carrying parts and case		
Dielectric strength		500 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between current-carrying parts and case		
Vibration resistance		Destruction: 10 to $500 \mathrm{~Hz}, 150 \mathrm{~m} / \mathrm{s}^{2}$ or 2-mm double amplitude for 11 min 3 times each in X, Y, and Z directions		
Shock resistance		Destruction: 1,000 m/s 3 times each in X, Y, and Z directions		
Degree of protection		IEC60529 IP65 (JEM IP65f for drip-proof and oil-proof construction) (See note 4.)		
Connection method		Pre-wired (standard length: 1 m)		
Weight (packed state)		Approx. 300 g		
Others		Instruction manual		

Note 1. An inrush current of approx. 9 A flows for approx. 0.1 ms right after the E6C3 is turned on.
2. The line driver output of the E6C3 is used for data transmission circuitry conforming to RS-422A and ensures long-distance transmission over twisted-pair cable, the quality of which is equivalent to AM26LS31.
3. The maximum electrical response revolution is determined by the resolution and maximum response frequency as follows: Maximum electrical response frequency (rpm) = Maximum response frequency/resolution $\times 60$
This means that the E6C3 will not operate electrically if its revolution exceeds the maximum electrical response revolution.
4. JEM1030: applicable since 1991.
5. Complementary Output:

The complementary output has two output transistors (NPN and PNP) as shown below. These two output transistors alternately turn ON and OFF depending on the " H " or " L " output signal. When using them, pull up to the positive power or pull down to 0 V . The complementary output allows flow-in or flow-out of the output current and thus the rising and falling speeds of signals are fast. This allows a long cable distance. They can be connected to open-collector input devices (NPN, PNP).

6. Phase-Z signals are output when the relationship between the shaft's D cut position and the cable's pullout direction is as shown in the following diagram. (Output position range: $\pm 15^{\circ}$.)

Output Circuit Diagram

Incremental Rotary Encoders

Note 1. The shield is not connected to the internal circuits or casing of the E6C3.
2. There is no difference in circuit among phases A, B, and Z.
3. Connect the GND terminal to 0 V or the ground when the E6C3 is in normal operation.

Connection Examples

■ Incremental Rotary Encoders

H7ER Digital Tachometer

Applicable Model: E6C3-CWZ3EH (with a resolution of 10, 60, or 600 P/R)

H7BR Digital Counter

Applicable Model: E6C3-CWZ3EH

H7CR-CW Digital Counter

Applicable Model: E6C3-CWZ5GH

C200H-CT $\square \square$ High-speed Counter Unit

Applicable Model: E6C3-CWZ5GH Typical Model: C200H-CT001-V1

Note: Apply the following connections if the E6C3's 3 power supplies are 5 or 24 V .
Phase A and Power Supply: 5 V to A19 and 24 V to B20
Phase B and Power Supply: 5 V to A17 and 24 V to B18

Applicable Model: E6C3-CWZ5GH

 Typical Model: C200H-CT021

Note: Apply the following connections if the power supply to the E6C3 is 12 or 24 V .
Phase A and Power Supply: 12 V to A8/B8 and 24 V to A9/B9 Phase B and Power Supply: 12 V to A12/B12 and 24 V to A13/ B13
Phase Z and Power Supply: 12 V to A16/B16 and 24 V to A17/ B17

CQM1-CPU43-EV1 (as Built-in Highspeed Counter)

- The pulse output of the E6C3 can be directly input into IN04, IN05, and IN06 of the CPU Unit to use these three points as a built-in high-speed counter.
- The single-phase response speed is 5 kHz and the two-phase response speed is 2.5 kHz . The count value is within a range between 0 and 65,535 in increment mode and -32,767 and 32,767 in decrement mode.
- The operating mode of the high-speed counter is set with the PC Setup in the DM area.

Count Mode

Up/Down mode	Increment/Decrement counter uses phas- es A and B.
Incrementing mode	Increment counter uses phase A only.
Normal mode	IN04 through IN05 are used for normal in- put.

