1~2.5Gbps 850nm SFF 2 × 5 Transceiver

(For 300m transmission at 2.125Gbps)

Members of Flexon[™] Family

Features

berxon

- Multi-rate 1~2.5Gbps bi-directional data links
- Up to 300m transmission distance at 2.125Gbps
- Up to 550m transmission distance at 1.0625/1.25Gbps
- 850nm VCSEL transmitter
- SFF 2×5 package
- Duplex LC optical interface
- Low power dissipation
- Class I laser product
- Low EMI and excellent ESD protection
- Single +3.3V power supply
- Operating ambient temperature: 0 to +70°C

Applications

- 1.25Gbps 1000Base-SX Ethernet
- Dual Rate 1.0625/2.125Gbps Fibre Channel
- Mass storage system I/O
- Computer system I/O
- Host adapter I/O

Standard

- Compatible with SFF MSA 2000 version
- Compatible with ANSI specifications for Fibre Channel
- Compatible with IEEE 802.3
- Compatible with FCC 47 CFR Part 15, Class B
- Compatible with FDA 21 CFR 1040.10 and 1040.11, Class I
- Compliant with RoHS

Description

FTM-8025C-FBG is compatible with the specifications set forth in the SFF MSA. It is designed for use in Fibre Channel applications both at 1.0625Gbps and 2.125Gbps. The transceiver also meets the requirements of IEEE 802.3 Gigabit Ethernet (1000BASE-SX) standard.

FTM-8025C-FBG incorporates a highly reliable 850nm VCSEL laser in its transmitter section. And the receiver section consists of a PIN photodiode integrated with a trans-impedance preamplifier (TIA). All modules satisfy class I laser safety requirements.

FTM-8025C-FBG is Compliant with RoHS.

Regulatory Compliance

The transceivers have been tested according to American and European product safety and electromagnetic compatibility regulations (See Table 1). For further information regarding regulatory certification, please refer to Flexon[™] regulatory specification and safety guidelines, or contact with Fiberxon, Inc. America sales office listed at the end of documentation.

Table 1 - Regulatory Compliance

Feature	Standard	Performance
Electrostatic Discharge	MIL-STD-883E	Class 1(>500 V)
(ESD) to the Electrical Pins	Method 3015.7	
Electrostatic Discharge (ESD)	IEC 61000-4-2	Compatible with standarda
to the Duplex LC Receptacle	GR-1089-CORE	Compatible with standards
Electromagnetic Interference (EMI)	FCC Part 15 Class B EN55022 Class B (CISPR 22B) VCCI Class B	Compatible with standards
Immunity	IEC 61000-4-3	Compatible with standards
Laser Eye Safety	FDA 21CFR 1040.10 and 1040.11 EN60950, EN (IEC) 60825-1,2	Compatible with Class I laser product.
Component Recognition	UL and CSA	Compatible with standards

Absolute Maximum Ratings

Stress in excess of the maximum absolute ratings can cause permanent damage to the module.

Table 2 - Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	Ts	-40	+85	°C
Supply Voltage	V _{cc}	-0.5	3.6	V
Operating Relative Humidity	-	5	95	%

Recommended Operating Conditions

Table 3- Recommended Operating Conditions

Param	Symbol	Min.	Typical	Max.	Unit	
Operating Ambient Te	T _A	0		+70	°C	
Power Supply Voltage	Power Supply Voltage				3.47	V
Power Supply Currer	Power Supply Current			130	240	mA
Data Rate			1.0625	2.125	2.5	Gbps
Fiber Length on 1.0625/1.25Gbps		I			550	m
50/125µm MMF	2.125Gbps	L			300	m

Fiberxon Proprietary and Confidential, Do Not Copy or Distribute

Page 2 of 2

Controlled Electronic Version. 24hrs Obsolete when printed out without authorization Last printed 2006-11-13 17:58

