Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note : Mitsubishi Electric will continue the business operations of high frequency \& optical devices and power devices.

MITSUBISHI MICROCOMPUTERS 7513 Group

DESCRIPTION

The 7513 group is the 8 -bit microcomputer based on the 740 family core technology.
The 7513 group has the LCD drive control circuit, the A-D/D-A converter, the UART, and the PWM as additional functions.
The various microcomputers in the 7513 group include variations of internal memory size and packaging. For details, refer to the section on part numbering.
For details on availability of microcomputers in the 7513 group, refer to the section on group expansion.

FEATURES

- Basic machine-language instructions71
- The minimum instruction execution time ..
(at 8 MHz oscillation frequency)
- Memory size

ROM 32 K to 60 K bytes
RAM 1024 to 2048 bytes

- Programmable input/output ports .. 55
- Output port
© Input port .. 1
OInterrupts .. 17 sources, 16 vectors (includes key input interrupt)
- Timers 8 -bit $\times 3,16$-bit $\times 2$
- Serial I/O1
\qquad 8-bit $\times 1$ (UART or Clock-synchronized)
- Serial I/O2 \qquad 8-bit $\times 1$ (Clock-synchronized)
- PWM output \qquad 8 -bit $\times 1$
- A-D converter 10 -bit $\times 8$ channels
- D-A converter 8 -bit $\times 2$ channels
- LCD drive control circuit
Bias. 1/2, 1/3
Duty
$1 / 2,1 / 3,1 / 4$
Common output .. 4
Segment output
.40
- 2 Clock generating circuits (connect to external ceramic resonator or quartz-crystal oscillator)
- Watchdog timer
... 14 -bit $\times 1$
- Power source voltage
2.2 to 5.5 V
- Power dissipation
In high-speed mode ... 40 mW (at 8 MHz oscillation frequency, at 5 V power source voltage)
In low-speed mode .. $60 \mu \mathrm{~W}$ (at 32 kHz oscillation frequency, at 3 V power source voltage)
- Operating temperature range
-20 to $85^{\circ} \mathrm{C}$

APPLICATIONS

Camera, Wireless phone, etc.

PIN CONFIGURATION (TOP VIEW)

Fig. 1 M37513EFFS pin configuration

RenesasTechnology Corp.

PIN CONFIGURATION (TOP VIEW)

Package type: GP
100P6Q-A (100-pin plastic-molded LQFP)
Package type : HP \qquad 100PFB-A (100-pin plastic-molded TQFP)

Fig. 2 M37513M8-XXXGP/M37513M8-XXXHP pin configuration

Fig. 3 Functional block diagram

PIN DESCRIPTION

Table 1 Pin description (1)

Pin	Name	Function	Function except a port function
Vcc, Vss	Power source	- Apply voltage of 2.2 V to 5.5 V to Vcc, and 0 V to Vss.	
Vref	Analog reference voltage	-Reference voltage input pin for A-D converter and D-A converter.	
AVss	Analog power source	-GND input pin for A-D converter and D-A converter. -Connect to Vss.	
RESET	Reset input	-Reset input pin for active "L".	
XIN	Clock input Clock output	- Input and output pins for the main clock generating circuit. -Connect a ceramic resonator or a quartz-crystal oscillator between the XIN and Xout pins to set the oscillation frequency. -If an external clock is used, connect the clock source to the XIN pin and leave the Xout pin open.	
VL1-VL3	LCD power source	- Input $0 \leq \mathrm{VL} 1 \leq \mathrm{VL} 2 \leq \mathrm{VL} 3 \leq \mathrm{VCC}$ voltage. -Input 0 - VL3 voltage to LCD.	
$\mathrm{C} 1, \mathrm{C} 2$	Charge-pump capacitor pin	- External capacitor pins for a voltage multiplier (3 times) o	D contorl.
COM0-COM3	Common output	-LCD common output pins. $\cdot C O M 2$ and $C O M 3$ are not used at $1 / 2$ duty ratio. $\cdot \mathrm{COM} 3$ is not used at $1 / 3$ duty ratio.	
SEG0-SEG17	Segment output	\bullet-LCD segment output pins.	
$\begin{aligned} & \text { P00/SEG26- } \\ & \text { P07/SEG33 } \end{aligned}$	I/O port P0	-8-bit I/O port. -CMOS compatible input level. -CMOS 3-state output structure. -Pull-up control is enabled. -I/O direction register allows each 8 -bit pin to be programmed as either input or output.	\bullet LCD segment output pins
$\begin{aligned} & \text { P10/SEG34- } \\ & \text { P15/SEG39 } \end{aligned}$	I/O port P1	-6-bit I/O port with same function as port P0. -CMOS compatible input level. -CMOS 3-state output structure. -Pull-up control is enabled. -1/O direction register allows each 6-bit pin to be programmed as either input or output.	
P16, P17		-2-bit I/O port. -CMOS compatible input level. -CMOS 3-state output structure. -I/O direction register allows each pin to be individually programmed as either input or output. -Pull-up control is enabled.	
P20-P27	I/O port P2	-8-bit I/O port with same function as P16 and P17. -CMOS compatible input level. -CMOS 3-state output structure. -Pull-up control is enabled.	-Key input (key-on wake-up) interrupt input pins
$\begin{aligned} & \text { P3o/SEG18 - } \\ & \text { P37/SEG25 } \end{aligned}$	Output port P3	-8-bit output port with same function as port P0. -CMOS 3-state output structure. -Port output control is enabled.	-LCD segment output pins

Table 2 Pin description (2)

Pin	Name	Function	Function except a port function

PART NUMBERING

Fig. 4 Part numbering

GROUP EXPANSION

Mitsubishi plans to expand the 7513 group as follows:

Memory Type

Support for Mask ROM, One Time PROM, and EPROM versions

Package

100PFB-A 0.4 mm-pitch plastic molded TQFP 100P6Q-A 0.5 mm-pitch plastic molded LQFP 100D0 Window type ceramic LCC (EPROM version)

Memory Size
ROM/PROM size
32 K to 60 K bytes
RAM size 1024 to 2048 bytes

Memory Expansion Plan

Note: Products under development or planning: the development schedule and specifications may be revised without notice.

Fig. 5 Memory expansion plan

Currently supported products are listed below.

Table 3 List of supported products
As of Nov. 2000

Product	(P) ROM size (bytes) ROM size for User in ()	RAM size (bytes)	Package	Remarks
M37513M8-XXXHP	$\begin{gathered} 32768 \\ (32638) \\ \hline \end{gathered}$	1024	100PFB-A	Mask ROM version
M37513M8-XXXGP			100P6Q-A	Mask ROM version
M37513EFHP	$\begin{gathered} 61440 \\ (61310) \end{gathered}$	2048	100PFB-A	One Time PROM version (blank)
M37513EFGP			100P6Q-A	One Time PROM version (blank)
M37513EFFS			100D0	EPROM version

FUNCTIONAL DESCRIPTION

Central Processing Unit (CPU)

The 7513 group uses the standard 740 Family instruction set. Refer to the table of 740 Series addressing modes and machine instructions or the 740 Series Software Manual for details on the instruction set.
Machine-resident 740 Series instructions are as follows:
The FST and SLW instructions cannot be used.
The STP, WIT, MUL, and DIV instructions can be used.

[Accumulator (A)]

The accumulator is an 8-bit register. Data operations such as data transfer, etc., are executed mainly through the accumulator.

[Index Register X (X)]

The index register X is an 8-bit register. In the index addressing modes, the value of the OPERAND is added to the contents of register X and specifies the real address.

[Index Register Y (Y)]

The index register Y is an 8-bit register. In partial instruction, the value of the OPERAND is added to the contents of register Y and specifies the real address.

[Stack Pointer (S)]

The stack pointer is an 8-bit register used during subroutine calls and interrupts. This register indicates start address of stored area (stack) for storing registers during subroutine calls and interrupts. The low-order 8 bits of the stack address are determined by the contents of the stack pointer. The high-order 8 bits of the stack address are determined by the stack page selection bit. If the stack page selection bit is " 0 ", the high-order 8 bits becomes " 0016 ". If the stack page selection bit is " 1 ", the high-order 8 bits becomes "0116".
The operations of pushing register contents onto the stack and popping them from the stack are shown in Figure 6.
Store registers other than those described in Figure 6 with program when the user needs them during interrupts or subroutine calls.

[Program Counter (PC)]

The program counter is a 16-bit counter consisting of two 8-bit registers PCH and PCL . It is used to indicate the address of the next instruction to be executed.

Accumulator

Index register X

Index register Y

Stack pointer

b15	b7
PCH	PCL

Program counter

Fig. 6740 Family CPU register structure

Fig. 7 Register push and pop at interrupt generation and subroutine call

Table 4 Push and pop instructions of accumulator or processor status register

	Push instruction to stack	Pop instruction from stack
Accumulator	PHA	PLA
Processor status register	PHP	PLP

[Processor status register (PS)]

The processor status register is an 8-bit register consisting of 5 flags which indicate the status of the processor after an arithmetic operation and 3 flags which decide MCU operation. Branch operations can be performed by testing the Carry (C) flag, Zero (Z) flag, Overflow (V) flag, or the Negative (N) flag. In decimal mode, the Z, V, N flags are not valid.
-Bit 0: Carry flag (C)
The C flag contains a carry or borrow generated by the arithmetic logic unit (ALU) immediately after an arithmetic operation. It can also be changed by a shift or rotate instruction.
-Bit 1: Zero flag (Z)
The Z flag is set if the result of an immediate arithmetic operation or a data transfer is " 0 ", and cleared if the result is anything other than "0".
-Bit 2: Interrupt disable flag (I)
The I flag disables all interrupts except for the interrupt generated by the BRK instruction.
Interrupts are disabled when the I flag is " 1 ".
-Bit 3: Decimal mode flag (D)
The D flag determines whether additions and subtractions are executed in binary or decimal. Binary arithmetic is executed when this flag is " 0 "; decimal arithmetic is executed when it is " 1 ". Decimal correction is automatic in decimal mode. Only the ADC and SBC instructions can be used for decimal arithmetic.
-Bit 4: Break flag (B)
The B flag is used to indicate that the current interrupt was generated by the BRK instruction. The BRK flag in the processor status register is always " 0 ". When the BRK instruction is used to generate an interrupt, the processor status register is pushed onto the stack with the break flag set to " 1 ".
-Bit 5: Index X mode flag (T)
When the T flag is " 0 ", arithmetic operations are performed between accumulator and memory. When the T flag is " 1 ", direct arithmetic operations and direct data transfers are enabled between memory locations.
-Bit 6: Overflow flag (V)
The V flag is used during the addition or subtraction of one byte of signed data. It is set if the result exceeds +127 to -128 . When the BIT instruction is executed, bit 6 of the memory location operated on by the BIT instruction is stored in the overflow flag.