Applicable Model: E6C3-CWZ5GH

CQM1 Programmable Controller
Applicable Model: E6C3-CWZ5GH

C500-CT001/CT012 High-speed Counter Unit

CW and CCW detection (increment/ decrement counting)
Applicable Model: E6C3-CWZ5GH

Reset

The present count value can be reset with the soft-reset function or the AND of soft reset and phase Z input.
Output

Target value	When the count value reaches the target value, the specified subroutine is executed. A maximum of 16 target values can be set.
Range comparison	When the count value is within the range, the spec- ified subroutine is executed. A maximum of 8 rang- es can be set with upper and lower limits.

Specifications

■ Ratings/Characteristics

Absolute Rotary Encoders

Item		$\begin{gathered} \text { E6C3- } \\ \text { AG5C-C } \end{gathered}$	$\begin{aligned} & \text { E6C3- } \\ & \text { AG5C } \end{aligned}$	$\begin{aligned} & \text { E6C3- } \\ & \text { AN5C } \end{aligned}$	$\begin{aligned} & \text { E6C3- } \\ & \text { AB5C } \end{aligned}$	$\begin{aligned} & \text { E6C3- } \\ & \text { AG5B } \end{aligned}$	$\begin{aligned} & \text { E6C3- } \\ & \text { AN5B } \end{aligned}$	$\begin{aligned} & \text { E6C3- } \\ & \text { AB5B } \end{aligned}$	E6C3- AN1E	$\begin{aligned} & \text { E6C3- } \\ & \text { AN2E } \end{aligned}$				
Power supply voltage		$12 \mathrm{VDC}-10 \%$ to $24 \mathrm{VDC}+15 \%$, ripple (p-p) 5\% max.							5 VDC $\pm 5 \%$	$\begin{aligned} & 12 \text { VDC } \\ & \pm 10 \% \end{aligned}$				
Current consumption		70 mA max.												
Resolution (See note 1.) (pulses/rotation)		256, 360	$\begin{aligned} & 256,360, \\ & 720,1,024 \end{aligned}$	32, 40	6, 8, 12	$\begin{aligned} & 256,360, \\ & 720,1,024 \end{aligned}$	32, 40	6, 8, 12	256					
Output code		Gray code		Binary	BCD	Gray code	Binary	BCD	Binary					
Output configuration		NPN open collector output				PNP open collector output			Voltage output					
Output capacity		Applied voltage: 30 VDC max. Sink current: 35 mA max. Residual voltage: 0.4 V max. (at sink current of 35 mA)				Source current: 35 mA max. Residual voltage: 0.4 V max. (at Source current of 35 mA)			Output resistance: $2.4 \mathrm{k} \Omega$	Output resistance: $8.2 \mathrm{k} \Omega$				
		Sink current: 35 mA max. Residual voltage: 0.4 V max. (at sink current of $35 \mathrm{~mA})$												
Rise and fall times of output						$1 \mu \mathrm{~s}$ max. (cable length: 2 m ; output current: 35 mA max.)							Rise: $3 \mu \mathrm{~s}$ max. Fall: $1 \mu \mathrm{~s}$ max.	Rise: $10 \mu \mathrm{~s}$ max. Fall: $1 \mu \mathrm{~s}$ max.
Max. response frequency (See note 2.)		20 kHz							10 kHz					
Logic		Negative logic output (H=0, L=1)				Positive logic output (H=1, L=0)								
Rotational direction (See note 3.)		Output code incremented by clockwise rotation (as viewed from the face of the shaft.)							Changed using the rotational direction designation input.					
Strobe signal		Not available		Available		Not available	Available		Not available					
Positioning signal		Not available			Available	Not available		Available	Not available					
Parity signal		Not available		Available (even number)	Not available		Available (even number)	Not available						
Starting torque		$10 \mathrm{mN} \cdot \mathrm{m}$ max. at room temperature $30 \mathrm{mN} \cdot \mathrm{m}$ max. at low temperature												
Moment of inertia		$2.3 \times 10^{-6} \mathrm{~kg} \cdot \mathrm{~m}^{2}$												
Shaft loading	Radial	80 N												
	Thrust	50 N												
Max. permissible rotation		5,000 rpm												
Ambient temperature		Operating: $-10^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing) Storage: $\quad-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (with no icing)												
Ambient humidity		35% to 85\% (with no condensation)												
Insulation resistance		$20 \mathrm{M} \Omega$ min. (at 500 VDC$)$ between current-carrying parts and case												
Dielectric strength		500 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between current-carrying parts and case												
Vibration resistance		Destruction: 10 to 500 Hz , 1.0-mm single amplitude or $150 \mathrm{~m} / \mathrm{s}^{2}$ for 11 min .3 times each in X, Y, and Z directions.												
Shock resistance		Destruction: 1,000 m/s ${ }^{2}$, 6 times each in X, Y, and Z directions												
Degree of protection		IEC60529 IP65 (JEM IP65f for drip-proof and oil-proof construction) (See note 4.)												
Connection method		Connector (standard length: 1 m)	Pre-wired (standard length: 1 m)											
Weight (packed state)		Approx. 300 g												
Others		Instruction manual												

