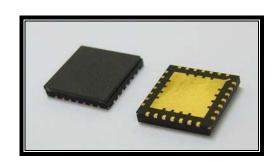


UPDATED: 04/24/2008


12.50 - 14.50 GHz High-Gain Surface Mounted PA

FEATURES

- 12.50 14.50GHz Operating Frequency Range
- 29dBm Output Power @1dB Compression
- 30dB Typical Power Gain @1dB Compression
- -41dBc OIMD3 @Pout = 19dBm/tone
- 7X7mm QFN Package

APPLICATIONS

- Point-to-point and point-to-multipoint radio
- Military Radar Systems

ELECTRICAL CHARACTERISTICS (T_B=25 °C)

SYMBOL	PARAMETER/TEST CONDITIONS	MIN	TYP	MAX	UNITS
F	Operating Frequency Range	12.5		14.5	GHz
P _{1dB}	Output Power @1dB Gain Compression	28.0	29.0		dBm
G _{1dB}	Gain @1dB Gain Compression	27.0	30.0		dB
OIMD3	Output 3 rd Order Intermodulation Distortion @∆f=10MHz, Pout = 19dBm/tone		-41	-38	dBc
Input RL	Input Return Loss		-10		dB
Output RL	Output Return Loss		-15		dB
I _{D1}	Drain Current ¹		180	220	mA
I _{D2}	Drain Current ¹		800	1000	mA
V_{D1}, V_{D2}	Drain Voltage		7	8	V
V_{G1}, V_{G2}	Gate Voltage	-2.5		-0.3	V
Rth	Thermal Resistance ²		9		°C/W
Tb	Operating Base Plate Temperature	-30		+80	°C

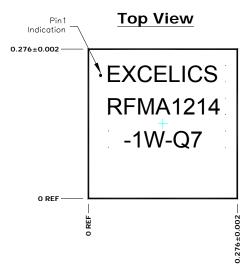
^{1.} Recommended to bias each amplifier stage separately using a gate voltage range, starting from -2.5 to -0.3V to achieve typical current levels.

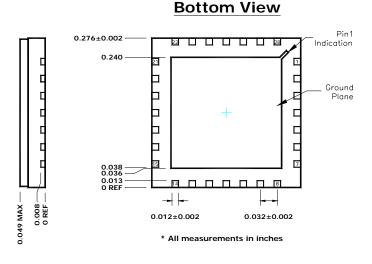
MAXIMUM RATINGS AT 25°C3,4

SYMBOL	CHARACTERISTIC	ABSOLUTE	CONTINOUS
V_{D1}, V_{D2}	Drain to Source Voltage	12V	8 V
V_{G1}, V_{G2}	Gate to Source Voltage	-5V	-2.5 V
I _{D1} , I _{D2}	Drain Current	ldss	220, 1100mA
P_{IN}	Input Power	20dBm	@ 3dB compression
T_CH	Channel Temperature	175°C	150°C
T_{STG}	Storage Temperature	-65/175°C	-65/150°C
P_{T}	Total Power Dissipation	15.0W	12.6W

^{3.} Operation beyond absolute or continuous ratings may result in permanent damage or reduction of MTTF respectively.

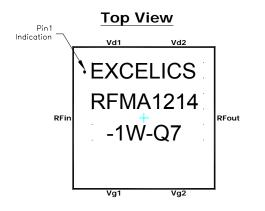
^{2.} Measured result when used with Excelics recommended evaluation board.