- Bit 7: Negative flag (N)

The N flag is set if the result of an arithmetic operation or data transfer is negative. When the BIT instruction is executed, bit 7 of the memory location operated on by the BIT instruction is stored in the negative flag.

Table 5 Set and clear instructions of each bit of processor status register

	C flag	Z flag	I flag	D flag	B flag	T flag	V flag	N flag
Set instruction	SEC	-	SEI	SED	-	SET	-	-
Clear instruction	CLC	-	CLI	CLD	-	CLT	CLV	-

[CPU Mode Register (CPUM)] 003B16

The CPU mode register contains the stack page selection bit and the internal system clock selection bit.
The CPU mode register is allocated at address 003B16.

Fig. 8 Structure of CPU mode register

MEMORY

Special Function Register (SFR) Area

The Special Function Register area in the zero page contains control registers such as I/O ports and timers.

RAM

RAM is used for data storage and for stack area of subroutine calls and interrupts.

ROM

The first 128 bytes and the last 2 bytes of ROM are reserved for device testing and the rest is user area for storing programs.

Interrupt Vector Area

The interrupt vector area contains reset and interrupt vectors.

Zero Page

Access to this area with only 2 bytes is possible in the zero page addressing mode.

Special Page

Access to this area with only 2 bytes is possible in the special page addressing mode.

RAM area

RAM size (bytes)	Address XXXX $_{16}$
192	00FF $_{16}$
256	$013 F_{16}$
384	$0^{01 \mathrm{BF}_{16}}$
512	$0^{023 F_{16}}$
640	$0^{02 F_{16}}$
768	$0^{233 F_{16}}$
896	$03 \mathrm{BF}_{16}$
1024	$043 F_{16}$
1536	$063 F_{16}$
2048	$083 F_{16}$

ROM area

ROM size (bytes)	Address YYYY $_{16}$	Address ZZZZ $_{16}$
4096	F00016 $_{16}$	F08016 $^{\text {E00016 }}$

Fig. 9 Memory map diagram

000016	Port P0 (P0)	002016	Timer X (low) (TXL)
000116	Port P0 direction register (POD)	002116	Timer X (high) (TXH)
000216	Port P1 (P1)	002216	Timer Y (low) (TYL)
000316	Port P1 output control register (P1D)	002316	Timer Y (high) (TYH)
000416	Port P2 (P2)	002416	Timer 1 (T1)
000516	Port P2 direction register (P2D)	002516	Timer 2 (T2)
000616	Port P3 (P3)	002616	Timer 3 (T3)
000716	Port P3 output control register (P3C)	002716	Timer X mode register (TXM)
000816	Port P4 (P4)	002816	Timer Y mode register (TYM)
000916	Port P4 direction register (P4D)	002916	Timer 123 mode register (T123M)
000A16	Port P5 (P5)	002A16	Tout/¢ output control register (CKOUT)
000B16	Port P5 direction register (P5D)	002B16	PWM control register (PWMCON)
000C16	Port P6 (P6)	002C16	PWM prescaler (PREPWM)
000D16	Port P6 direction register (P6D)	002D16	PWM register (PWM)
000E16	Port P7 (P7)	002E16	
000F16	Port P7 direction register (P7D)	002F16	
001016		003016	
001116		003116	A-D control register (ADCON)
001216		003216	A-D conversion register (low-order) (ADL)
001316		003316	A-D conversion register (high-order) (ADH)
001416		003416	D-A1 conversion register (DA1)
001516	Key input control register (KIC)	003516	D-A2 conversion register (DA2)
001616	PULL register A (PULLA)	003616	D-A control register (DACON)
001716	PULL register B (PULLB)	003716	Watchdog timer control register (WDTCON)
001816	Transmit/Receive buffer register(TB/RB)	003816	Segment output enable register (SEG)
001916	Serial I/O1 status register (SIO1STS)	003916	LCD mode register (LM)
001A16	Serial I/O1 control register (SIO1CON)	003A16	Interrupt edge selection register (INTEDGE)
001B16	UART control register (UARTCON)	003B16	CPU mode register (CPUM)
001C16	Baud rate generator (BRG)	003C16	Interrupt request register 1 (IREQ1)
001D16	Serial I/O2 control register (SIO2CON)	003D16	Interrupt request register 2 (IREQ2)
001E16	Reserved area	003E16	Interrupt control register 1 (ICON1)
001F16	Serial I/O2 register (SIO2)	003F16	Interrupt control register 2 (ICON2)

Fig. 10 Memory map of special function register (SFR)

I/O PORTS

Direction Registers

The I/O ports have direction registers which determine the input/ output direction of each individual pin. (P00-P07 and P10-P15 use bit 0 of port P0, P1 direction registers respectively.)
When " 1 " is written to that bit, that pin becomes an output pin. When " 0 " is written to the bit corresponding to a pin, that pin becomes an input pin.
If data is read from a pin set to output, the value of the port output latch is read, not the value of the pin itself. Pins set to input are floating and the value of that pin can be read. If a pin set to input is written to, only the port output latch is written to and the pin remains floating.

Port P3 Output Control Register

Bit 0 of the port P3 output control register (address 000716) enables control of the output of ports P30 to P37.
When the bit is set to " 1 ", the port output function is valid. When resetting, bit 0 of the port P3 output control register is set to "0" (the port output function is invalid) and ports P30 to P37 are pulled up.

Pull-up Control

By setting the PULL register A (address 001616) or the PULL register B (address 001716), ports P1, P2, P4 to P6 can control pull-up with a program.
However, the contents of PULL register A and PULL register B do not affect ports programmed as the output ports.
The PULL register A setting is invalid for pins set to segment output on the segment output enable register.

$$
0 \text { : No pull-up }
$$

1 : Pull-up
Note : The contents of PULL register A and PULL register B do not affect ports programmed as the output port.

Fig. 11 Structure of PULL register A and PULL register B

Table 6 List of I/O port function (1)

Pin	Name	Input/Output	I/O Format	Non-Port Function	Related SFRs	Diagram No.
$\begin{aligned} & \text { P00/SEG26- } \\ & \text { P07/SEG33 } \end{aligned}$	Port P0	Input/output, byte unit	CMOS compatible input level CMOS 3-state output	LCD segment output	Segment output enable register	(1) (2)
$\begin{aligned} & \text { P10/SEG34- } \\ & \text { P15/SEG39 } \end{aligned}$	Port P1	Input/output, 6-bit unit	CMOS compatible input level CMOS 3-state output	LCD segment output	PULL register A Segment output enable register	(3) (4)
P16, P17		Input/output, individual bits	CMOS compatible input level CMOS 3-state output		PULL register A	(6)
P20-P27	Port P2	Input/output, individual bits	CMOS compatible input level CMOS 3-state output	Key input (key-on wake-up) interrupt input	PULL register A Interrupt control register2 Key input control register	(6)
$\begin{aligned} & \text { P3o/SEG18- } \\ & \text { P37/SEG25 } \end{aligned}$	Port P3	Output	CMOS 3-state output	LCD segment output	Segment output enable register P3 output enable register	(5)
P40/ADT	Port P4	Input/output, individual bits	CMOS compatible input level N -channel open-drain output	A-D trigger input External interrupt input	A-D control register Interrupt edge selection register	(15)
$\begin{aligned} & \text { P41/INT1, } \\ & \text { P42/INT2 } \end{aligned}$			CMOS compatible input level CMOS 3-state output	External interrupt input	PULL register B Interrupt edge selection register	(6)
P43/\$/Tout				Timer output ϕ output	PULL register B Timer 123 mode register Tout/ ϕ output control register	(14)
P44/RxD,				Serial I/O1 function I/O	PULL register B Serial I/O1 control register Serial I/O1 status register UART control register	(7)
P45/TxD,						(8)
$\begin{aligned} & \text { P46/SCLK1, } \\ & \text { P47/SRDY1 } \end{aligned}$						(9)
						(10)
P50/PWM0, P51/PWM1	Port P5	Input/output, individual bits	CMOS compatible input level CMOS 3-state output	PWM output	PULL register B PWM control register	(12)
$\begin{aligned} & \text { P52/RTP0, } \\ & \text { P53/RTP1 } \end{aligned}$				Real time port function output	PULL register B Timer X mode register	(11)
P54/CNTR0				Timer X function I/O	PULL register B Timer X mode register	(13)
P55/CNTR1				Timer Y function input	PULL register B Timer Y mode register	(16)
P56/DA1				DA1 output A-D Vref input	PULL register B D-A control register A-D control register	(17)
P57/DA2				DA2 output	PULL register B D-A control register	(17)

Table 7 List of I/O port function (2)

Pin	Name	Input/Output	I/O Format	Non-Port Function	Related SFRs	Diagram No.
P60/SIN2/AN0	Port P6	Input/ output, individual bits	CMOS compatible input level CMOS 3-state output	A-D conversion input Serial I/O2 function I/O	A-D control register Serial I/O2 control register	(19)
$\begin{aligned} & \text { P61/SOUT2/ } \\ & \text { AN1 } \end{aligned}$						(20)
$\begin{aligned} & \text { P62/SCLK21/ } \\ & \text { AN2 } \end{aligned}$						(21)
$\begin{aligned} & \text { P63/ScLK22 / } \\ & \text { AN3 } \end{aligned}$						(22)
$\begin{aligned} & \text { P64/AN4- } \\ & \text { P67/AN7 } \end{aligned}$				A-D conversion input	A-D control register	(18)
P70/INT0	Port P7	Input	CMOS compatible input level	External interrupt input	Interrupt edge selection register	(25)
P71-P77		Input/ output, individual bits	CMOS compatible input level N -channel open-drain output			(15)
COM0-COM3	Common	Output	LCD common output		LCD mode register	(23)
SEG0-SEG17	Segment	Output	LCD segment output			(24)

Notes1: How to use double-function ports as function I/O ports, refer to the applicable sections.
2: Make sure that the input level at each pin is either 0 V or VCC during execution of the STP instruction. When an input level is at an intermediate potential, a current will flow Vcc to Vss through the input-stage gate.
(1) Ports $\mathrm{P} 01-\mathrm{P} 07$

(2) Port POo

(3) Ports P11-P15

(4) Port P10

(5) Port P3

Fig. 12 Port block diagram (1)

(8) Port P45

(7) Port P44

(9) Port P46

Fig. 14 Port block diagram (3)

Fig. 15 Port block diagram (4)

INTERRUPTS

Interrupts occur by seventeen sources: seven external, nine internal, and one software.