Note 1. The codes are classified as shown in the following table.

Output code	Resolution	Code number
Binary	32	1 to 32
	40	1 to 40
	256	0 to 255
	6	0 to 5
	8	0 to 7
	12	0 to 11
	256	0 to 255
	360	76 to 435 (Remainder of 76)
	720	152 to 871 (Remainder of 152)
	1,024	0 to 1,023

2. The maximum electrical response revolution is determined by the resolution and maximum response frequency as follows:
Maximum electrical response frequency (rpm) $=$ Maximum response frequency/resolution $\times 60$
This means that the E6C3 will not operate electrically if its revolution exceeds the maximum electrical response revolution.
3. With the E6C3-AN1E and E6C3-AN2E models, the output code can be increased in the clockwise direction by connecting the rotational direction designation input (wire color: pink) to $\mathrm{H}(\mathrm{Vcc})$, and the output code can be decreased in the clockwise direction by connecting the input to $L(0 \mathrm{~V})$.

E6C3-AN1E: $\mathrm{H}=1.5$ to $5 \mathrm{~V}, \mathrm{~L}=0$ to 0.8 V
E6C3-AN2E: $\mathrm{H}=2.2$ to $12 \mathrm{~V}, \mathrm{~L}=0$ to 1.2 V
With the E6C3-AN1E and E6C3-AN2E models, read the code at least $10 \mu \mathrm{~s}$ after the LSB $\left(2^{0}\right)$ code has changed.
4. JEM1030: applicable since 1991.
5. The absolute code's smallest address is output when the relationship between the shaft's D cut position and the cable's pullout direction is as shown in the following diagram. (Output position range: $\pm 15^{\circ}$.)

Output Circuit Diagrams

Absolute Rotary Encoders

Connections

Connector Specifications

Pin number	E6C3-AG5C-C	
	Output signal	
\mathbf{y}	8-bit (256)	9-bit (360)
$\mathbf{2}$		NC
$\mathbf{3}$	2^{5}	2^{8}
$\mathbf{4}$	2^{1}	2^{5}
$\mathbf{5}$	2^{0}	2^{1}
$\mathbf{6}$	2^{7}	2^{0}
$\mathbf{7}$	2^{4}	2^{7}
$\mathbf{8}$	2^{2}	2^{4}
$\mathbf{9}$	2^{3}	2^{2}
$\mathbf{1 0}$	2^{6}	2^{3}
$\mathbf{1 1}$	Shield (GND)	2^{6}
$\mathbf{1 2}$	12 to 24 VDC	
$\mathbf{1 3}$	0 V (Common)	

