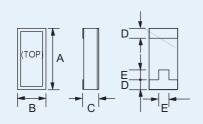
MINIMURE CRYSTAL

CX-1-SM 530kHz to 2.1MHz

MINIATURE SMD CRYSTAL

Page 1 of 2


Telephone: +44(0)1460 230000 +44(0)1460 230001 Fax: Email: sales@euroquartz.co.uk Web: www.euroquartz.co.uk

Extensional mode

- Ideal for use with microprocessors
- Designed for low-power applications
- Compatible with hybrid or PC board packaging
- Full military environmental testing available
- Ideal for battery operated applications

General Description

The miniature CX-1-SM crystals in leadless ceramic packages have been designed for surface-mounting on printed circuit boards or hybrid circuits. Hermitically sealed in a rugged, miniature ceramic package, the CX-1-SM crystal is manufactured using a photolithographic process.

Outline

CX-1-SM Package Dimensions

Dimension	Typical (mm)	Maximum (mm)
Α	8.00	8.38
В	3.56	3.94
С	-	see below
D	1.14	1.40
E	1.52	1.78

Dimension "C"	Glass Lid (mm max.)	Ceramic Lid (mm max.)
SM1	1.65	1.78
SM2	1.70	1.83
SM3	1.78	1.90

Specification

530kHz to 2 .1MHz **Frequency Range: Functional Mode:** Extensional

Calibration Tolerance*: A $\pm 0.05\%$ (± 500 ppm)

 $B \pm 0.1\%$ $C \pm 1.0\%$ 7pF

Load Capacitance: Motional Resistance (R1): $3k\Omega$ max. Motional Capacitance (C1): 1.2fF Quality Factor (Q): 150k Shunt Capacitance (C₀): 1.0pF **Drive Level:** 3μW max. Turning Point (T₀)**: 35°C

Note: Frequency (f) deviation from frequency (f₀) @ turning point

temperature (T₀): $\frac{\text{f-fo}}{r} = k(T-To)^2$

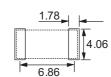
Ageing, first year: ±5ppm max. Shock, survival: 750g 0.3ms, ½ sine


Vibration, survival: 10g rms, 20-1,000Hz random -10°~+70°C (commercial) **Operating Temperature:** -40°~+85°C (industrial) -55° ~ $+125^{\circ}$ C (military)

-55°C~+125°C **Storage Temperature: Process Temperature:** 260°C for 20 seconds

Specifications are typical at 25°C unless otherwise indicated.

- Tighter frequency calibration available
- Other turning point available


Equivalent Circuit

R₁ Motional Resistance L₁ Motional Inductance

C₁ Motional Capacitance C₀ Shunt Capacitance

Solder Pad Layout

CX-1-SM 530kHz to 2.1MHz

MINIATURE SMD CRYSTAL

Page 2 of 2

Telephone: +44(0)1460 230000 Fax: +44(0)1460 230001 Email: sales@euroquartz.co.uk Web: www.euroquartz.co.uk

Circuit Design

Typical Pierce Oscillator Application

The low profile CX miniature surface-mount crystal is ideal for small, battery operated portable products. The CX crystal design in a Pierce oscillator (single inverter) circuit has a very low current consumption with high stability. A conventional HCMOS Pierce oscillator circuit is shown below. The crystal is effectively inductive and in a Pi network with C_1 and C_2 which provides the additional phase-shift necessary to sustain oscillation. The oscillation frequency (f_0) is 15ppm to 150ppm above the crystal's series resonant frequency (F_8).

Drive Level

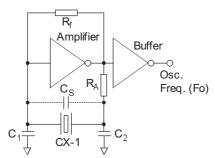
 $R_{_{A}}$ is used to limit the crystal's drive level by forming a voltage divider between $R_{_{A}}$ and $C_{_{1}}$. $R_{_{A}}$ also stabilizes the oscillator against changes in the amplifiers output resistance ($R_{_{0}}$). $R_{_{A}}$ should be increased for higher voltage operation.

Load Capacitance

The CX crystal calibration tolerance is influenced by the effective circuit capacitances, specified as the load capacitance (C_{ι} .) C_{ι} is approximately equal to:

$$C_{L} = \frac{C_{1} \times C_{2}}{C_{1} + C_{2}} + C_{S}$$

NOTE: C_1 and C_2 include stray layout capacitance to ground. C_s is the stray shunt capacitance between the crystal terminals. In practice, the effective valus of C_L will be less than that calculated from C_1 , C_2 , and C_2 values due to the effect of the amplifier output resistance. C_s should be minimized.


The oscillation frequency (f₀) is approximately equal to:

$$f_0 = f_S \left[1 + \frac{C_1}{2(C_0 + C_L)} \right]$$

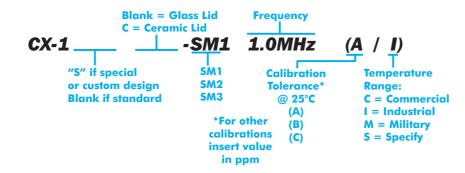
Where F_s = Series resonant frequency of the crystal

C₁ = Motional Capacitance C₀ = Shunt Capacitance

Conventional HCMOS Pierce Oscillator Circuit

Terminations

Designation	Termination
SM1	Gold Plated
SM2	Nickel, Silver Plated
SM3	Nickel, Solder Plated and Solder Dipped


Packaging

CX-1-SM - Tray Pack (Standard)

- 16mm tape, 178mm or 330mm reels (Optional)

per EIA 481

Order Code