Interrupt Control

Each interrupt except the BRK instruction interrupt has both an interrupt request bit and an interrupt enable bit, and is controlled by the interrupt disable flag. An interrupt occurs if the corresponding interrupt request and enable bits are " 1 " and the interrupt disable flag is " 0 ". Interrupt enable bits can be set or cleared by software. Interrupt request bits can be cleared by software, but cannot be set by software. The BRK instruction interrupt and reset cannot be disabled with any flag or bit. The I flag disables all interrupts except the BRK instruction interrupt and reset. If several interrupts requests occurs at the same time, the interrupt with highest priority is accepted first.

Interrupt Operation

Upon acceptance of an interrupt the following operations are automatically performed:

1. The contents of the program counter and processor status register are automatically pushed onto the stack.
2. The interrupt disable flag is set and the corresponding interrupt request bit is cleared.
3. The interrupt jump destination address is read from the vector table into the program counter.

TNotes

When setting the followings, the interrupt request bit may be set to "1".
-When setting external interrupt active edge
Related register: Interrupt edge selection register (address 3A16) Timer X mode register (address 2716)
Timer Y mode register (address 2816)
-When switching interrupt sources of an interrupt vector address where two or more interrupt sources are allocated Related register: A-D control register (address 003116)

Table 8 Interrupt vector addresses and priority

Interrupt Source	Priority	Vector Addresses (Note 1)		Interrupt Request Generating Conditions	Remarks
		High	Low		
Reset (Note 2)	1	FFFD16	FFFC16	At reset	Non-maskable
INT0	2	FFFB16	FFFA16	At detection of either rising or falling edge of INT0 input	External interrupt (active edge selectable)
INT1	3	FFF916	FFF816	At detection of either rising or falling edge of INT1 input	External interrupt (active edge selectable)
Serial I/O1 reception	4	FFF716	FFF616	At completion of serial I/O1 data reception	Valid when serial I/O1 is selected
Serial I/O1 transmission	5	FFF516	FFF416	At completion of serial I/O1 transmit shift or when transmission buffer is empty	Valid when serial I/O1 is selected
Timer X	6	FFF316	FFF216	At timer X underflow	
Timer Y	7	FFF116	FFF016	At timer Y underflow	
Timer 2	8	FFEF16	FFEE16	At timer 2 underflow	
Timer 3	9	FFED16	FFEC16	At timer 3 underflow	
CNTRo	10	FFEB16	FFEA16	At detection of either rising or falling edge of CNTRo input	External interrupt (active edge selectable)
CNTR1	11	FFE916	FFE816	At detection of either rising or falling edge of CNTR1 input	External interrupt (active edge selectable)
Timer 1	12	FFE716	FFE616	At timer 1 underflow	
INT2	13	FFE516	FFE416	At detection of either rising or falling edge of INT2 input	External interrupt (active edge selectable)
Serial I/O2	14	FFE316	FFE216	At completion of serial I/O2 data transmission or reception	Valid when serial I/O2 is selected
Key input (Key-on wake-up)	15	FFE116	FFE016	At falling of conjunction of input level for port P2 (at input mode)	External interrupt (valid at falling)
ADT	16	FFDF16	FFDE16	At either rising or falling edge of ADT input	External interrupt (Valid when ADT interrupt is selected
A-D conerersion $^{-}$				At completion of $\bar{A}-\bar{D}$ conversion ${ }^{-}$	Valid when A-D interrupt is selected
BRK instruction	17	FFDD16	FFDC16	At BRK instruction execution	Non-maskable software interrupt

Notes1: Vector addresses contain interrupt jump destination addresses.
2: Reset function in the same way as an interrupt with the highest priority.

When not requiring the interrupt occurrence synchronized with these setting, take the following sequence.
(1) Set the corresponding interrupt enable bit to "0" (disabled).
(2) Set the interrupt edge selection bit (active edge switch bit) or the interrupt source selection bit to "1".
(3) Set the corresponding interrupt request bit to " 0 " after 1 or more instructions have been executed.
(4) Set the corresponding interrupt enable bit to "1" (enabled).

Fig. 16 Interrupt control

Fig. 17 Structure of interrupt-related registers

Key Input Interrupt (Key-on wake-up)

A Key-on wake up interrupt request is generated by applying a falling edge to any pin of port P2 that have been set to input mode. In other words, it is generated when AND of input level goes from
" 1 " to " 0 ". An example of using a key input interrupt is shown in Figure 18, where an interrupt request is generated by pressing one of the keys consisted as an active-low key matrix which inputs to ports P20-P23.

Fig. 18 Connection example when using key input interrupt and port P2 block diagram

TIMERS

The 7513 group has five timers: timer X , timer Y , timer 1, timer 2, and timer 3. Timer X and timer Y are 16-bit timers, and timer 1, timer 2, and timer 3 are 8-bit timers.
All timers are down count timers. When the timer reaches " 0016 ", an underflow occurs at the next count pulse and the corresponding timer latch is reloaded into the timer and the count is continued. When a timer underflows, the interrupt request bit cor-
responding to that timer is set to " 1 ".
Read and write operation on 16-bit timer must be performed for both high and low-order bytes. When reading a 16-bit timer, read the high-order byte first. When writing to a 16-bit timer, write the low-order byte first. The 16-bit timer cannot perform the correct operation when reading during the write operation, or when writing during the read operation.

Fig. 19 Timer block diagram

Timer X

Timer X is a 16-bit timer that can be selected in one of four modes and can be controlled the timer X write and the real time port by setting the timer X mode register.

(1) Timer Mode

The timer counts $f(X I N) / 16$ (or $f(X C I N) / 16$ in low-speed mode).

(2) Pulse Output Mode

Each time the timer underflows, a signal output from the CNTRo pin is inverted. Except for this, the operation in pulse output mode is the same as in timer mode. When using a timer in this mode, set the port shared with the CNTRo pin to input.

(3) Event Counter Mode

The timer counts signals input through the CNTRo pin.
Except for this, the operation in event counter mode is the same as in timer mode. When using a timer in this mode, set the port shared with the CNTRo pin to input.

(4) Pulse Width Measurement Mode

The count source is $f(X I N) / 16$ (or $f(X C I N) / 16$ in low-speed mode). If CNTR 0 active edge switch bit is " 0 ", the timer counts while the input signal of CNTRo pin is at " H ". If it is " 1 ", the timer counts while the input signal of CNTRo pin is at " L ". When using a timer in this mode, set the port shared with tha CNTRo pin to input.

- Timer X write control

If the timer X write control bit is " 0 ", when the value is written in the address of timer X , the value is loaded in the timer X and the latch at the same time.
If the timer X write control bit is " 1 ", when the value is written in the address of timer X , the value is loaded only in the latch. The value in the latch is loaded in timer X after timer X underflows.
If the value is written in latch only, unexpected value may be set in the high-order counter when the writing in high-order latch and the underflow of timer X are performed at the same timing.

Notes on CNTRo interrupt active edge selection

CNTRo interrupt active edge depends on the CNTRo active edge switch bit.

-Real time port control

While the real time port function is valid, data for the real time port are output from ports P52 and P53 each time the timer X underflows. (However, if the real time port control bit is changed from " 0 " to " 1 ", data are output without the timer X.) When the data for the real time port is changed while the real time port function is valid, the changed data are output at the next underflow of timer X.

Before using this function, set the corresponding port direction registers to output mode.

Fig. 20 Structure of timer X mode register

Timer Y

Timer Y is a 16-bit timer that can be selected in one of four modes.

(1) Timer Mode

The timer counts $f(X I N) / 16$ (or $f(X C I N) / 16$ in low-speed mode).

(2) Period Measurement Mode

CNTR1 interrupt request is generated at rising/falling edge of CNTR1 pin input signal. Simultaneously, the value in timer Y latch is reloaded in timer Y and timer Y continues counting down. Except for the above-mentioned, the operation in period measurement mode is the same as in timer mode.
The timer value just before the reloading at rising/falling of CNTR1 pin input signal is retained until the timer Y is read once after the reload.
The rising/falling timing of CNTR1 pin input signal is found by CNTR1 interrupt. When using a timer in this mode, set the port shared with the CNTR1 pin to input.

(3) Event Counter Mode

The timer counts signals input through the CNTR1 pin.
Except for this, the operation in event counter mode is the same as in timer mode. When using a timer in this mode, set the port shared with the CNTR1 pin to input.

(4) Pulse Width HL Continuously Measurement Mode

CNTR1 interrupt request is generated at both rising and falling edges of CNTR1 pin input signal. Except for this, the operation in pulse width HL continuously measurement mode is the same as in period measurement mode. When using a timer in this mode, set the port shared with the CNTR1 pin to input.

-Notes on CNTR1 interrupt active edge selection

CNTR 1 interrupt active edge depends on the CNTR1 active edge switch bit. However, in pulse width HL continuously measurement mode, CNTR1 interrupt request is generated at both rising and falling edges of CNTR1 pin input signal regardless of the setting of CNTR1 active edge switch bit.

Fig. 21 Structure of timer Y mode register

Timer 1, Timer 2, Timer 3

Timer 1, timer 2, and timer 3 are 8 -bit timers. The count source for each timer can be selected by timer 123 mode register. The timer latch value is not affected by a change of the count source. However, because changing the count source may cause an inadvertent count down of the timer. Therefore, rewrite the value of timer whenever the count source is changed.

-Timer 2 write control

If the timer 2 write control bit is " 0 ", when the value is written in the address of timer 2, the value is loaded in the timer 2 and the latch at the same time.
If the timer 2 write control bit is " 1 ", when the value is written in the address of timer 2 , the value is loaded only in the latch. The value in the latch is loaded in timer 2 after timer 2 underflows.

- Timer 2 output control

When the timer 2 (TOUT) is output enabled, an inversion signal from the Tout pin is output each time timer 2 underflows. In this case, set the port shared with the Tout pin to the output.

■Notes on timer 1 to timer 3

When the count source of timer 1 to 3 is changed, the timer counting value may be changed large because a thin pulse is generated in count input of timer. If timer 1 output is selected as the count source of timer 2 or timer 3, when timer 1 is written, the counting value of timer 2 or timer 3 may be changed large because a thin pulse is generated in timer 1 output.
Therefore, set the value of timer in the order of timer 1 , timer 2 and timer 3 after the count source selection of timer 1 to 3.