Cable Specifications

Wire color	E6C3-AG5C/E6C3-AG5B			
	Output signal			
	8-bit (256)	9-bit (360)		
10-bit (720, 1,024)				
Brown	2^{0}	2^{0}	2^{0}	
Orange	2^{1}	2^{1}	2^{1}	
Yellow	2^{2}	2^{2}	2^{2}	
Green	2^{3}	2^{3}	2^{3}	
Blue	2^{4}	2^{4}	2^{4}	
Purple	2^{5}	2^{5}	2^{5}	
Gray	2^{6}	2^{6}	2^{6}	
White	2^{7}	2^{7}	2^{7}	
Pink	NC	2^{8}	2^{8}	
Light blue	NC	NC	2^{9}	
---	Shield (GND)			
Red	12 to 24 VDC			
Black	0 V (Common)			

Note: Connector type: RP13A-12PD-13SC (Hirose Electric)

Output Circuit Diagrams

Absolute Rotary Encoders

	E6C3-AB5C ${ }^{\text {E }}$ (${ }^{\text {EC3-AB5B }}$	
Output Circuits	Note: Each output bit uses the same circuit. Note: Each output bit uses the same circuit.	Note: Each output bit uses the same circuit. Rotational Direction Designation Input Circuit Note: Output code increases in the clockwise direction when the input is connected to Vcc and decreases in the clockwise direction when the input is connected to 0 V .
Output Modes	Rotating direction: CW, as viewed from the face of the shaft. Resolution: 12 When resolution is 8 $\mathrm{A}=45^{\circ}$ $B=22.5^{\circ}$ $\mathrm{C}=11.25^{\circ}$ When resolution is 6 $\mathrm{A}=60^{\circ}$ $B=30^{\circ}$ $\mathrm{C}=15^{\circ}$	Rotating direction: CW, as viewed from the face of the shaft, when rotational direction designation input is at "H." CCW, as viewed from the face of the shaft, when rotational direction designation input is at "L."

Connections

Cable Specifications

Wire color	E6C3-AN5C/-AN5B	E6C3-AB5C/-AB5B		E6C3-AN1E/-AN2E
	Output signal	Output signal		Output signal
	6-bit (32, 40)	3-bit (6, 8)	5-bit (12)	8-bit (256)
Brown	2^{0}	2^{0}	2^{0}	2^{0}
Orange	2^{1}	2^{1}	2^{1}	2^{1}
Yellow	2^{2}	2^{2}	2^{2}	2^{2}
Green	2^{3}	NC	2^{3}	2^{3}
Blue	2^{4}	NC	$2^{0} \times 10$	2^{4}
Purple	2^{5}	NC	NC	2^{5}
Gray	Parity	Positioning	Positioning	2^{6}
White	Strobe	Strobe	Strobe	2^{7}
Pink	NC	NC	NC	Rotational direction designation input
Light blue	NC	NC	NC	NC
---	Shield (GND)			
Red	12 to 24 VDC			5, 12 VDC
Black	0 V (Common)			

Connection Examples

■Connecting an Absolute Rotary Encoder to an H8PS Cam Positioner

H8PS-8A, -8AP, -8AF, -A8AF

Specifications

Rated voltage	24 VDC
Cam resolution	1.4° (a resolution of 256 per rotation)
Outputs	8 cam outputs 1 RUN output 1 tachometer output
Encoder response	330 rpm
Functions	Origin compensation (zero shift) Rotating direction selection Angle display selection Teaching

■ Connecting E6C3-AG5C to Programmable Controller

System Configuration Using a Resolution of 1,024 per Rotation
A combination of the CQM1-CPU44-E and E6C3-AG5C ensures easy output angle setting for cam control in 360° or BCD mode.

CQM1-CPU44-E
Two Encoder inputs can be controlled independently.
Mode Setting of CQM1-CPU44-E
Set port 1 to BCD mode and 10 bits
DM 6643 \square
Output Timing

Ladder Program Example

Use the CTBL instruction of the CQM1-CPU44-E to register a maximum of eight comparison tables for output angle setting.