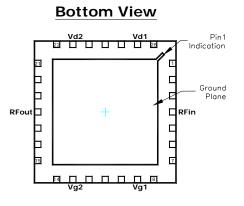

^{4.} Bias conditions must also satisfy the following equation $V_{DS}^{\star}I_{DS} < (T_{CH} - T_B)/R_{TH}$; where T_B = Temperature of Base Plate



UPDATED: 04/24/2008

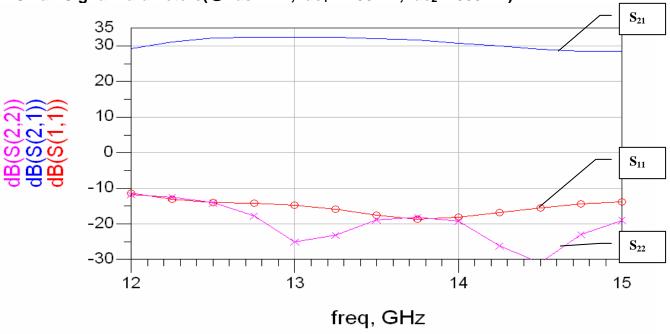
12.50 - 14.50 GHz High-Gain Surface Mounted PA


Package Dimension and Pin Assignment

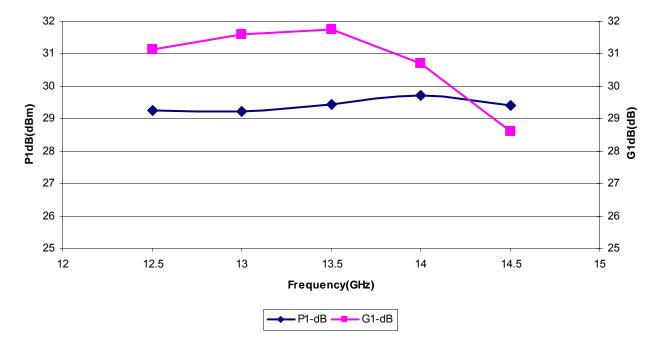


Additional Notes:

- 1) Ground Plane must be soldered to PCB RF ground
- 2) All dimensions are in inches
- 3) Refer to Excelics application notes on QFNs for further guidelines
- 4) Pin Assignment:


Pin	Assignment
1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 14	NC
4	RF _{in}
9	V_{g1}
13	V_{g2}
15, 16, 17, 19, 20, 21, 22, 24, 25, 26, 28	NC
18	RF_out
23	V_{d2}
27	V_{d1}

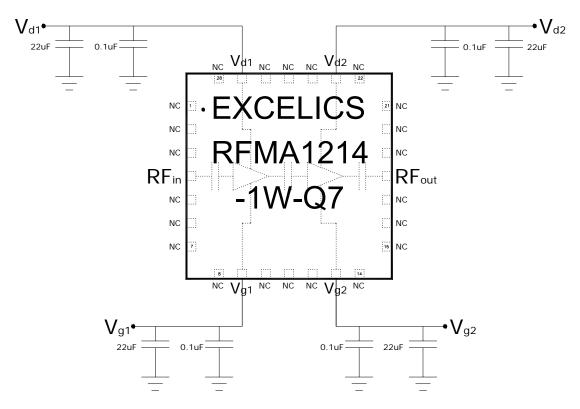
UPDATED: 04/24/2008


12.50 - 14.50 GHz High-Gain Surface Mounted PA

Typical Performance:

1. Small-Signal Parameters(@Vds = 7V, Ids₁ = 180mA, Ids₂ = 800mA)

2. P1-dB & G1-dB (@Vds = 7V, $Ids_1 = 180mA$, $Ids_2 = 800mA$)



UPDATED: 04/24/2008

12.50 - 14.50 GHz High-Gain Surface Mounted PA

Recommended Circuit Schematic:

Notes:

- External bypass capacitors should be placed as close to the package as possible.
- Dual biasing sequence required:
 - Turn-on Sequence: Apply V_{g1} = -2.5V, V_{g2} = -2.5V, followed by V_{d1} = V_{d2} = 7V, lastly increase V_{g1} & V_{g2} in sequence until required I_{d1} and I_{d2} is obtained.
 - Turn-off Sequence: Turn off V_{d1} & V_{d2} , followed by V_{g1} & V_{g2}
- 3) Demonstration board available upon request.