Fig. 22 Structure of timer 123 mode register

SERIAL I/O

Serial I/O1

Serial I/O1 can be used as either clock synchronous or asynchronous (UART) serial I/O. A dedicated timer (baud rate generator) is also provided for baud rate generation.

(1) Clock Synchronous Serial I/O Mode

Clock synchronous serial I/O1 can be selected by setting the mode selection bit of the serial I/O1 control register to " 1 ". For clock synchronous serial I/O1, the transmitter and the receiver must use the same clock. If an internal clock is used, transfer is started by a write signal to the transmit/receive buffer registers.

Fig. 23 Block diagram of clock synchronous serial I/O1

Fig. 24 Operation of clock synchronous serial I/O1 function

(2) Asynchronous Serial I/O (UART) Mode

Clock asynchronous serial I/O mode (UART) can be selected by clearing the serial I/O mode selection bit of the serial I/O1 control register to " 0 ".
Eight serial data transfer formats can be selected, and the transfer formats used by a transmitter and receiver must be identical.
The transmit and receive shift registers each have a buffer regis-
ter, but the two buffers have the same address in memory. Since the shift register cannot be written to or read from directly, transmit data is written to the transmit buffer, and receive data is read from the receive buffer.
The transmit buffer can also hold the next data to be transmitted, and the receive buffer register can hold a character while the next character is being received.

Fig. 25 Block diagram of UART serial I/O1

Fig. 26 Operation of UART serial I/O1 function

[Transmit Buffer/Receive Buffer Register (TB/RB)] 001816

The transmit buffer register and the receive buffer register are located at the same address. The transmit buffer register is write-only and the receive buffer register is read-only. If a character bit length is 7 bits, the MSB of data stored in the receive buffer register is " 0 ".
[Serial I/O1 Status Register (SIO1STS)] 001916
The read-only serial I/O1 status register consists of seven flags (bits 0 to 6) which indicate the operating status of the serial I/O function and various errors.
Three of the flags (bits 4 to 6) are valid only in UART mode.
The receive buffer full flag (bit 1) is cleared to " 0 " when the receive buffer is read.
If there is an error, it is detected at the same time that data is transferred from the receive shift register to the receive buffer register, and the receive buffer full flag is set. A write to the serial I/O1 status register clears all the error flags OE, PE, FE, and SE. Writing " 0 " to the serial I/O1 enable bit (SIOE) also clears all the status flags, including the error flags.
All bits of the serial I/O1 status register are initialized to " 0 " at reset, but if the transmit enable bit (bit 4) of the serial I/O1 control register has been set to "1", the transmit shift register shift completion flag (bit 2) and the transmit buffer empty flag (bit 0) become " 1 ".

[Serial I/O1 Control Register (SIO1CON)] 001A16

The serial I/O1 control register contains eight control bits for the serial I/O1 function.

[UART Control Register (UARTCON)]001B16

This is a 5 bit register containing four control bits, which are valid when UART is selected and set the data format of an data receiver/transfer, and one control bit, which is always valid and sets the output structure of the P45/TXD pin.

[Baud Rate Generator(BRG)] 001616

The baud rate generator determines the baud rate for serial transfer.
The baud rate generator divides the frequency of the count source by $1 /(n+1)$, where n is the value written to the baud rate generator.

Notes

When setting the transmit enable bit to "1", the serial I/O1 transmit interrupt request bit is automatically set to " 1 ". When not requiring the interrupt occurrence synchronized with the transmission enabled, take the following sequence.
(1) Set the serial I/O1 transmit interrupt enable bit to "0" (disabled).
(2) Set the transmit enable bit to " 1 ".
(3) Set the serial I/O1 transmit interrupt request bit to " 0 " after 1 or more instructions have been executed.
(4) Set the serial I/O1 transmit interrupt enable bit to "1" (enabled).

1: $f\left(X_{\text {IN }}\right) / 4(f(X \operatorname{CIN}) / 4$ in low-speed mode)
Serial I/O1 synchronous clock selection bit (SCS) 0 : BRG output divided by 4 when clock synchronous serial I/O is selected.
BRG output divided by 16 when UART is selected.
1: External clock input when clock synchronous serial I/O is selected.
External clock input divided by 16 when UART is selected.
$\overline{\text { SRDY1 }}$ output enable bit (SRDY)
0: P47 pin operates as ordinary I/O pin.
1: P47 pin operates as $\overline{\text { SRDY1 }}$ output pin.
Transmit interrupt source selection bit (TIC) 0 : Interrupt when transmit buffer has emptied
1: Interrupt when transmit shift operation is completed
Transmit enable bit (TE)
0 : Transmit disabled
1: Transmit enabled
Receive enable bit (RE)
0 : Receive disabled
1: Receive enabled
Serial I/O1 mode selection bit (SIOM)
0 : Asynchronous serial I/O (UART)
1: Clock synchronous serial I/O
Serial I/O1 enable bit (SIOE)
0 : Serial I/O1 disabled
(pins P44-P47 operate as ordinary I/O pins)
1: Serial I/O1 enabled
(pins P44-P47 operate as serial I/O pins)

Fig. 27 Structure of serial I/O1 control registers

Serial I/O2

The serial I/O2 function can be used only for clock synchronous serial I/O.
For clock synchronous serial $\mathrm{I} / \mathrm{O} 2$, the transmitter and the receiver must use the same clock. When the internal clock is used, transfer is started by a write signal to the serial I/O2 register.
When an internal clock is selected as the synchronous clock of the serial I/O2, either P62 or P63 can be selected as an output pin of the synchronous clock. In this case, the pin that is not selected as an output pin of the synchronous clock functions as a port.
[Serial I/O2 Control Register (SIO2CON)] 001D16
The serial I/O2 control register contains 8 bits which control various serial I/O2 functions.

Fig. 28 Structure of serial I/O2 control register

Fig. 29 Block diagram of serial I/O2 function

Fig. 30 Timing of serial I/O2 function

PULSE WIDTH MODULATION (PWM)

The 7513 group has a PWM function with an 8 -bit resolution, based on a signal that is the clock input XIN or that clock input divided by 2 .

Data Setting

The PWM output pin also functions as ports P50 and P51. Set the PWM period by the PWM prescaler, and set the period during which the output pulse is an "H" by the PWM register.
If PWM count source is $f(X I N)$ and the value in the PWM prescaler is n and the value in the PWM register is m (where $\mathrm{n}=0$ to 255 and $m=0$ to 255) :
PWM period $=255 \times(n+1) / f(X I N)$

$$
=51 \times(n+1) \mu s(\text { when } f(X I N)=5 M H z)
$$

Output pulse "H" period $=P W M$ period $\times \mathrm{m} / 255$

$$
\begin{aligned}
= & 0.2 \times(\mathrm{n}+1) \times \mathrm{m} \mu \mathrm{~s} \\
& (\text { when } \mathrm{f}(\mathrm{XIN})=5 \mathrm{MHz})
\end{aligned}
$$

PWM Operation

When at least either bit 1 (PWMo output enable bit) or bit 2 (PWM1 output enable bit) of the PWM control register is set to "1", operation starts by initializing the PWM output circuit, and pulses are output starting at an "H". When one PWM output is enabled and that the other PWM output is enabled, PWM output which is enabled to output later starts pulse output from halfway.
When the PWM register or PWM prescaler is updated during PWM output, the pulses will change in the cycle after the one in which the change was made.

Fig. 31 Timing of PWM cycle

Fig. 32 Block diagram of PWM function

Fig. 33 Structure of PWM control register

Fig. 34 PWM output timing when PWM register or PWM prescaler is changed

A-D CONVERTER [A-D Conversion Registers (ADL, ADH)] 003216, 003316

The A-D conversion registers are read-only registers that contain the result of an A-D conversion. During A-D conversion, do not read these registers.

[A-D Control Register (ADCON)] 003116

The A-D control register controls the A-D conversion process. Bits 0 to 2 are analog input pin selection bits. Bit 3 is an A-D conversion completion bit and " 0 " during A-D conversion, then changes to " 1 " when the A-D conversion is completed. Writing " 0 " to this bit starts the A-D conversion. Bit 4 controls the transistor which breaks the through current of the resistor ladder. When bit 5, which is the AD external trigger valid bit, is set to " 1 ", A-D conversion is started even by a rising edge or falling edge of an ADT input. Set ports which share with ADT pin to input when using an A-D external trigger.

[Comparison Voltage Generator]

The comparison voltage generator divides the voltage between AVSS and VREF, and outputs the divided voltages.

[Channel Selector]

The channel selector selects one of the input ports P67/AN7-P60/ ANo, and inputs it to the comparator.

[Comparator and Control Circuit]

The comparator and control circuit compares an analog input voltage with the comparison voltage and stores the result in the A-D conversion register. When an A-D conversion is completed, the control circuit sets the AD conversion completion bit and the AD interrupt request bit to " 1 ".
Note that the comparator is constructed linked to a capacitor, so set $f(X I N)$ to at least 500 kHz during A-D conversion.
Use a clock divided the main clock XIN as the internal clock ϕ.

Fig. 35 Structure of A-D control register

Fig. 36 A-D converter block diagram

D-A CONVERTER

The 7513 group has an on-chip D-A converter with 8-bit resolution and 2 channels ($\mathrm{DAi}(\mathrm{i}=1,2)$). The $\mathrm{D}-\mathrm{A}$ converter is performed by setting the value in the D-A conversion register. The result of D-A converter is output from DAi pin. When using the D-A converter, the corresponding port direction register bit (P56/DA1, P57/DA2) should be set to "0" (input status).
The output analog voltage V is determined by the value n (base 10) in the D-A conversion register as follows:

V=VREF $\times n / 256$ ($n=0$ to 255)
Where VREF is the reference voltage.
At reset, the D-A conversion registers are cleared to "0016", the DAi output enable bits are cleared to " 0 ", and DAi pin goes to high impedance state. The DA output is not buffered, so connect an external buffer when driving a low-impedance load.

Fig. 37 Structure of D-A control register

Fig. 38 Block diagram of D-A converter

Fig. 39 A-D converter, D-A converter block diagram

LCD DRIVE CONTROL CIRCUIT

The 7513 group has the built-in Liquid Crystal Display (LCD) drive control circuit consisting of the following.

- LCD display RAM
- Segment output enable register
- LCD mode register
- Voltage multiplier
- Selector
- Timing controller
- Common driver
- Segment driver
- Bias control circuit

A maximum of 40 segment output pins and 4 common output pins can be used.