Example of DM Setting for Comparison Table

DM 0000	0000	$\begin{aligned} & \text { Lower limit } 1 \\ & \text { Upper limit } 1 \end{aligned} \quad \text { Bit AR } 0500$	
0001	0512		
0002	0000	Subroutine number 1	
0003	0256	Lower limit 2	
0004	0768	Upper limit 2	Bit AR 0501
0005	0000	Subroutine number 2	
0006	0128	Lower limit 3	
0007	0640	Upper limit 3	Bit AR 0502
0008	0000	Subroutine number 3	
0009	0000	Lower limit 4	
			Not used.
0022	0000	Upper limit 8	
0023	0000	Subroutine number 8	

Note: An upper or lower limit can be set with integers in BCD mode and 5° increments in 360° mode. Subroutine numbers are set for interrupt processing.

Internal Bits of CQM1-CPU44-E

- Range Comparison Result

Each bit of the CQM1-CPU44-E CPU Unit's words AR 05 and AR 06 turns ON only when the comparison range coincides with the angle of E6C3-AG5C. If it does not coincide, the bit turns (remains) OFF.

- Present Value Read

The gray code signals of the E6C3-AG5C are automatically converted into BCD or 360° code signals and read through the CQM1-CPU44-E CPU Unit's words AR 232 and AR 234. The present value can be used for ladder programs.

Port 1 angle	$* * * *$ Word 232 Port 2 angle
	$* * * * *$

Note:For details on the CQM1-CPU44-E, refer to the CQM1 Programming Manual (W228).

■ Absolute Rotary Encoders

Connecting to CPM1A Using a
 Resolution of 720 per Rotation

Wiring Between E6C3-AG5C and CPM1A

Output signal from E6C3-AG5C	Input signal to CPM1A
Brown $\left(2^{0}\right)$	00000
Orange $\left(2^{1}\right)$	00001
Yellow $\left(2^{2}\right)$	00002
Green $\left(2^{3}\right)$	00003
Blue $\left(2^{4}\right)$	00004
Purple $\left(2^{5}\right)$	00005
Gray $\left(2^{6}\right)$	00006
White $\left(2^{7}\right)$	00007
Pink $\left(2^{8}\right)$	00008
Light blue $\left(2^{9}\right)$	00009

Output Timing

Ladder Program

$\stackrel{1}{1+}$	○20009
0000820009	○20008
0000820009	
$\stackrel{0000720008}{\substack{1 \\ \mid}}$	20007
$\stackrel{0000720008}{\stackrel{1}{\vdash}}$	
$\stackrel{0000620007}{\stackrel{1}{1}}$	20006
$\stackrel{0000620007}{\stackrel{1}{\longmapsto}}$	
$\stackrel{0005}{20006}$	20005
0000520006	
$\stackrel{0000420005}{\stackrel{1}{1}}$	○20004
$\stackrel{0000420005}{\stackrel{1}{\Vdash}}$	
$\stackrel{0000320004}{\stackrel{1}{1}}$	O20003
0000320004	
$\stackrel{0000220003}{\substack{1 \\ \mid}}$	○20002
$\stackrel{0000220003}{\stackrel{1}{\Vdash}}$	
$\stackrel{0000120002}{\substack{1 \\ \mid}}$	$\bigcirc 20001$
$\stackrel{0000120002}{\stackrel{1}{\longmapsto}}$	
$\stackrel{0000020001}{\substack{1 \\ \mid}}$	O20000
$\stackrel{0000020001}{\stackrel{1}{\longmapsto}}$	