1~2.5G 850nm SFF 2 \times 5 Transceiver

300m transmission at 2.125Gbps

Nov 13, 2006

Fiber Length on	1.0625/1.25Gbps	I		300	m
62.5/125µm MMF	2.125Gbps	L		150	m

Optical and Electrical Characteristics

Table 4 - Optical and Electrical Characteristics

Para	imeter	Symbol	Min.	Typical	Max.	Unit	Notes
		Tr	ansmitter				Λ
Centre Waveleng	Jth	λ_{C}	830	850	860	nm	
Spectral Width (F	Spectral Width (RMS)				0.85	nm	
Average Output F	Power	P _{0ut}	-9.5		-4	dBm	1
P _{0ut} @TX Disable	Asserted	P _{0ut}			-40	dBm	∕ 1
Extinction Ratio		EX	9			dB	
Rise/Fall Time	1.0625/1.25Gbps	+ /+			260		2
(20%~80%)	2.125Gbps	t _r /t _f			150	ps	2
	1.0625Gbps		~ [0.43		
Total Jitter	1.25Gbps	TJ			0.43	UI	3
	2.125Gbps				0.44		
Deterministic	1.0625Gbps			Dr	0.21		
Deterministic	1.25Gbps	DJ	1 11		0.20	UI	3
Jitter	2.125Gbps		\square		0.26		
Output Optical Eye		ANSI Fibr					
Data Input Swing Differential		VIN	370		2000	mV	4
Input Differential	Input Differential Impedance		90	100	110	Ω	
	Disable		2.0		Vcc	V	
TX Disable	Enable		0		0.8	V	
		F	Receiver				
Centre Waveleng	jth	λ _C	770		860	nm	
Receiver	1.0625/1.25Gbps	Р			-18	dBm	-
Sensitivity	2.125Gbps	P _{IN}			-17	иып	5
Receiver Overloa	ad	P _{IN}	0			dBm	5
Return Loss			12			dB	
SD Assert		SD _A			-18	dBm	
SD De-Assert		SDD	-30			dBm	
SD Hysteresis			0.5		4	dB	
Total litter	1.0625Gbps				0.61		
Total Jitter	1.25Gbps	TJ			0.749	UI	3
(pk-pk)	2.125Gbps				0.64		
Determi i fi	1.0625Gbps				0.36		
Deterministic	1.25Gbps	DJ			0.462	UI	3
Jitter (pk-pk)	2.125Gbps				0.39	1	

Fiberxon Proprietary and Confidential, Do Not Copy or Distribute

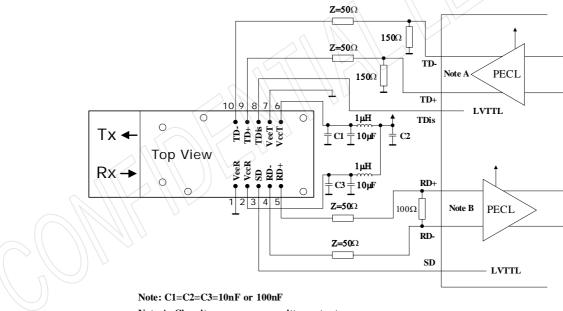
Page 3 of 3

Controlled Electronic Version. 24hrs Obsolete when printed out without authorization Last printed 2006-11-13 17:58

1~2.5G 850nm SFF 2×5 Transceiver

Nov 13, 2006

300m	transmission at 2.125Gbps	
------	---------------------------	--


Data Output Swing Differential		V _{OUT}	370	2000	mV	4
SD	High		2.0	Vcc	V	
	Low		0	0.8	V	

Notes:

- 1. The optical power is launched into MMF.
- 2. Unfiltered, measured with a PRBS 2⁷-1 test pattern
- 3. Measured with a PRBS 2⁷-1 test pattern, meet the specified maximum output jitter requirements if the specified maximum input jitter is present.
- 4. PECL logic, internally AC coupled.
- 5. Measured with a PRBS 2^{7} -1 test pattern, worst-case extinction ratio, BER $\leq 1 \times 10^{-12}$.

Recommended Interface Circuit

Figure 1 shows the recommended interface circuit.

Note A: Circuit assumes open emitter output

Note B: Circuit assumes high impedance internal bias @Vcc-1.3V

Figure 1, Recommended Interface Circuit

Pin Definitions

Figure 2 below shows the pin numbering of SFF 2×5 electrical interface. The pin functions are described in Table 5 with some accompanying notes.

1~2.5G 850nm SFF 2×5 Transceiver

300m transmission at 2.125Gbps

Tx ←	$^{\circ}$ MS $^{\circ}_{\text{HL}}$	• • • • • 10 9 8 7 6) HL
	Ten Pin Module	e-Top View	
Rx →	○ MS HL	1 2 3 4 5 • • • • •	HL O

Figure 2, Pin View

Table 5– Pin Function Definitions

Pin No.	Name	Function	Notes
	MS	Mounting Studs	Note 5
	HL	Housing Leads	Note 6
1	V _{eer}	Receiver Signal Ground	
2	V _{ccr}	Receiver Power Supply	
3	SD	Signal Detect	Note 1
4	RD-	Received Data Out Bar	Note 2
5	RD+	Received Data Out	Note 2
6	V _{cct}	Transmitter Power Supply	
7	V _{eet}	Transmitter Signal Ground	
8	TDis	Transmitter Disable	Note 3
9	TD+	Transmitter Data In	Note 4
10	TD-	Transmitter Data In Bar	Note 4

Notes:

- 1. Normal operation: logic 1 output, V> 2.0V; fault condition: logic 0 output, V<0.8V.
- 2. PECL logic, internally AC coupled.
- Transmitter output disable: (V_{cct} -1.3V)<V< V_{cct}; transmitter output enable: V_{eet} <V<(V_{eet} +0.8V) or open circuit.
- 4. Internally AC coupled and 100Ω (differential) terminated input, PECL/CML compatible.
- 5. Mounting studs are provided for transceiver mechanical attachment to the circuit board. They also provide an optional connection of the transceiver to the equipment chassis ground. The holes in the circuit board must be tied to chassis ground.
- 6. Housing leads are provided for additional signal grounding. The holes in the circuit board must be included and tied to signal ground. Simultaneously there is a completed physical isolation between chassis ground and signal ground in the module.

Mechanical Design Diagram

The mechanical design diagram is shown in Figure 3.

300m transmission at 2.125Gbps

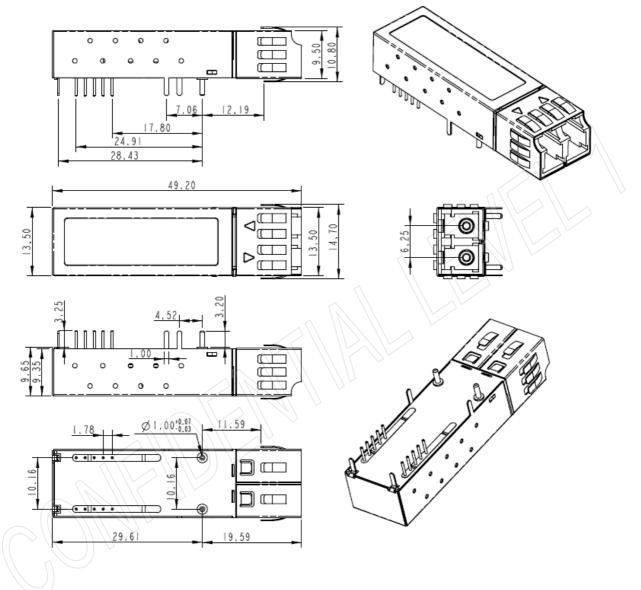
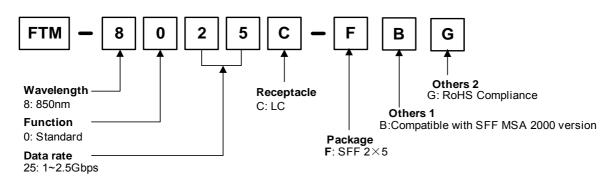



Figure 3, Mechanical Design Diagram of the SFF 2×5 (Dimension in mm)

Ordering information

Page 6 of 6

Fiberxon Proprietary and Confidential, Do Not Copy or Distribute

300m transmission at 2.125Gbps

Part No.	Product Description
FTM-8025C-FBG	850nm, 1~2.5Gbps, SFF 2×5, 0°C~+70°C, RoHS Compliance

Related Documents

For further information, please refer to the following documents:

- Fiberxon SFF Transceiver Installation Guide
- Fiberxon SFF Transceiver Application Notes
- SFF Transceiver Multi-Source Agreement (MSA)

Obtaining Document

You can visit our website:

http://www.fiberxon.com

Or contact with Fiberxon, Inc. America Sales Office listed at the end of documentation to get the latest documents.

Revision	Initiate	Review	Approve	Subject	Release Date
Rev. 1a	Solaris Zhu	Tripper.Huang	Walker Wei	Initial datasheet	Dec 12, 2005
Rev. 1b	Solaris Zhu	Tripper.Huang	Walker Wei	Differentiate description	Dec 27, 2005
				on MS and HL	
Rev. 1c	Solaris Zhu	Tripper.Huang	Walker Wei	Change SD Hysteresis	Feb 23, 2006
G	///// <i>/</i> ////	7.		from 1~4dB to 0.5~4dB	
Rev. 1d	Henry xiao	Tripper.Huang	Walker Wei	Update Mechanical Design	Nov 13, 2006
				Diagram	

Revision History

© Copyright Fiberxon Inc. 2006

All Rights Reserved.

All information contained in the preliminary datasheet is subject to change without notice. The products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons.

The information contained in this document does not affect or change Fiberxon product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Fiberxon or third parties. All information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environment may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will Fiberxon be liable for damages arising directly from any use of the information contained in this document.

1~2.5G 850nm SFF 2×5 Transceiver300m transmission at 2.125Gbps

Contact

U.S.A. Headquarter: 5201 Great America Parkway, Suite 340 Santa Clara, CA 95054 U. S. A. Tel: 408-562-6288 Fax: 408-562-6289 Or visit our website: http://www.fiberxon.com

Fiberxon Proprietary and Confidential, Do Not Copy or Distribute

Page 8 of 8

Controlled Electronic Version. 24hrs Obsolete when printed out without authorization Last printed 2006-11-13 17:58