Up to 160 pixels can be controlled for LCD display. When the LCD enable bit is set to " 1 " after data is set in the LCD mode register, the segment output enable register and the LCD display RAM, the LCD drive control circuit starts reading the display data automatically, performs the bias control and the duty ratio control, and displays the data on the LCD panel.

Table 9 Maximum number of display pixels at each duty ratio

Duty ratio	Maximum number of display pixel
2	80 dots or 8 segment LCD 10 digits
3	120 dots or 8 segment LCD 15 digits
4	160 dots or 8 segment LCD 20 digits

Fig. 40 Structure of LCD mode register

Fig. 41 Block diagram of LCD controller/driver

Voltage Multiplier (3 Times)

The voltage multiplier performs threefold boosting. This circuit inputs a reference voltage for boosting from LCD power input pin VL1. (However, when using a $1 / 2$ bias, connect VL1 and VL2 and apply voltage by external resistor division.)
Set each bit of the segment output enable register and the LCD mode register in the following order for operating the voltage multiplier.

1. Set the segment output enable bits (bits 0 to 5) of the segment output enable register to "0" or "1."
2. Set the duty ratio selection bits (bits 0 and 1), the bias control bit (bit 2), the LCD circuit divider division ratio selection bits (bits 5 and 6), and the LCDCK count source selection bit (bit 7) of the LCD mode register to "0" or " 1. ."
3. Set the LCD output enable bit (bit 6) of the segment output enable register to "1."
4. Set the voltage multiplier control bit (bit 4) of the LCD mode register to "1."
When voltage is input to the VL1 pin during operating the voltage multiplier, voltage that is twice as large as VL1 occurs at the VL2 pin, and voltage that is three times as large as VL1 occurs at the VL3 pin.
When using the voltage multiplier, apply $1.3 \mathrm{~V} \leq$ Voltage $\leq 2.3 \mathrm{~V}$ to the VL1 pin.
When not using the voltage multiplier,apply proper voltage to the LCD power input pins (VL1-VL3). Then set the LCD output enable bit to "1."
When the LCD output enable bit is set to " 0 ," the VCC voltage is applied to the VL3 pin inside of this microcomputer. The voltage multiplier control bit (bit 4 of the LCD mode register) controls the voltage multiplier.

Bias Control and Applied Voltage to LCD Power Input Pins

To the LCD power input pins (VL1-VL3), apply the voltage shown in Table 10 according to the bias value.
Select a bias value by the bias control bit (bit 2 of the LCD mode register).

Table 10 Bias control and applied voltage to VL1-VL3

Bias value	Voltage value
$1 / 3$ bias	VL3=VLCD VL2 $=2 / 3$ VLCD VL1 $=1 / 3 ~ V L C D ~$
	VL3 $=$ VLCD VL2 $=$ VL1 $=1 / 2 ~ V L C D ~$

Note: VLCD is the maximum value of supplied voltage for the LCD panel.

Fig. 42 Example of circuit at each bias

Common Pin and Duty Ratio Control

The common pins (COM0-COM3) to be used are determined by duty ratio.
Select duty ratio by the duty ratio selection bits (bits 0 and 1 of the LCD mode register).
When releasing from reset, the Vcc (VL3) voltage is output from the common pins.

Table 11 Duty ratio control and common pins used

Duty ratio	Duty ratio selection bit		Common pins used
	Bit 1	Bit 0	
2	0	1	$\mathrm{COM} 0, \mathrm{COM} 1$ (Note 1)
3	1	0	$\mathrm{COM} 0-\mathrm{COM} 2$ (Note 2)
4	1	1	$\mathrm{COM} 0-\mathrm{COM} 3$

Notes1: COM2 and COM3 are open.
2: COM_{3} is open.

Segment Signal Output Pin

Segment signal output pins are classified into the segment-only pins (SEG0-SEG17), the segment/output port pins (SEG18SEG25), and the segment///O port pins (SEG26-SEG39).
Segment signals are output according to the bit data of the LCD RAM corresponding to the duty ratio. After reset release, a VCC (=VL3) voltage is output to the segment-only pins and the seg-
ment/output port pins are the high impedance condition. The segment///O port pins(SEG26-SEG33). are set to input ports, and the high impedance condition. The segment/I/O port pins(SEG34SEG39). are set to input ports, and Vcc (=VL3) is applied to them by pull-up resistor.

LCD Display RAM

Address 004016 to 005316 is the designated RAM for the LCD display. When " 1 " are written to these addresses, the corresponding segments of the LCD display panel are turned on.

LCD Drive Timing

The LCDCK timing frequency (LCD drive timing) is generated internally and the frame frequency can be determined with the following equation;

	7	6	5	4	3	2	1	0
004016	SEG1				SEG0			
004116	SEG3				SEG2			
004216	SEG5				SEG4			
004316	SEG7				SEG6			
004416	SEG9				SEG8			
004516	SEG11				SEG10			
004616	SEG13				SEG12			
004716	SEG15				SEG14			
004816	SEG17				SEG16			
004916	SEG19				SEG18			
004A16	SEG21				SEG20			
004B16	SEG23				SEG22			
004C16	SEG25				SEG24			
004D16	SEG27				SEG26			
004E16	SEG29				SEG28			
004F16	SEG31				SEG30			
005016	SEG33				SEG32			
005116	SEG35				SEG34			
005216	SEG37				SEG36			
005316	SEG39				SEG38			
	COM3	COM2	COM1	COMo	COM3	COM2	COM_{1}	COMo

Fig. 43 LCD display RAM map

Internal signal LCDCK timing
$1 / 4$ duty

$1 / 3$ duty

$1 / 2$ duty

Fig. 44 LCD drive waveform (1/2 bias)

Fig. 45 LCD drive waveform ($1 / 3$ bias)

WATCHDOG TIMER

The watchdog timer gives a mean of returning to the reset status when a program cannot run on a normal loop (for example, because of a software runaway).
The watchdog timer consists of an 8-bit watchdog timer L and a 6bit watchdog timer H . At reset or writing to the watchdog timer control register (address 003716), the watchdog timer is set to "3FFF16." When any data is not written to the watchdog timer control register (address 003716) after reset, the watchdog timer is in stop state. The watchdog timer starts to count down from "3FFF16" by writing an optional value into the watchdog timer control register (address 003716) and an internal reset occurs at an underflow. Accordingly, programming is usually performed so that writing to the watchdog timer control register (address 003716) may be started before an underflow. The watchdog timer does not function when an optional value has not been written to the watchdog timer control register (address 003716). When address 003716 is read, the following values are read:

- value of high-order 6-bit counter
- value of STP instruction disable bit
- value of count source selection bit.

When bit 6 of the watchdog timer control register (address 003716) is set to " 0 ," the STP instruction is valid. The STP instruction is disabled by rewriting this bit to "1." At this time, if the STP instruction is executed, it is processed as an undefined instruction, so that a reset occurs inside.
This bit cannot be rewritten to " 0 " by programming. This bit is " 0 " immediately after reset.
The count source of the watchdog timer becomes the system clock ϕ divided by 8 . The detection time in this case is set to 8.19 s at $f(\mathrm{XCIN})=32 \mathrm{kHz}$ and 65.536 ms at $f(\mathrm{XIN})=4 \mathrm{MHz}$.
However, count source of high-order 6-bit timer can be connected to a signal divided system clock by 8 directly by writing the bit 7 of the watchdog timer control register (address 003716) to "1." The detection time in this case is set to 32 ms at $f(X C I N)=32 \mathrm{kHz}$ and $256 \mu \mathrm{~s}$ at $\mathrm{f}(\mathrm{XIN})=4 \mathrm{MHz}$. There is no difference in the detection time between the middle-speed mode and the high-speed mode.

Fig. 46 Block diagram of watchdog timer

Fig. 47 Structure of watchdog timer control register

Fig. 48 Timing of reset output

Tout/ ϕ CLOCK OUTPUT FUNCTION

The internal system clock ϕ or timer 2 divided by 2 (Tout output) can be output from port P43 by setting the TOUT/ ϕ output control bit (bit 1) of the timer 123 mode register and the TOUT/ ϕ output control register. Set bit 3 of the port P4 direction register to " 1 " when outputting the clock.

Tout/ф output control register (CKOUT : address 002A 16)

Tout/\$ output control bit
0 : ϕ clock output
1 : Tout output
Not used (return " 0 " when read)

Timer 123 mode register (T123M : address 002916)

Tout output active edge switch bit
0 : Start on "H" output
1 : Start on "L" output
Tout/ ϕ output control bit
0 : Tout/ ϕ output disable
1 : Tout/ ϕ output enable
Timer 2 write control bit
0 : Write data in latch and timer
1 : Write data in latch only
Timer 2 count source selection bit
0 : Timer 1 output
1 : $\mathrm{f}(\mathrm{Xin}) / 16$
(or $\mathrm{f}(\mathrm{Xcin}) / 16$ in low-speed mode*)
Timer 3 count source selection bit
0 : Timer 1 output
$1: f\left(\right.$ Xin $\left.^{\prime}\right) / 16$
(or $f\left(\mathrm{X}_{\mathrm{CIN}}\right) / 16$ in low-speed mode*)
Timer 1 count source selection bit
$0: f(X \operatorname{XIN}) / 16$
(or $f\left(\mathrm{X}_{\mathrm{CIN}}\right) / 16$ in low-speed mode*)
$1: f\left(X_{\text {Cin }}\right)$
Not used (return " 0 " when read)

* : Internal clock ϕ is $f\left(\mathrm{X}_{\mathrm{cIN}}\right) / 2$ in low-speed mode.

Fig. 49 Structure of Tout/f output-related register

RESET CIRCUIT

To reset the microcomputer, $\overline{\text { RESET }}$ pin should be held at an " L " level for 2μ s or more. Then the RESET pin is returned to an "H" level (the power source voltage should be between Vcc(min.) and 5.5 V , and the oscillation should be stable), reset is released. After the reset is completed, the program starts from the address contained in address FFFD16 (high-order byte) and address FFFC16 (low-order byte). Make sure that the reset input voltage is less than 0.2 Vcc for Vcc of Vcc (min.).