(Always ON 25313		
	$\begin{gathered} \hline \text { BCD (24) } \\ 200 \\ 201 \end{gathered}$	Converts a BIN code signal (word 200) into a BCD code signal (word 201).
	$\begin{gathered} \text { SUB (31) } \\ 201 \\ \# 0152 \\ 202 \end{gathered}$	Subtracts 152 for a resolution of 720 per rotation. Nothing is subtracted for a resolution of 256 or 1,024 per rotation. Subtracts 76 for a resolution of 360 per rotation.
	$\begin{gathered} \hline \text { BCMP (68) } \\ 202 \\ \text { DM6200 } \\ 203 \end{gathered}$	If the Encoder value (word 202) exists between DM 6200 (BCMP) and DM 6231 (the comparison table), the corresponding bit of word 203 turns ON .
20300		
20301	$\bigcirc 01001$	Output
20302	$\bigcirc 01002$ 」	
	END (01)	

Example of DM Setting for Comparison Table

$\begin{array}{r|r|r}\text { DM } 6200 & & \\$\cline { 2 - 2 } \& 0000 \& Lower limit 1
 6201 \& 0540 \& Upper limit 1\end{array}$]$ Bit 20300

Precautions

■ Incremental and Absolute Encoders

Safety Precautions

Do not impose voltage exceeding the rated voltage range on the E6C3, otherwise the E6C3 may be damaged.
Do not wire power lines or high-tension lines along with the power supply lines of the E6C3 or the E6C3 may be damaged or malfunction.
If the power supply has surge voltage, connect a surge suppressor between the positive and negative terminals of the power supply to absorb the surge voltage. Also, in order to protect the E6C3 from noise, shorten the wires connected to the E6C3 as much as possible.

Unnecessary pulses are output at the time the E6C3 is turned ON or OFF. After turning ON the E6C3, be sure to wait 0.1 s before turning ON the peripheral devices connected to the E6C3 and turn OFF the peripheral devices 0.1 s before turning OFF the E6C3.

Application Precautions

Mounting

- Mounting Precautions

- Be careful not to spray water or oil onto the E6C3.
- The E6C3 consists of high-precision components. Handle with utmost care and do not drop the E63C, otherwise malfunctioning may result.
- When the E6C3 is used in reversed operation, pay utmost attention to the mounting direction of the E6C3 and the directions of increment and decrement rotation.
- To match phase Z of the E6C3 and the origin of the device to be connected to the E6C3, conform the phase Z outputs while connecting the device.
- Be careful not to impose an excessive load on the shaft if the shaft connects to a gear.
- If the E6C3 is mounted with screws, the tightening torque must not exceed approximately $0.5 \mathrm{~N} \cdot \mathrm{~m}$.
- If the E6C3 is mounted to a panel, do not pull the cable with more than a force of 30 N . Do not subject the E6C3 or the shaft to excessive shock.

- No shock must be given to the shaft or coupling. Therefore, do not hit the shaft or coupling with a hammer when inserting the shaft into the coupling.
- When connecting the coupling, stay within the ranges shown below.

- When connecting or disconnecting the coupling, do not impose an excessive bending, pressing, or pulling force on the E6C3.
- When connecting the shaft of the E6C3 with a chain timing belt or gear, connect the chain timing belt or gear with the shaft via the bearing and coupling as shown in the following illustration.

- If the decentering or declination value exceeds the tolerance, an excessive load imposed on the shaft may damage or shorten the life of the E6C3.

- Mounting Procedure

Life of Bearing

The following graph shows the (theoretical) life expectancy of the bearing with radial and thrust loads imposed on the bearing.

Wiring

Connecting

- When extending the cable for Incremental Rotary Encoders, select the kind of cable with care by taking the response frequency into consideration because the longer the cable is, the more the residual voltage increases due to the resistance of the cable and the capacitance between the wires. As a result, the waveform will be distorted.
We recommend the line driver output type model (E6C3-CWZ3XH) or the complementary output type model (E6C3-CWZ5GH) if the cable needs to be extended.
In order to reduce inductive noise, the cable must be as short as possible, especially when the signal is input to an IC.
- If the power supply has surge voltage, connect a surge suppressor between the positive and negative terminals of the power supply to absorb the surge voltage.
- Unnecessary pulses are output at the time the E6C3 is turned ON or OFF. After turning ON the E6C3, be sure to wait 0.1 s before turning ON the peripheral devices connected to the E6C3 and turn OFF the peripheral devices 0.1 s before turning OFF the E6C3.

Cable Extension

- The rise time of each output waveform will increase when the cable is extended. This affects the phase difference characteristics of phases A and B.
The available length of cable varies with the response frequency and noise. It is safer to limit the length of cable to 10 m maximum. If a longer cable of up to 100 m is required, use the line driver output or complementary output model. (The maximum extension with the line driver output model is 100 m .)
Note:Recommended Cable:
Cross section: $0.2 \mathrm{~mm}^{2}$ with spiral shield
Conductor resistance: $92 \Omega / \mathrm{km}$ max. at $20^{\circ} \mathrm{C}$
Insulation resistance: $5 \mathrm{M} \Omega / \mathrm{km} \mathrm{min}$. at $20^{\circ} \mathrm{C}$
- The rise time varies with the resistance of the cable and the kind of cable as well as the length of the cable.
- The residual output voltage will increase according to the length of the cable.

Preventing Miscounting

If the operation of the E6C3 is stopped near a signal rising or falling edge, a wrong pulse may be generated, in which case the E6C3 will miscount. In such a case, use an increment-decrement counter to prevent miscounting.

Extension of Line Driver Output

- Be sure to use a shielded twisted-pair cable to extend a line driver cable
Recommended cable: Tachii Electric Wire Co., TKVVBS4P 02A
- Use an RS-422A Receiver for the receiver side.
- The twisted-pair wires as shown in the following illustration are suitable for RS-422A signal transmission. Normal mode noise can be eliminated by twisting the wires because the generated electrical forces on the lines cancel each other.

- Be sure the E6C3 is supplied with 5 VDC when a line driver output is used. There will be an approximately $1-\mathrm{V}$ voltage drop if the cable length is 100 m .

Input to More than One Counter from Encoder (with Voltage Output)

Use the following formula to obtain the number of counters to be connected to a single E6C3.

Number of counters $(\mathrm{N})=\frac{\mathrm{R} 1(\mathrm{E}-\mathrm{V})}{\mathrm{V} \times \mathrm{R} 2}$
E: Voltage supplied to E6C3
V: Minimum input voltage of the counter
R1: Input resistance of the Counter
R2: Output resistance of the E6C3

Dimensions

Rotary Encoder

E6C3-CWZ $\square \square \mathbf{H}$

5 dia. oil-proof PVC, shielded 5-conductor cable (8-conductor for
(conductor cross-section: $0.2 \mathrm{~mm}^{2}$; insulation diameter: 1.1 mm)
Standard length: 1 m

E6C3-A $\square 5$
E6C3-AN $\square E$

E6C3-AG5C-C

Accessories (Order Separately)

Extension Cable

E69-DF5

Note 1: 6-dia. oil-proof PVC, shielded 12-conductor cable (conductor cross-section:
$0.2 \mathrm{~mm}^{2}$; insulation diameter: 1.1 mm); standard length: 5 m
2: Connects to the connector of the E6C3-AG5C-C.
3: Connects to the H8PR Rotary Positioner and H8PS Cam Positioner

Note:The Cable can be extended up to 100 m for connecting the H8PS Cam Positioner.

E69-C08B

E69-C68B (With Ends of Different Diameter)

Flanges

E69-FCA03

E69-FCA04

Servo Mounting Bracket

E69-2 (A Set of Three)

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

Cat. No. F058-E1-01 In the interest of product improvement, specifications are subject to change without notice.

OMRON Corporation

Industrial Automation Company

Industrial Sensors Division

Sensing Devices and Components Division H.Q.
3-2, Narutani, Nakamyama-cho, Ayabe-shi,
Kyoto, 623-0105 Japan
Printed in Japan
Tel: (81)773-43-4078/Fax: (81)773-43-4030