Fig. 50 Reset Circuit Example

Fig. 51 Reset Sequence

Fig. 52 Initial status at reset

CLOCK GENERATING CIRCUIT

The 7513 group has two built-in oscillation circuits. An oscillation circuit can be formed by connecting a resonator between XIN and Xout (XCIN and XcOUT). Use the circuit constants in accordance with the resonator manufacturer's recommended values. No external resistor is needed between XIN and Xout since a feed-back resistor exists on-chip. However, an external feed-back resistor is needed between XCIN and Xcout.
To supply a clock signal externally, input it to the XIN pin and make the Xout pin open. The sub-clock XCIN-Xcout oscillation circuit cannot directly input clocks that are externally generated. Accordingly, be sure to cause an external resonator to oscillate.
Immediately after poweron, only the XIN oscillation circuit starts oscillating, and XCIN and XCOUT pins go to high impedance state.

Frequency Control

(1) Middle-speed Mode

The internal clock ϕ is the frequency of XIN divided by 8.
After reset, this mode is selected.

(2) High-speed Mode

The internal clock ϕ is half the frequency of XIN.

(3) Low-speed Mode

- The internal clock ϕ is half the frequency of XCIN.
- A low-power consumption operation can be realized by stopping the main clock XIN in this mode. To stop the main clock, set bit 5 of the CPU mode register to " 1 ".
When the main clock XIN is restarted, set enough time for oscillation to stabilize by programming.
Note: If you switch the mode between middle/high-speed and lowspeed, stabilize both XIN and XCIN oscillations. The sufficient time is required for the sub-clock to stabilize, especially immediately after poweron and at returning from stop mode. When switching the mode between middle/highspeed and low-speed, set the frequency on condition that $f(X I N)>3 f(X C I N)$.

Oscillation Control

(1) Stop Mode

If the STP instruction is executed, the internal clock ϕ stops at an "H" level, and XIN and XCIN oscillators stop. The value set to the timer latch 1 and the timer latch 2 is loaded automatically to the timer 1 and the timer 2. Thus, a value generated time for stabilizing oscillation should be set to the timer 1 latch and the timer 2 latch (low-order 8 bits for the timer 1, high-order 8 bits for the timer 2) before executing the STP instruction.

Either XIN or XCIN divided by 16 is input to timer 1 as count source, and the output of timer 1 is connected to timer 2 . The bits of the timer 123 mode register except bit 4 are cleared to " 0 ," Set the timer 1 and timer 2 interrupt enable bits to disabled (" 0 ") before executing the STP instruction. Oscillator restarts at reset or when an external interrupt is received, but the internal clock ϕ is not supplied to the CPU until timer 2 underflows. This allows timer for the clock circuit oscillation to stabilize.

(2) Wait Mode

If the WIT instruction is executed, the internal clock ϕ stops at an "H" level. The states of XIN and XCIN are the same as the state before the executing the WIT instruction. The internal clock restarts at reset or when an interrupt is received. Since the oscillator does not stop, normal operation can be started immediately after the clock is restarted.

Fig. 53 Ceramic resonator circuit

Fig. 54 External clock input circuit

Fig. 55 Clock generating circuit block diagram

Fig. 56 State transitions of system clock

NOTES ON PROGRAMMING
 Processor Status Register

The contents of the processor status register (PS) after a reset are undefined, except for the interrupt disable flag (I) which is "1". After a reset, initialize flags which affect program execution.
In particular, it is essential to initialize the index X mode (T) and the decimal mode (D) flags because of their effect on calculations.

Interrupt

The contents of the interrupt request bits do not change immediately after they have been written. After writing to an interrupt request register, execute at least one instruction before performing a BBC or BBS instruction.

Decimal Calculations

- To calculate in decimal notation, set the decimal mode flag (D) to "1", then execute an ADC or SBC instruction. After executing an ADC or SBC instruction, execute at least one instruction before executing a SEC, CLC, or CLD instruction.
- In decimal mode, the values of the negative (N), overflow (V), and zero (Z) flags are invalid.

Timers

If a value n (between 0 and 255) is written to a timer latch, the frequency division ratio is $1 /(n+1)$.

Multiplication and Division Instructions

The index mode (T) and the decimal mode (D) flags do not affect the MUL and DIV instruction.
The execution of these instructions does not change the contents of the processor status register.

Ports

The contents of the port direction registers cannot be read.
The following cannot be used:

- The data transfer instruction (LDA, etc.)
- The operation instruction when the index X mode flag (T) is " 1 "
- The addressing mode which uses the value of a direction register as an index
- The bit-test instruction (BBC or BBS, etc.) to a direction register
- The read-modify-write instruction (ROR, CLB, or SEB, etc.) to a direction register
Use instructions such as LDM and STA, etc., to set the port direction registers.

Serial I/O

In clock synchronous serial I/O, if the receive side is using an external clock and it is to output the $\overline{\text { SRDY }}$ signal, set the transmit enable bit, the receive enable bit, and the $\overline{\text { SRDY }}$ output enable bit to "1".
Serial I/O1 continues to output the final bit from the TxD pin after transmission is completed.
In serial I/O2, the SOUT2 pin goes to high impedance state after transmission is completed.

A-D Converter

The comparator uses internal capacitors whose charge will be lost if the clock frequency is too low.
Make sure that $f($ XIN $)$ is at least 500 kHz during an A-D conversion.
Do not execute the STP or WIT instruction during an A-D conversion.

Instruction Execution Time

The instruction execution time is obtained by multiplying the frequency of the internal clock ϕ by the number of cycles needed to execute an instruction.
The number of cycles required to execute an instruction is shown in the list of machine instructions.
The frequency of the internal clock ϕ is half of the XIN frequency.

DATA REQUIRED FOR MASK ORDERS

The following are necessary when ordering a mask ROM production:
(1) Mask ROM Order Confirmation Form
(2) Mark Specification Form
(3) Data to be written to ROM, in EPROM form (three identical copies) or in one floppy disk

ROM PROGRAMMING METHOD

The built-in PROM of the blank One Time PROM version and builtin EPROM version can be read or programmed with a general-purpose PROM programmer using a special programming adapter. Set the address of PROM programmer in the user ROM area.

Table 12 Special programming adapter

Package	Name of Programming Adapter
100PFB-A	PCA4738H-100A
100P6Q-A	PCA4738G-100A
100D0	PCA4738L-100A

The PROM of the blank One Time PROM version is not tested or screened in the assembly process and following processes. To ensure proper operation after programming, the procedure shown in Figure 57 is recommended to verify programming.

Caution: The screening temperature is far higher than the storage temperature. Never expose to $150^{\circ} \mathrm{C}$ exceeding 100 hours.

Fig. 57 Programming and testing of One Time PROM version

ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

Table 13 Absolute maximum ratings

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Power source voltage	All voltages are based on Vss. Output transistors are cut off.	-0.3 to 7.0	V
VI	$\begin{array}{ll} \hline \text { Input voltage } & \mathrm{P} 00-\mathrm{P} 07, \mathrm{P} 10-\mathrm{P} 17, \mathrm{P} 20-\mathrm{P} 27, \\ & \mathrm{P} 41-\mathrm{P} 47, \mathrm{P} 50-\mathrm{P} 57, \mathrm{P} 60-\mathrm{P} 67 \end{array}$		-0.3 to Vcc +0.3	V
VI	Input voltage P40, P71-P77		-0.3 to 7.0	V
VI	Input voltage P70		-0.3 to Vcc +0.3	V
VI	Input voltage VL1		-0.3 to VL2	V
VI	Input voltage VL2		VL1 to VL3	V
VI	Input voltage VL3		VL2 to 7.0	V
VI	Input voltage $\mathrm{C}_{1}, \mathrm{C}_{2}$		-0.3 to 7.0	V
VI	Input voltage $\overline{\text { RESET, XIN }}$		-0.3 to Vcc +0.3	V
Vo	Output voltage C_{1}, C_{2}		-0.3 to 7.0	V
Vo	Output voltage P00-P07, P10-P15, P30-P37	At output port	-0.3 to Vcc	V
		At segment output	-0.3 to VL3	V
Vo	$\begin{gathered} \hline \text { Output voltage P16, P17, P20-P27, P41-P47, } \\ \text { P50-P57, P60-P67 } \end{gathered}$		-0.3 to Vcc +0.3	V
Vo	Output voltage P40, P71-P77		-0.3 to 7.0	V
Vo	Output voltage VL3, SEG0-SEG17,COM0-COM3		-0.3 to 7.0	V
Vo	Output voltage VL2		-0.3 to VL3	V
Vo	Output voltage Xout		-0.3 to Vcc +0.3	V
Pd	Power dissipation	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	300	mW
Topr	Operating temperature		-20 to 85	${ }^{\circ} \mathrm{C}$
Tstg			-40 to 125	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Table 14 Recommended operating conditions ($\mathrm{Vcc}=2.2$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter		Limits			Unit
			Min.	Typ.	Max.	
Vcc	Power source voltage	High-speed mode $f(X \mathrm{IN})=8 \mathrm{MHz}$	4.0	5.0	5.5	V
		Middle-speed mode $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$	2.2	5.0	5.5	
		Low-speed mode	2.2	5.0	5.5	
Vss	Power source voltage			0		V
VREF	A-D, D-A conversion reference voltage		2.7		Vcc+0.3	V
AVsS	Analog power source voltage			0		V
VIA	Analog input voltage AN0-AN7		AVss		Vcc	V
VIH	" H " input voltage	$\begin{aligned} & \text { P00-P07, P10-P17, P40, P43, P45, P47, P50-P53, } \\ & \text { P56, P61, P64-P67, P71-P77 } \end{aligned}$	0.7 Vcc		Vcc	V
VIH	" H " input voltage	$\begin{aligned} & \text { P20-P27, P41, P42, P44, P46, P54, P55, P57, P60, } \\ & \text { P62, P63, P70 } \end{aligned}$	0.8 Vcc		Vcc	V
VIH	"H" input voltage	RESET	0.8 Vcc		Vcc	V
VIH	"H" input voltage	XIN	0.8 Vcc		Vcc	V
VIL	"L" input voltage	$\begin{aligned} & \text { P00-P07, P10-P17, P40, P43, P45, P47, P50-P53, } \\ & \text { P56, P61, P64-P67, P71-P77 } \end{aligned}$	0		0.3 Vcc	V
VIL	"L" input voltage	$\begin{aligned} & \text { P20-P27, P41, P42, P44, P46, P54, P55, P57, P60, } \\ & \text { P62, P63, P70 } \end{aligned}$	0		0.2 Vcc	V
VIL	"L" input voltage	RESET	0		0.2 Vcc	V
VIL	"L" input voltage	XIN	0		0.2 Vcc	V

Table 15 Recommended operating conditions (Vcc = 2.2 to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter		Limits			Unit
			Min.	Typ.	Max.	
$\Sigma \mathrm{IOH}$ (peak)	"H" total peak output current	P00-P07, P10-P17, P20-P27, P30-P37 (Note 1)			-20	mA
$\Sigma \mathrm{IOH}$ (peak)	"H" total peak output current	P41-P47, P50-P57, P60-P67 (Note 1)			-20	mA
$\Sigma \mathrm{IOL}$ (peak)	"L" total peak output current	P00-P07, P10-P17, P20-P27, P30-P37 (Note 1)			20	mA
$\Sigma \mathrm{IOL}$ (peak)	"L" total peak output current	P41-P47, P50-P57, P60-P67 (Note 1)			20	mA
ミIOL(peak)	"L" total peak output current	P40, P71-P77 (Note 1)			80	mA
$\Sigma \mathrm{IOH}$ (avg)	" H " total average output current	P00-P07, P10-P17, P20-P27, P30-P37 (Note 1)			-10	mA
$\Sigma \mathrm{IOH}(\mathrm{avg})$	"H" total average output current	P41-P47, P50-P57, P60-P67 (Note 1)			-10	mA
EloL(avg)	"L" total average output current	P00-P07, P10-P17, P20-P27, P30-P37 (Note 1)			10	mA
ElOL(avg)	"L" total average output current	P41-P47, P50-P57, P60-P67 (Note 1)			10	mA
EloL(avg)	"L" total average output current	P40, P71-P77 (Note 1)			40	mA
IOH (peak)	"H" peak output current	P00-P07, P10-P15, P30-P37 (Note 2)			-1.0	mA
IOH (peak)	"H" peak output current	P16, P17, P20-P27, P41-P47, P50-P57, P60-P67 (Note 2)			-5.0	mA
IOL(peak)	"L" peak output current	P00-P07, P10-P15, P30-P37 (Note 2)			5.0	mA
IOL(peak)	"L" peak output current	P16, P17, P20-P27, P41-P47, P50-P57, P60-P67 (Note 2)			10	mA
IOL(peak)	"L" peak output current	P40, P71-P77 (Note 2)			20	mA
IOH(avg)	"H" average output current	P00-P07, P10-P15, P30-P37 (Note 3)			-0.5	mA
IOH(avg)	"H" average output current	P16, P17, P20-P27, P41-P47, P50-P57, P60-P67			-2.5	mA
IOL(avg)	"L" average output current	P00-P07, P10-P15, P30-P37 (Note 3)			2.5	mA
IOL(avg)	"L" average output current	P16, P17, P20-P27, P41-P47, P50-P57, P60-P67 (Note 3)			5.0	mA
IOL(avg)	"L" average output current	P40, P71-P77 (Note 3)			10	mA

Notes1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured over 100 ms . The total peak current is the peak value of all the currents.
2: The peak output current is the peak current flowing in each port.
3: The average output current is an average value measured over 100 ms .

Table 16 Recommended operating conditions (Vcc = 2.2 to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ.	Max.	
f(CNTRo) f(CNTR1)	Input frequency for timers X and Y (duty cycle 50\%)	$(4.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V})$			4.0	MHz
		$(2.2 \mathrm{~V} \leq \mathrm{Vcc} \leq 4.0 \mathrm{~V})$			$\begin{array}{r} (10 \times V \mathrm{Vcc} \\ -4) / 9 \\ \hline \end{array}$	MHz
$f(X I N)$	Main clock input oscillation frequency (Note 1)	High-speed mode $(4.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V})$			8.0	MHz
		High-speed mode $(2.2 \mathrm{~V} \leq \mathrm{Vcc} \leq 4.0 \mathrm{~V})$			$\begin{array}{\|r\|} (20 \times V C c \\ -8) / 9 \\ \hline \end{array}$	MHz
		Middle-speed mode			8.0	MHz
$f($ XCIN $)$	Sub-clock input oscillation frequency (Notes 1, 2)			32.768	50	kHz

Notes1: When the oscillation frequency has a duty cycle of 50%.
2: When using the microcomputer in low-speed mode, make sure that the sub-clock input oscillation frequency on condition that $\mathrm{f}(\mathrm{XCIN})<\mathrm{f}(\mathrm{XIN}) / 3$.

Table 17 Electrical characteristics (Vcc $=\mathbf{4 . 0}$ to $5.5 \mathrm{~V}, \mathrm{Ta}=\mathbf{- 2 0}$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ.	Max.	
Vor	" H " output voltage P00-P07, P10-P15, P30-P37	$\mathrm{IOH}=-1 \mathrm{~mA}$	Vcc-2.0			V
		$\begin{aligned} & \mathrm{IOH}=-0.25 \mathrm{~mA} \\ & \mathrm{VCC}=2.2 \mathrm{~V} \end{aligned}$	Vcc-0.8			V
Vor	```"H" output voltage P16, P17, P20-P27, P41-P47, P50-P57, P60-P67 (Note 1)```	$\mathrm{IOH}=-5 \mathrm{~mA}$	Vcc-2.0			V
		$\mathrm{IOH}=-1.5 \mathrm{~mA}$	Vcc-0.5			V
		$\begin{aligned} & \mathrm{IOH}=-1.25 \mathrm{~mA} \\ & \mathrm{VCC}=2.2 \mathrm{~V} \end{aligned}$	Vcc-0.8			V
Vol	"L" output voltage P00-P07, P10-P15, P30-P37	$\mathrm{IOL}=5 \mathrm{~mA}$			2.0	V
		$\mathrm{lOL}=1.5 \mathrm{~mA}$			0.5	V
		$\begin{aligned} & \mathrm{IOL}=1.25 \mathrm{~mA} \\ & \mathrm{VCC}=2.2 \mathrm{~V} \\ & \hline \end{aligned}$			0.8	V
Vol	```"L" output voltage P16, P17, P20-P27, P41-P47, P50-P57, P60-P67```	$\mathrm{IOL}=10 \mathrm{~mA}$			2.0	V
		$\mathrm{lOL}=3.0 \mathrm{~mA}$			0.5	V
		$\begin{aligned} & \mathrm{IOL}=2.5 \mathrm{~mA} \\ & \mathrm{VCC}=2.2 \mathrm{~V} \end{aligned}$	-		0.8	V
Vol	"L" output voltage P40, P71-P77	$\mathrm{IOL}=10 \mathrm{~mA}$			0.5	V
		$\begin{aligned} & \mathrm{IOL}=5 \mathrm{~mA} \\ & \mathrm{VCC}=2.2 \mathrm{~V} \end{aligned}$			0.3	V
$\mathrm{V}_{\text {+ }}$ - $\mathrm{V}_{\text {T- }}$	Hysteresis INT0-INT2, ADT, CNTR0, CNTR1, P20-P27			0.5		V
$\mathrm{V}_{\text {+ }+ \text { - }} \mathrm{V}_{\text {T- }}$	Hysteresis ScLK, RxD			0.5		V
$\mathrm{V}^{+}+-\mathrm{V}^{-}$	Hysteresis $\overline{\text { RESET }}$			0.5		V
IIH	" H " input current P00-P07, P10-P17, P20-P27, P40-P47, P50-P57, P60-P67, P70-P77	$\mathrm{VI}=\mathrm{Vcc}$			5.0	$\mu \mathrm{A}$
IIH	" H " input current $\overline{\text { RESET }}$	$\mathrm{V}_{1}=\mathrm{Vcc}$			5.0	$\mu \mathrm{A}$
IH	"H" input current XIN	$\mathrm{V}_{1}=\mathrm{V}_{c c}$		4.0		$\mu \mathrm{A}$
IIL	"L" input current P10-P17, P20-P27,P40-P47, P50-P57, P60-P67, P70-P77	$\begin{aligned} & V_{1}=V s s \\ & \text { Pull-ups "off" } \end{aligned}$			-5.0	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{Vcc}=5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{Vss} \\ & \text { Pull-ups "on" } \end{aligned}$	-60.0	-120.0	-240.0	$\mu \mathrm{A}$
		$\mathrm{VCC}=2.2 \mathrm{~V}, \mathrm{VI}=\mathrm{Vss}$ Pull-ups "on"	-5.0	-20.0	-40.0	$\mu \mathrm{A}$
IIL	"L" input current P00-P07,P70				-5.0	$\mu \mathrm{A}$
IIL	"L" input current RESET	V I $=\mathrm{Vss}$			-5.0	$\mu \mathrm{A}$
IIL	"L" input current XIN	$\mathrm{V} \mathrm{I}=\mathrm{Vss}$		-4.0		$\mu \mathrm{A}$
ILEAK	Output load current P30-P37	$\mathrm{Vo}=\mathrm{Vcc}$ Output transistors "off"			5.0	$\mu \mathrm{A}$
		$\begin{aligned} & \text { Vo = Vss } \\ & \text { Output transistors "off" } \end{aligned}$			-5.0	$\mu \mathrm{A}$

Table 18 Electrical characteristics ($\mathrm{Vcc}=2.2$ to 5.5 V , $\mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits			Unit
				Min.	Typ.	Max.	
VRam	RAM retention voltage	At clock stop mode		2.0		5.5	V
ICC	Power source current	- High-speed mode, Vcc = 5 V $\begin{aligned} & f(X I N)=8 \mathrm{MHz} \\ & f(X \mathrm{XIN})=32.768 \mathrm{kHz} \end{aligned}$ Output transistors "off" A-D converter in operating			6.4	13	mA
		- High-speed mode, Vcc = 5 V $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ (in WIT state) $f($ XCIN $)=32.768 \mathrm{kHz}$ Output transistors "off" A-D converter in operating			1.6	3.2	mA
		- Low-speed mode, $\mathrm{VcC}=5 \mathrm{~V}, \mathrm{Ta} \leq 55^{\circ} \mathrm{C}$ $\begin{aligned} & f(\mathrm{XIN})=\text { stopped } \\ & \mathrm{f}(\mathrm{XCIN})=32.768 \mathrm{kHz} \end{aligned}$ Output transistors "off"			35	70	$\mu \mathrm{A}$
		- Low-speed mode, $\mathrm{VcC}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ $\mathrm{f}(\mathrm{XIN})=$ stopped $\mathrm{f}(\mathrm{XCIN})=32.768 \mathrm{kHz}$ (in WIT state) Output transistors "off"			20	40	$\mu \mathrm{A}$
		- Low-speed mode, $\mathrm{VcC}=3 \mathrm{~V}, \mathrm{Ta} \leq 55^{\circ} \mathrm{C}$ $\begin{aligned} & f(\mathrm{XIN})=\text { stopped } \\ & f(\mathrm{XCIN})=32.768 \mathrm{kHz} \end{aligned}$ Output transistors "off"			15.0	22.0	$\mu \mathrm{A}$
		- Low-speed mode, $\mathrm{Vcc}=3 \mathrm{~V}, \mathrm{Ta} \leq 25^{\circ} \mathrm{C}$ $f($ XIN $)=$ stopped $\mathrm{f}(\mathrm{XCIN})=32.768 \mathrm{kHz}$ (in WIT state) Output transistors "off"			4.5	9.0	$\mu \mathrm{A}$
		All oscillation stopped (in STP state)	$\mathrm{Ta}=25^{\circ} \mathrm{C}$		0.1	1.0	$\mu \mathrm{A}$
			$\mathrm{Ta}=85^{\circ} \mathrm{C}$			10.0	
VL1	Power source voltage	When using voltage multiplier		1.3	1.8	2.3	V
IL1	Power source current (VL1) (Note)	VL1 $=1.8 \mathrm{~V}$			3.0	6.0	$\mu \mathrm{A}$
					10.0	50.0	

Note: When the voltage multiplier control bit of the LCD mode register (bit 4 at address 003916) is " 1 ".

Table 19 A-D converter characteristics
(Vcc = 2.7 to $5.5 \mathrm{~V}, \mathrm{VsS}=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}, 4 \mathrm{MHz} \leq \mathrm{f}(\mathrm{XIN}) \leq 8 \mathrm{MHz}$, in middle/high-speed mode unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ.	Max.	
-	Resolution				10	Bits
-	Absolute accuracy (excluding quantization error)	$\mathrm{VCC}=\mathrm{VREF}=4 \mathrm{~V}$			± 2.5	LSB
		$\mathrm{VCC}=\mathrm{VREF}=2.7 \mathrm{~V}$ (Note 2)			± 4.0	LSB
tCONV	Conversion time	$f(X I N)=4 \mathrm{MHz}$	30.5		$\begin{gathered} 31 \\ \text { (Note 1) } \end{gathered}$	$\mu \mathrm{s}$
Rladder	Ladder resistor			35		$\mathrm{k} \Omega$
IVREF	Reference power source input current	VREF $=5 \mathrm{~V}$	50	150	200	$\mu \mathrm{A}$
IIA	Analog port input current			0.5	5.0	$\mu \mathrm{A}$

Notes1: When an internal trigger is used in middle-speed mode, it is 34 ms .
2: $4 \mathrm{MHz} \leq f(X I N) \leq 5.1 \mathrm{MHz}$ in high-speed mode.

Table 20 D-A converter characteristics
(VCC = 2.7 to $5.5 \mathrm{~V}, \mathrm{VCC}=\mathrm{VREF}, \mathrm{Vss}=\mathrm{AVSS}=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, in middle/high-speed mode unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ.	Max.	
-	Resolution				8	Bits
-	Absolute accuracy	$\mathrm{VCC}=\mathrm{VREF}=5 \mathrm{~V}$			1.0	\%
		$\mathrm{VCC}=\mathrm{VREF}=2.7 \mathrm{~V}$			2.0	\%
tsu	Setting time			3		$\mu \mathrm{s}$
Ro	Output resistor		1	2.5	4	$\mathrm{k} \Omega$
IVREF	Reference power source input current	(Note)			6.0	mA

Note: Using one D-A converter, with the value in the D-A conversion register of the other D-A converter being "0016", and excluding currents flowing through the $A-D$ resistance ladder.

Table 21 Timing requirements 1 ($\mathrm{Vcc}=4.0$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
tw($\overline{\mathrm{RESET}})$	Reset input "L" pulse width	2			$\mu \mathrm{s}$
tc(XIN)	Main clock input cycle time (XIN input)	125			ns
twh(XIN)	Main clock input "H" pulse width	45			ns
twL(XIN)	Main clock input "L" pulse width	40			ns
tc(CNTR)	CNTR0, CNTR1 input cycle time	250			ns
twH(CNTR)	CNTR0, CNTR1 input "H" pulse width	105			ns
twL(CNTR)	CNTR0, CNTR1 input "L" pulse width	105			ns
twH(INT)	INT0 to INT2 input "H" pulse width	80			ns
twL(INT)	INT0 to INT2 input "L" pulse width	80			ns
tc(Sclki)	Serial I/O1 clock input cycle time (Note)	800			ns
twH(ScLK1)	Serial I/O1 clock input "H" pulse width (Note)	370			ns
twL(ScLK1)	Serial I/O1 clock input "L" pulse width (Note)	370			ns
tsu(RxD-ScLK1)	Serial I/O1 input set up time	220			ns
th(ScLK1-RxD)	Serial I/O1 input hold time	100			ns
tc(Sclk2)	Serial I/O2 clock input cycle time (Note)	1000			ns
twH(ScLK2)	Serial I/O2 clock input "H" pulse width (Note)	400			ns
twL(Sclk2)	Serial I/O2 clock input "L" pulse width (Note)	400			ns
tsu(SIN2-ScLK2)	Serial I/O2 input set up time	200			ns
th(Sclk2-Sin2)	Serial I/O2 input hold time	200			ns

Note: When bit 6 of address 001A16 is " 1 ",
Divide this value by four when bit 6 of address 001 A16 is " 0 ".

Table 22 Timing requirements 2 (Vcc = 2.2 to $4.0 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
tw($\overline{\text { RESET }}$)	Reset input "L" pulse width	2			$\mu \mathrm{s}$
tc(XIN)	Main clock input cycle time (XIN input)	125			ns
twH(XIN)	Main clock input "H" pulse width	45			ns
twL(XIN)	Main clock input "L" pulse width	40			ns
tc(CNTR)	CNTRo, CNTR1 input cycle time	900/(Vcc-0.4)			ns
twH(CNTR)	CNTRo, CNTR1 input "H" pulse width	tc(CNTR)/2-20			ns
twL(CNTR)	CNTRo, CNTR1 input "L" pulse width	tc(CNTR)/2-20			ns
twH(INT)	INT0 to INT2 input "H" pulse width	230			ns
twL(INT)	INT0 to INT2 input "L" pulse width	230			ns
tc(ScLK1)	Serial I/O1 clock input cycle time (Note)	2000			ns
twH(ScLK1)	Serial I/O1 clock input "H" pulse width (Note)	950			ns
twL(ScLK1)	Serial I/O1 clock input "L" pulse width (Note)	950			ns
tsu(RxD-ScLK1)	Serial I/O1 input set up time	400			ns
th(Sclki-RxD)	Serial I/O1 input hold time	200			ns
tc(Sclk2)	Serial I/O2 clock input cycle time (Note)	2000			ns
twH(Sclk2)	Serial I/O2 clock input "H" pulse width (Note)	950			ns
twL(Sclk2)	Serial I/O2 clock input "L" pulse width (Note)	950			ns
tsu(SIN2-ScLk2)	Serial I/O2 input set up time	400			ns
th(Sclk2-SIN2)	Serial I/O2 input hold time	300			ns

Note: When bit 6 of address 001 A 16 is " 1 "
Divide this value by four when bit 6 of address 001 A16 is " 0 ".

Table 23 Switching characteristics 1 ($\mathrm{Vcc}=4.0$ to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
twH(ScLK1)	Serial I/O1 clock output "H" pulse width	tc (SCLK1)/2-30			ns
twL(SCLK1)	Serial I/O1 clock output "L" pulse width	tc (SCLK1)/2-30			ns
td(ScLK1-TxD)	Serial I/O1 output delay time (Note 1)			140	ns
tv(ScLK1-TxD)	Serial I/O1 output valid time (Note 1)	-30			ns
tr (ScLK1)	Serial I/O1 clock output rising time			30	ns
tf(ScLK1)	Serial I/O1 clock output falling time			30	ns
twH(ScLk2)	Serial I/O2 clock output "H" pulse width	tc (SCLK2)/2-160			ns
twL(Sclk2)	Serial I/O2 clock output "L" pulse width	tc (SCLK2)/2-160			ns
td(SCLK2-Sout2)	Serial I/O2 output delay time			$0.2 \times$ tc (SCLK2)	ns
tv(SCLK2-Sout2)	Serial I/O2 output valid time	0			ns
tf(ScLK2)	Serial I/O2 clock output falling time			40	ns
tr(CMOS)	CMOS output rising time (Note 2)		10	30	ns
tf(CMOS)	CMOS output falling time (Note 2)		10	30	ns

Notes1: When the P45/TxD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is "0".
2: Xout and Xcout pins are excluded.

Table 24 Switching characteristics $2\left(\mathrm{Vcc}=2.2\right.$ to $4.0 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
twH(Sclkı1)	Serial I/O1 clock output "H" pulse width	tc (SCLK1)/2-50			ns
twL(ScLK1)	Serial I/O1 clock output "L" pulse width	tc (SCLK1)/2-50			ns
td(ScLK1-TxD)	Serial I/O1 output delay time (Note 1)			350	ns
tv(SCLK1-TxD)	Serial I/O1 output valid time (Note 1)	-30			ns
tr (SCLK1)	Serial I/O1 clock output rising time			50	ns
tf(ScLK1)	Serial I/O1 clock output falling time			50	ns
twH(ScLK2)	Serial I/O2 clock output "H" pulse width	tc (SCLK2)/2-240			ns
twL(Sclk2)	Serial I/O2 clock output "L" pulse width	tc (SCLK2)/2-240			ns
td(Sclı2-Sout2)	Serial I/O2 output delay time			$0.2 \times$ tc (SCLK2)	ns
tv(Sclı2-Sout2)	Serial I/O2 output valid time	0			ns
tf(ScLK2)	Serial I/O2 clock output falling time			50	ns
tr(CMOS)	CMOS output rising time (Note 2)		20	50	ns
tf(CMOS)	CMOS output falling time (Note 2)		20	50	ns

Notes1: When the P45/TxD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is "0".
2: Xout and Xcout pins are excluded.

Fig. 58 Circuit for measuring output switching characteristics

Fig. 59 Timing diagram

PACKAGE OUTLINE

100P6Q-A MMP
Plastic 100pin $14 \times 14 \mathrm{~mm}$ body LQFP

100PFB-A MMP
Plastic 100pin $12 \times 12 \mathrm{~mm}$ body TQFP

EIAJ Package Code	JEDEC Code	Weight(g)
-	-	

RenesasTechnology Corp.

Keep safety first in your circuit designs
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials
These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party,
infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples
All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by
Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein
 Please also pay attention to information pubished by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com).
on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein
Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
Any diversio
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein

