
 
 
 
 

 
 
 

DP805X 
Pipelined High Performance 

Microcontroller 
 
 

Instructions set details 
ver 3.10 

 
 



DP805x Instructions set details           - 2 -      

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

Contents 
1. Overview ____________________________________________________________ 6 

1.1. Document structure. ________________________________________________________6 

2. Instructions set brief___________________________________________________ 6 
2.1. Instruction set notes ________________________________________________________6 
2.2. Instruction set brief – functional order _________________________________________7 

2.2.1. Arithmetic operations __________________________________________________________ 7 
2.2.2. Logic operations ______________________________________________________________ 8 
2.2.3. Boolean manipulation __________________________________________________________ 8 
2.2.4. Data transfers ________________________________________________________________ 9 
2.2.5. Program branches ___________________________________________________________ 10 

2.3. Instruction set brief – hexadecimal order ______________________________________11 

3. Instructions set details ________________________________________________ 14 
3.1. ACALL __________________________________________________________________14 
3.2. ADD_____________________________________________________________________15 

3.2.1. ADD A, Rn _________________________________________________________________ 15 
3.2.2. ADD A, direct _______________________________________________________________ 15 
3.2.3. ADD A, @Ri ________________________________________________________________ 16 
3.2.4. ADD A, #data _______________________________________________________________ 16 

3.3. ADDC ___________________________________________________________________17 
3.3.1. ADDC A, Rn ________________________________________________________________ 17 
3.3.2. ADDC A, direct ______________________________________________________________ 17 
3.3.3. ADDC A, @Ri _______________________________________________________________ 18 
3.3.4. ADDC A, #data ______________________________________________________________ 18 

3.4. AJMP____________________________________________________________________19 
3.5. ANL _____________________________________________________________________20 

3.5.1. ANL A, Rn__________________________________________________________________ 20 
3.5.2. ANL A, direct________________________________________________________________ 20 
3.5.3. ANL A, @Ri ________________________________________________________________ 21 
3.5.4. ANL A, #data________________________________________________________________ 21 
3.5.5. ANL direct, A________________________________________________________________ 21 
3.5.6. ANL direct, #data ____________________________________________________________ 21 
3.5.7. ANL C, bit __________________________________________________________________ 22 
3.5.8. ANL C, /bit__________________________________________________________________ 22 

3.6. CJNE____________________________________________________________________23 
3.6.1. CJNE A, direct, rel ___________________________________________________________ 23 
3.6.2. CJNE A, #data, rel ___________________________________________________________ 24 
3.6.3. CJNE RN, #data, rel __________________________________________________________ 24 
3.6.4. CJNE @Ri, #data, rel _________________________________________________________ 25 

3.7. CLR _____________________________________________________________________26 
3.7.1. CLR A _____________________________________________________________________ 26 
3.7.2. CLR  bit____________________________________________________________________ 26 
3.7.3. CLR  C ____________________________________________________________________ 27 

3.8. CPL _____________________________________________________________________28 
3.8.1. CPL A _____________________________________________________________________ 28 
3.8.2. CPL bit ____________________________________________________________________ 28 
3.8.3. CPL C _____________________________________________________________________ 29 

3.9. DA ______________________________________________________________________30 
3.10. DEC ___________________________________________________________________31 



DP805x Instructions set details           - 3 -      

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.10.1. DEC A_____________________________________________________________________ 31 
3.10.2. DEC Rn____________________________________________________________________ 31 
3.10.3. DEC direct__________________________________________________________________ 32 
3.10.4. DEC @Ri __________________________________________________________________ 32 

3.11. DIV____________________________________________________________________33 
3.12. DJNZ __________________________________________________________________34 

3.12.1. DJNZ Rn, rel ________________________________________________________________ 34 
3.12.2. DJNZ direct, rel______________________________________________________________ 35 

3.13. INC ___________________________________________________________________36 
3.13.1. INC A _____________________________________________________________________ 36 
3.13.2. INC Rn ____________________________________________________________________ 36 
3.13.3. INC direct __________________________________________________________________ 37 
3.13.4. INC @Ri ___________________________________________________________________ 37 
3.13.5. INC DPTR__________________________________________________________________ 37 

3.14. JB ____________________________________________________________________38 
3.15. JBC ___________________________________________________________________39 
3.16. JC ____________________________________________________________________40 
3.17. JMP ___________________________________________________________________41 
3.18. JNB ___________________________________________________________________42 
3.19. JNC ___________________________________________________________________43 
3.20. JNZ ___________________________________________________________________44 
3.21. JZ ____________________________________________________________________45 
3.22. LCALL_________________________________________________________________46 
3.23. LJMP __________________________________________________________________47 
3.24. MOV __________________________________________________________________48 

3.24.1. MOV A, Rn _________________________________________________________________ 48 
3.24.2. MOV A, direct _______________________________________________________________ 48 
3.24.3. MOV A, @Ri ________________________________________________________________ 49 
3.24.4. MOV A, #data _______________________________________________________________ 49 
3.24.5. MOV Rn, A _________________________________________________________________ 49 
3.24.6. MOV Rn, direct ______________________________________________________________ 49 
3.24.7. MOV Rn, #data ______________________________________________________________ 50 
3.24.8. MOV direct, A _______________________________________________________________ 50 
3.24.9. MOV direct, Rn ______________________________________________________________ 50 
3.24.10. MOV direct, direct ____________________________________________________________ 50 
3.24.11. MOV direct, @Ri_____________________________________________________________ 51 
3.24.12. MOV direct, #data____________________________________________________________ 51 
3.24.13. MOV @Ri, A ________________________________________________________________ 51 
3.24.14. MOV @Ri, direct_____________________________________________________________ 51 
3.24.15. MOV @Ri, #data_____________________________________________________________ 52 
3.24.16. MOV C, bit _________________________________________________________________ 52 
3.24.17. MOV bit, C _________________________________________________________________ 52 
3.24.18. MOV DPTR, #data16 _________________________________________________________ 53 

3.25. MOVC _________________________________________________________________54 
3.25.1. MOVC A, @A + DPTR ________________________________________________________ 54 
3.25.2. MOVC A, @A + PC___________________________________________________________ 54 

3.26. MOVX _________________________________________________________________55 
3.26.1. MOVX A, @Ri_______________________________________________________________ 55 
3.26.2. MOVX A, @DPTR____________________________________________________________ 55 
3.26.3. MOVX @Ri, A_______________________________________________________________ 56 



DP805x Instructions set details           - 4 -      

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.26.4. MOVX @DPTR, A____________________________________________________________ 56 

3.27. MUL___________________________________________________________________57 
3.28. NOP___________________________________________________________________58 
3.29. ORL ___________________________________________________________________59 

3.29.1. ORL A, Rn__________________________________________________________________ 59 
3.29.2. ORL A, direct _______________________________________________________________ 59 
3.29.3. ORL A, @Ri ________________________________________________________________ 60 
3.29.4. ORL A, #data _______________________________________________________________ 60 
3.29.5. ORL direct, A _______________________________________________________________ 60 
3.29.6. ORL direct, #data ____________________________________________________________ 60 
3.29.7. ORL C, bit __________________________________________________________________ 61 
3.29.8. ORL C, /bit _________________________________________________________________ 61 

3.30. POP ___________________________________________________________________62 
3.31. PUSH__________________________________________________________________63 
3.32. RET ___________________________________________________________________64 
3.33. RETI __________________________________________________________________65 
3.34. RL ____________________________________________________________________66 
3.35. RLC ___________________________________________________________________67 
3.36. RR ____________________________________________________________________68 
3.37. RRC___________________________________________________________________69 
3.38. SETB __________________________________________________________________70 

3.38.1. SETB C____________________________________________________________________ 70 
3.38.2. SETB bit ___________________________________________________________________ 70 

3.39. SJMP__________________________________________________________________71 
3.40. SUBB _________________________________________________________________72 

3.40.1. SUBB A, Rn ________________________________________________________________ 72 
3.40.2. SUBB A, direct ______________________________________________________________ 72 
3.40.3. SUBB A, @Ri _______________________________________________________________ 73 
3.40.4. SUBB A, #data ______________________________________________________________ 73 

3.41. SWAP _________________________________________________________________74 
3.42. XCH ___________________________________________________________________75 

3.42.1. XCH A, Rn _________________________________________________________________ 75 
3.42.2. XCH A, direct _______________________________________________________________ 75 
3.42.3. XCH A, @Ri ________________________________________________________________ 75 

3.43. XCHD _________________________________________________________________76 
3.44. XRL ___________________________________________________________________77 

3.44.1. XRL A, Rn__________________________________________________________________ 77 
3.44.2. XRL A, direct________________________________________________________________ 77 
3.44.3. XRL A, @ Ri ________________________________________________________________ 78 
3.44.4. XRL A, #data________________________________________________________________ 78 
3.44.5. XRL direct, A________________________________________________________________ 78 
3.44.6. XRL direct, #data ____________________________________________________________ 78 

4. Contacts____________________________________________________________ 79 



DP805x Instructions set details           - 5 -      

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

 
Tables 

Table 1. Notes on data addressing modes_______________________________________ 6 
Table 2. Notes on program addressing modes ___________________________________ 6 
Table 3. Arithmetic operations ________________________________________________ 7 
Table 4. Logic operations ____________________________________________________ 8 
Table 5. Boolean manipulation________________________________________________ 8 
Table 6. Data transfer_______________________________________________________ 9 
Table 7. Program branches _________________________________________________ 10 
Table 8. Instruction set brief in hexadecimal order________________________________ 13 
 



DP805x Instructions set details         - 6 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

1. OVERVIEW 

1.1. DOCUMENT STRUCTURE. 

Document contains brief description of DP805X instructions. This manual is intended 
for design engineers who are planning to use the DP805X HDL core in conjunction with 
software assembler, compiler and debugger tools. 

 

2. INSTRUCTIONS SET BRIEF 

2.1. INSTRUCTION SET NOTES 

The DP805X has five different addressing modes: immediate, direct, register, indirect 
and relative. In the immediate addressing mode the data is contained in the opcode. By 
direct addressing an eight bit address is a part of the opcode, by register addressing, a 
register is selected in the opcode for the operation. In the indirect addressing mode, a 
register is selected in the opcode to point to the address used by the operation. The 
relative addressing mode is used for jump instructions. 
The following tables give a survey about the instruction set cycles of the DP805X 
microcontroller core. One cycle is equal to one clock period. 
Table 1 and Table 2 contain notes for mnemonics used in Instruction set tables. Tables 3 -
7 show instruction hexadecimal codes, number of bytes and machine cycles that each 
instruction takes to execute. 

 
 Rn  Working register R0-R7 
 direct  128 internal RAM locations, any Special Function Registers 
 @Ri  Indirect internal or external RAM location addressed by register R0 or R1 
 #data  8-bit constant included in instruction 
 #data16  16-bit constant included as bytes 2 and 3 of instruction 
 bit  256 software flags, any bit-addressable l/O pin, control or status bit 
 A  Accumulator 

Table 1. Notes on data addressing modes 
 

 addr16  Destination address for LCALL and LJMP may be anywhere within the 64-Kbyte of 
program memory address space. 

 addr11 Destination address for ACALL and AJMP will be within the same 2-Kbyte page of 
program memory as the first byte of the following instruction. 

 rel  SJMP and all conditional jumps include an 8-bit offset byte. Range is +127/-128 
bytes relative to the first byte of the following instruction 

Table 2. Notes on program addressing modes 
 



DP805x Instructions set details         - 7 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

2.2. INSTRUCTION SET BRIEF – FUNCTIONAL ORDER 

 
2.2.1. ARITHMETIC OPERATIONS  

 
Mnemonic Description Code Bytes Cycles

 ADD A,Rn  Add register to accumulator 0x28-0x2F 1 1 
 ADD A,direct  Add direct byte to accumulator 0x25 2 2 
 ADD A,@Ri  Add indirect RAM to accumulator 0x26-0x27 1 2 
 ADD A,#data  Add immediate data to accumulator 0x24 2 2 
 ADDC A,Rn  Add register to accumulator with carry flag 0x38-0x3F 1 1 
 ADDC A,direct  Add direct byte to A with carry flag 0x35 2 2 
 ADDC A,@Ri  Add indirect RAM to A with carry flag 0x36-0x37 1 2 
 ADDC A,#data  Add immediate data to A with carry flag 0x34 2 2 
 SUBB A,Rn  Subtract register from A with borrow 0x98-0x9F 1 1 
 SUBB A,direct  Subtract direct byte from A with borrow 0x95 2 2 
 SUBB A,@Ri  Subtract indirect RAM from A with borrow 0x96-0x97 1 2 
 SUBB A,#data  Subtract immediate data from A with borrow 0x94 2 2 
 INC A  Increment accumulator 0x04 1 1 
 INC Rn  Increment register 0x08-0x0F 1 2 
 INC direct  Increment direct byte 0x05 2 3 
 INC @Ri  Increment indirect RAM 0x06-0x07 1 3 
 DEC A  Decrement accumulator 0x14 1 1 
 DEC Rn  Decrement register 0x18-0x1F 1 2 
 DEC direct  Decrement direct byte 0x15 1 3 
 DEC @Ri  Decrement indirect RAM 0x16-0x17 2 3 
 INC DPTR  Increment data pointer 0xA3 1 1 
 MUL A,B  Multiply A and B 0xA4 1 2 
 DIV A,B  Divide A by B 0x84 1 6 
 DA A  Decimal adjust accumulator 0xD4 1 3 

Table 3. Arithmetic operations 
 



DP805x Instructions set details         - 8 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

2.2.2. LOGIC OPERATIONS 

 
 

Mnemonic Description Code Bytes Cycles
 ANL A,Rn  AND register to accumulator 0x58-0x5F 1 1 
 ANL A,direct  AND direct byte to accumulator 0x55 2 2 
 ANL A,@Ri  AND indirect RAM to accumulator 0x56-0x57 1 2 
 ANL A,#data  AND immediate data to accumulator 0x54 2 2 
 ANL direct,A  AND accumulator to direct byte 0x52 2 3 
 ANL direct,#data  AND immediate data to direct byte 0x53 3 3 
 ORL A,Rn  OR register to accumulator 0x48-0x4F 1 1 
 ORL A,direct  OR direct byte to accumulator 0x45 2 2 
 ORL A,@Ri  OR indirect RAM to accumulator 0x46-0x47 1 2 
 ORL A,#data  OR immediate data to accumulator 0x44 2 2 
 ORL direct,A  OR accumulator to direct byte 0x42 2 3 
 ORL direct,#data  OR immediate data to direct byte 0x43 3 3 
 XRL A,Rn  Exclusive OR register to accumulator 0x68-0x6F 1 1 
 XRL A,direct  Exclusive OR direct byte to accumulator 0x65 2 2 
 XRL A,@Ri  Exclusive OR indirect RAM to accumulator 0x66-0x67 1 2 
 XRL A,#data  Exclusive OR immediate data to accumulator 0x64 2 2 
 XRL direct,A  Exclusive OR accumulator to direct byte 0x62 2 3 
 XRL direct,#data  Exclusive OR immediate data to direct byte 0x63 3 3 
 CLR A  Clear accumulator 0xE4 1 1 
 CPL A  Complement accumulator 0xF4 1 1 
 RL A  Rotate accumulator left 0x23 1 1 
 RLC A  Rotate accumulator left through carry 0x33 1 1 
 RR A  Rotate accumulator right 0x03 1 1 
 RRC A  Rotate accumulator right through carry 0x13 1 1 
 SWAP A  Swap nibbles within the accumulator 0xC4 1 1 

Table 4. Logic operations 
 
 

2.2.3. BOOLEAN MANIPULATION 

 
Mnemonic Description Code Bytes Cycles

 CLR C  Clear carry flag 0xC3 1 1 
 CLR bit  Clear direct bit 0xC2 2 3 
 SETB C  Set carry flag 0xD3 1 1 
 SETB bit  Set direct bit 0xD2 2 3 
 CPL C  Complement carry flag 0xB3 1 1 
 CPL bit  Complement direct bit 0xB2 2 3 
 ANL C,bit  AND direct bit to carry flag 0x82 2 2 
 ANL C,/bit  AND complement of direct bit to carry 0xB0 2 2 
 ORL C,bit  OR direct bit to carry flag 0x72 2 2 
 ORL C,/bit  OR complement of direct bit to carry 0xA0 2 2 
 MOV C,bit  Move direct bit to carry flag 0xA2 2 2 
 MOV bit,C  Move carry flag to direct bit 0x92 2 3 

Table 5. Boolean manipulation  



DP805x Instructions set details         - 9 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

2.2.4. DATA TRANSFERS 

 
Mnemonic Description Code Bytes Cycles

 MOV A,Rn  Move register to accumulator 0xE8-0xEF 1 1 
 MOV A,direct  Move direct byte to accumulator 0xE5 2 2 
 MOV A,@Ri  Move indirect RAM to accumulator 0xE6-0xE7 1 2 
 MOV A,#data  Move immediate data to accumulator 0x74 2 2 
 MOV Rn,A  Move accumulator to register 0xF8-0xFF 1 1 
 MOV Rn,direct  Move direct byte to register 0xA8-0xAF 2 3 
 MOV Rn,#data  Move immediate data to register 0x78-0x7F 2 2 
 MOV direct,A  Move accumulator to direct byte 0xF5 2 2 
 MOV direct,Rn  Move register to direct byte 0x88-8F 2 2 
 MOV direct1,direct2  Move direct byte to direct byte 85 3 3 
 MOV direct,@Ri  Move indirect RAM to direct byte 86-87 2 3 
 MOV direct,#data  Move immediate data to direct byte 75 3 3 
 MOV @Ri,A  Move accumulator to indirect RAM F6-F7 1 2 
 MOV @Ri,direct  Move direct byte to indirect RAM A6-A7 2 3 
 MOV @Ri,#data  Move immediate data to indirect RAM 76-77 2 2 
 MOV DPTR,#data16  Load data pointer with a 16-bit constant 90 3 3 
 MOVC A,@A+DPTR  Move code byte relative to DPTR to accumulator 93 1 5 
 MOVC A,@A+PC  Move code byte relative to PC to accumulator 83 1 4 
 MOVX A,@Ri  Move external RAM (8-bit address) to A E2-E3 1 3* 
 MOVX A,@DPTR  Move external RAM (16-bit address) to A E0 1 2* 

CODE inside ROM/RAM 
destination XRAM data 4* 

 MOVX @Ri,A  Move A to external 
RAM (8-bit address) all other cases 

F2-F3 1 
5* 

 CODE inside ROM/RAM 
destination XRAM data 3* 

 MOVX @DPTR,A  Move A to external 
RAM (16-bit address) all other cases 

F0 1 
4* 

 PUSH direct  Push direct byte onto stack C0 2 3 
 POP direct  Pop direct byte from stack D0 2 2 
 XCH A,Rn  Exchange register with accumulator C8-CF 1 2 
 XCH A,direct  Exchange direct byte with accumulator C5 2 3 
 XCH A,@Ri  Exchange indirect RAM with accumulator C6-C7 1 3 
 XCHD A,@Ri  Exchange low-order nibble indirect RAM with A D6-D7 1 3 

Table 6. Data transfer 
* MOVX cycles depends on STRETCH register. Table shows values with STRETCH=0. 

 
 



DP805x Instructions set details         - 10 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

2.2.5. PROGRAM BRANCHES 

 
Mnemonic Description Code Bytes Cycles

 ACALL addr11  Absolute subroutine call 0x11-0xF1 2 4 
 LCALL addr16  Long subroutine call 03 3 4 
 RET  Return from subroutine 22 1 4 
 RETI  Return from interrupt 32 1 4 
 AJMP addr11  Absolute jump 01-E1 2 3 
 LJMP addr16  Long jump 02 3 4 
 SJMP rel  Short jump (relative address) 80 2 3 
 JMP @A+DPTR  Jump indirect relative to the DPTR 73 1 5 
 JZ rel  Jump if accumulator is zero 60 2 4 
 JNZ rel  Jump if accumulator is not zero 70 2 4 
 JC rel  Jump if carry flag is set 40 2 3 
 JNC  Jump if carry flag is not set 50 2 3 
 JB bit,rel  Jump if direct bit is set 20 3 5 
 JNB bit,rel  Jump if direct bit is not set 30 3 5 
 JBC bit,direct rel  Jump if direct bit is set and clear bit 10 3 5 
 CJNE A,direct rel  Compare direct byte to A and jump if not equal B5 3 5 
 CJNE A,#data rel  Compare immediate to A and jump if not equal B4 3 4 
 CJNE Rn,#data rel  Compare immediate to reg. and jump if not equal B8-BF 3 4 
 CJNE @Ri,#data rel  Compare immediate to ind. and jump if not equal B6-B7 3 5 
 DJNZ Rn,rel  Decrement register and jump if not zero D8-DF 2 4 
 DJNZ direct,rel  Decrement direct byte and jump if not zero D5 3 5 
 NOP  No operation 00 1 1 

Table 7. Program branches 
 
 



DP805x Instructions set details         - 11 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

2.3. INSTRUCTION SET BRIEF – HEXADECIMAL ORDER 

 
Opcode Mnemonic Opcode Mnemonic 

00 H  NOP  30 H  JNB bit.rel  
01 H  AJMP addr11  31 H  ACALL addr11  
02 H  LJMP addr16  32 H  RETI  
03 H  RR A  33 H  RLC A  
04 H  INC A  34 H  ADDC A,#data  
05 H  INC direct  35 H  ADDC A,direct  
06 H  INC @R0  36 H  ADDC A,@R0  
07 H  INC @R1  37 H  ADDC A,@R1  
08 H  INC R0  38 H  ADDC A,R0  
09 H  INC R1  39 H  ADDC A,R1  
0A H  INC R2  3A H  ADDC A,R2  
0B H  INC R3  3B H  ADDC A,R3  
0C H  INC R4  3C H  ADDC A,R4  
0D H  INC R5  3D H  ADDC A,R5  
0E H  INC R6  3E H  ADDC A,R6  
0F H  INC R7  3F H  ADDC A,R7  
10 H  JBC bit,rel  40 H  JC rel 
11 H  ACALL addr11  41 H  AJMP addr11 
12 H  LCALL addr16  42 H  ORL direct,A 
13 H  RRC A  43 H  ORL direct,#data 
14 H  DEC A  44 H  ORL A,#data 
15 H  DEC direct  45 H  ORL A,direct 
16 H  DEC @R0  46 H  ORL A,@R0 
17 H  DEC @R1  47 H  ORL A,@R1 
18 H  DEC R0  48 H  ORL A,R0 
19 H  DEC R1  49 H  ORL A,R1 
1A H  DEC R2  4A H  ORL A,R2 
1B H  DEC R3  4B H  ORL A,R3 
1C H  DEC R4  4C H  ORL A,R4 
1D H  DEC R5  4D H  ORL A,R5 
1E H  DEC R6  4E H  ORL A,R6 
1F H  DEC R7  4F H  ORL A,R7 
20 H  JB bit.rel  50 H  JNC rel 
21 H  AJMP addr11  51 H  ACALL addr11 
22 H  RET  52 H  ANL direct,A 
23 H  RL A  53 H  ANL direct,#data 
24 H  ADD A,#data  54 H  ANL A,#data 
25 H  ADD A,direct  55 H  ANL A,direct 
26 H  ADD A,@R0  56 H  ANL A,@R0 
27 H  ADD A,@R1  57 H  ANL A,@R1 
28 H  ADD A,R0  58 H  ANL A,R0 
29 H  ADD A,R1  59 H  ANL A,R1 
2A H  ADD A,R2  5A H  ANL A,R2 
2B H  ADD A,R3  5B H  ANL A,R3 
2C H  ADD A,R4  5C H  ANL A,R4 
2D H  ADD A,R5  5D H  ANL A,R5 
2E H  ADD A,R6  5E H  ANL A,R6 
2F H  ADD A,R7  5F H  ANL A,R7 



DP805x Instructions set details         - 12 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

 
Opcode Mnemonic Opcode Mnemonic 

60 H  JZ rel  90 H  MOV DPTR,#data16  
61 H  AJMP addr11  91 H  ACALL addr11  
62 H  XRL direct,A  92 H  MOV bit,C  
63 H  XRL direct,#data  93 H  MOVC A,@A+DPTR  
64 H  XRL A,#data  94 H  SUBB A,#data  
65 H  XRL A,direct  95 H  SUBB A,direct  
66 H  XRL A,@R0  96 H  SUBB A,@R0  
67 H  XRL A,@R1  97 H  SUBB A,@R1  
68 H  XRL A,R0  98 H  SUBB A,R0  
69 H  XRL A,R1  99 H  SUBB A,R1  
6A H  XRL A,R2  9A H  SUBB A,R2  
6B H  XRL A,R3  9B H  SUBB A,R3  
6C H  XRL A,R4  9C H  SUBB A,R4  
6D H  XRL A,R5  9D H  SUBB A,R5  
6E H  XRL A,R6  9E H  SUBB A,R6  
6F H  XRL A,R7  9F H  SUBB A,R7  
70 H  JNZ rel  A0 H  ORL C,bit 
71 H  ACALL addr11  A1 H  AJMP addr11 
72 H  ORL C,direct  A2 H  MOV C,bit 
73 H  JMP @A+DPTR  A3 H  INC DPTR 
74 H  MOV A,#data  A4 H  MUL AB 
75 H  MOV direct,#data  A5 H  - 
76 H  MOV @R0,#data  A6 H  MOV @R0,direct 
77 H  MOV @R1,#data  A7 H  MOV @R1,direct 
78 H  MOV R0.#data  A8 H  MOV R0,direct 
79 H  MOV R1.#data  A9 H  MOV R1,direct 
7A H  MOV R2.#data  AA H  MOV R2,direct 
7B H  MOV R3.#data  AB H  MOV R3,direct 
7C H  MOV R4.#data  AC H  MOV R4,direct 
7D H  MOV R5.#data  AD H  MOV R5,direct 
7E H  MOV R6.#data  AE H  MOV R6,direct 
7F H  MOV R7.#data  AF H  MOV R7,direct 
80 H  SJMP rel  B0 H  ANL C,bit 
81 H  AJMP addr11  B1 H  ACALL addr11 
82 H  ANL C,bit  B2 H  CPL bit 
83 H  MOVC A,@A+PC  B3 H  CPL C 
84 H  DIV AB  B4 H  CJNE A,#data,rel 
85 H  MOV direct,direct  B5 H  CJNE A,direct,rel 
86 H  MOV direct,@R0  B6 H  CJNE @R0,#data,rel 
87 H  MOV direct,@R1  B7 H  CJNE @R1,#data,rel 
88 H  MOV direct,R0  B8 H  CJNE R0,#data,rel 
89 H  MOV direct,R1  B9 H  CJNE R1,#data,rel 
8A H  MOV direct,R2  BA H  CJNE R2,#data,rel 
8B H  MOV direct,R3  BB H  CJNE R3,#data,rel 
8C H  MOV direct,R4  BC H  CJNE R4,#data,rel 
8D H  MOV direct,R5  BD H  CJNE R5,#data,rel 
8E H  MOV direct,R6  BE H  CJNE R6,#data,rel 
8F H  MOV direct,R7  BF H  CJNE R7,#data,rel 



DP805x Instructions set details         - 13 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

 
Opcode Mnemonic Opcode Mnemonic 

C0 H  PUSH direct  E0 H  MOVX A,@DPTR 
C1 H  AJMP addr11  E1 H  AJMP addr11 
C2 H  CLR bit  E2 H  MOVX A,@R0 
C3 H  CLR C  E3 H  MOVX A,@R1 
C4 H  SWAP A  E4 H  CLR A 
C5 H  XCH A, direct  E5 H  MOV A, direct 
C6 H  XCH A,@R0  E6 H  MOV A,@R0 
C7 H  XCH A,@R1  E7 H  MOV A,@R1 
C8 H  XCH A,R0  E8 H  MOV A,R0 
C9 H  XCH A,R1  E9 H  MOV A,R1 
CA H  XCH A,R2  EA H  MOV A,R2 
CB H  XCH A,R3  EB H  MOV A,R3 
CC H  XCH A,R4  EC H  MOV A,R4 
CD H  XCH A,R5  ED H  MOV A,R5 
CE H  XCH A,R6  EE H  MOV A,R6 
CF H  XCH A,R7  EF H  MOV A,R7 
D0 H  POP direct F0 H  MOVX @DPTR,A 
D1 H  ACALL addr11 F1 H  ACALL addr11 
D2 H  SETB bit F2 H  MOVX @R0,A 
D3 H  SETB C F3 H  MOVX @R1,A 
D4 H  DA A F4 H  CPL A 
D5 H  DJNZ direct, rel F5 H  MOV direct, A 
D6 H  XCHD A,@R0  F6 H  MOV @R0,A 
D7 H  XCHD A,@R1  F7 H  MOV @R1,A 
D8 H  DJNZ R0,rel  F8 H  MOV R0,A 
D9 H  DJNZ R1,rel  F9 H  MOV R1,A 
DA H  DJNZ R2,rel  FA H  MOV R2,A 
DB H  DJNZ R3,rel  FB H  MOV R3,A 
DC H  DJNZ R4,rel  FC H  MOV R4,A 
DD H  DJNZ R5,rel  FD H  MOV R5,A 
DE H  DJNZ R6,rel  FE H  MOV R6,A 
DF H  DJNZ R7,rel  FF H  MOV R7,A 

Table 8. Instruction set brief in hexadecimal order 
 



DP805x Instructions set details         - 14 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3. INSTRUCTIONS SET DETAILS 
 
 

3.1. ACALL 

 
Instruction: ACALL addr11 

 
Function:  Absolute call 
 
Description: ACALL unconditionally calls a subroutine located at the indicated 

address. The instruction increments the PC twice to obtain the address 
of the following instruction, then pushes the 16-bit result onto the stack 
(low-order byte first) and increments the stack pointer twice. The 
destination address is obtained by successively concatenating the five 
high-order bits of the incremented PC, op code bits 7-5, and the second 
byte of the instruction. The subroutine called must therefore start within 
the same 2K block of program memory as the first byte of the 
instruction following ACALL. No flags are affected. 

 
Operation:  (PC)  ← (PC) + 2 

 (SP)  ← (SP) + 1 
 ((SP))  ← (PC7-0) 
 (SP)  ← (SP) + 1 
 ((SP))  ← (PC15-8) 
 (PC10-0)  ← page address 

 
Bytes:  2 
Cycles:  4 
 
Encoding: 

 
a10 a9 a8 1 0 0 0 1 a7 a6 a5 a4 a3 a2 a1 a0

 
 



DP805x Instructions set details         - 15 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.2. ADD  

 
Instruction: ADD A, <src-byte> 
 
Function:  Adds A to the source operand and returns the result to A. 
 
Description:  ADD adds the byte variable indicated to the accumulator, leaving the 

result in the accumulator. The carry and auxiliary carry flags are set, 
respectively, if there is a carry out of bit 7 or bit 3, and cleared 
otherwise. When adding unsigned integers, the carry flag indicates an 
overflow occurred. OV is set if there is a carry out of bit 6 but not out of 
bit 7, or a carry out of bit 7 but not out of bit 6; otherwise OV is cleared. 
When adding signed integers, OV indicates a negative number 
produced as the sum of two positive operands, or a positive sum from 
two negative operands. Four source operand addressing modes are 
allowed: register, direct, register- indirect, or immediate. 

 
 

3.2.1. ADD A, RN 

 
Operation:  (PC)  ← (PC) + 1 

(A)  ← (A) + (Rn) 
 

Bytes:   1 
Cycles:   1 
 
Encoding:  

0 0 1 0 1 r r r         
 
 

3.2.2. ADD A, DIRECT 

 
Operation:  (PC)  ← (PC) + 2  

(A)  ← (A) + (direct) 
 

Bytes:  2 
Cycles:   2 
 
Encoding: 

0 0 1 0 0 1 0 1 direct address 
 
 
 
 



DP805x Instructions set details         - 16 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.2.3. ADD A, @RI 

Operation:  (PC)  ← (PC) + 1  
(A)  ← (A) + ((Ri)) 

 
Bytes:  1 
Cycles:  2 
 
Encoding:  

0 0 1 0 0 1 1 i         
 
 

3.2.4. ADD A, #DATA 

Operation:  (PC)  ← (PC) + 2 
 (A)  ← (A) + #data 

 
Bytes:  2 
Cycles:  2 
 
Encoding: 

0 0 1 0 0 1 0 0 immediate data 
 



DP805x Instructions set details         - 17 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.3. ADDC 

Instruction: ADDC A, < src-byte> 
 

Function:  Adds A and the source operand, then adds one (1) if CY is set, and 
puts the result in A. 

 
Description:  ADDC simultaneously adds the byte variable indicated, the carry flag 

and the accumulator contents, leaving the result in the accumulator. 
The carry and auxiliary carry flags are set, respectively, if there is a 
carry out of bit 7 or bit 3, and cleared otherwise. When adding unsigned 
integers, the carry flag indicates an overflow occurred. OV is set if there 
is a carry out of bit 6 but not out of bit 7, or a carry out of bit 7 but not 
out of bit 6; otherwise OV is cleared. When adding signed integers, OV 
indicates a negative number produced as the sum of two positive 
operands or a positive sum from two negative operands. Four source 
operand-addressing modes are allowed: register= direct, register- 
indirect, or immediate. 

 
3.3.1. ADDC A, RN 

Operation:  (PC)  ← (PC) + 1  
(A)  ← (A) + (C) + (Rn) 

 
Bytes:  1 
Cycles:  1 
 
Encoding: 

0 0 1 1 1 r r r         
 
 

3.3.2. ADDC A, DIRECT 

Operation:  (PC)  ← (PC) + 2  
(A)  ← (A) + (C) + (direct) 

 
Bytes:  2 
Cycles:  2 
 
Encoding: 

0 0 1 1 0 1 0 1 direct address 
 
 
 
 
 
 



DP805x Instructions set details         - 18 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.3.3. ADDC A, @RI 

Operation:  (PC)  ← (PC) + 1  
(A)  ← (A) + (C) + ((Ri)) 

 
Bytes:  1 
Cycles:  2 
 
Encoding:  

0 0 1 1 0 1 1 i         
 
 

3.3.4. ADDC A, #DATA 

Operation:  (PC)  ← (PC) + 2  
(A)  ← (A) + (C) + #data 

 
Bytes:  2 
Cycles:  2 
 
Encoding: 

0 0 1 1 0 1 0 0 immediate data 



DP805x Instructions set details         - 19 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.4. AJMP  

 
Instruction: AJMP addr11 
 
Function:  Absolute jump 
 
Description:  AJMP transfers program execution to the indicated address, which is 

formed at run- time by concatenating the high-order five bits of the PC 
(after incrementing the PC twice), op code bits 7-5, and the second byte 
of the instruction. The destination must therefore be within the same 2K 
block of program memory as the first byte of the instruction following 
AJMP. 

 
Operation:  (PC)  ← (PC) + 2 

(PC10-0)  ← page address 
 
Bytes:  2 
Cycles:  3 
 
Encoding: 

a10 a9 a8 0 0 0 0 1 a7 a6 a5 a4 a3 a2 a1 a0
 



DP805x Instructions set details         - 20 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.5. ANL 

 
Instruction:  ANL <dest-byte>, <src-byte> 
 
Function:   Logical AND for byte operands 
 
Description:  ANL performs the bit wise logical AND operation between the variables 

indicated and stores the results in the destination variable. No flags are 
affected (except P, if <dest-byte> = A). The two operands allow six 
addressing mode combinations. When the destination is a accumulator, 
the source can use register, direct, register-indirect, or immediate 
addressing; when the destination is a direct address, the source can be 
the accumulator or immediate data. 

 
Note: When this instruction is used to modify an output port, the value used 

as the original port data will be read from the output data latch, not the 
input pins. 

 
3.5.1. ANL A, RN 

Operation:  (PC)  ← (PC) + 1  
(A)  ← (A) and (Rn) 

 
Bytes:  1 
Cycles:  1 
 
Encoding:  

0 1 0 1 1 r r r         
 
 

3.5.2. ANL A, DIRECT 

Operation:  (PC)  ← (PC) + 2  
(A)  ← (A) and (direct) 

 
Bytes:  2 
Cycles:  2 
 
Encoding: 

0 1 0 1 0 1 0 1 direct address 
 
 
 
 
 
 



DP805x Instructions set details         - 21 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.5.3. ANL A, @RI 

Operation:  (PC)  ← (PC) + 1  
(A)  ← (A) and ((Ri)) 

 
Bytes:  1 
Cycles:  2 
 
Encoding:  

0 1 0 1 0 1 1 i         
 
 

3.5.4. ANL A, #DATA 

Operation:  (PC)  ← (PC) + 2  
(A)  ← (A) and #data 

 
Bytes:  2 
Cycles:  2 
 
Encoding: 

0 1 0 1 0 1 0 0 immediate data 
 
 

3.5.5. ANL DIRECT, A 

Operation:  (PC)  ← (PC) + 2  
(direct)  ← (direct) and (A) 

 
Bytes:  2 
Cycles:  3 
 
Encoding: 

0 1 0 1 0 0 1 0 direct address 
 
 

3.5.6. ANL DIRECT, #DATA 

Operation:  (PC)  ← (PC) + 3  
(direct)  ← (direct) and #data 

 
Bytes:  3 
Cycles:  3 
 
Encoding: 

0 1 0 1 0 0 1 1         
direct address  

immediate data  
Instruction: ANL C, <src-bit> 
 



DP805x Instructions set details         - 22 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

Function:  Logical AND for bit operands 
 
Description:  If the Boolean value of the source bit is a logic 0 then clear the carry 

flag; otherwise leave the carry flag in its current state. A slash (“/” 
preceding the operand in the assembly language indicates that the 
logical complement of the addressed bit is used as the source value, 
but the source bit itself is not affected. No other flags are affected. Only 
direct bit addressing is allowed for the source operand. 

 
3.5.7. ANL C, BIT 

Operation:  (PC)  ← (PC) + 2  
(C)  ← (C) and (bit) 

 
Bytes:  2 
Cycles:  2 
 
Encoding: 

1 0 0 0 0 0 1 0 bit address 
 
 

3.5.8. ANL C, /BIT 

Operation:  (PC)  ← (PC) + 2  
(C)  ← (C) and / (bit) 

 
Bytes:  2 
Cycles:  2 
 
Encoding: 

1 0 1 1 0 0 0 0 bit address 



DP805x Instructions set details         - 23 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.6. CJNE 

 
Instruction: CJNE <dest-byte >, < src-byte >, rel 
 
Function:  Compare and jump if not equal. 
 
Description:  CJNE compares the magnitudes of the first two operands, and 

branches if their values are not equal. The branch destination is 
computed by adding the signed relative displacement in the last 
instruction byte to the PC, after incrementing the PC to the start of the 
next instruction. The carry flag is set if the unsigned integer value of 
<dest-byte> is less than the unsigned integer value of <src-byte>; 
otherwise, the carry is cleared. Neither operand is affected. The first two 
operands allow four addressing mode combinations: the accumulator 
may be compared with any directly addressed byte or immediate data, 
and any indirect RAM location or working register can be compared with 
an immediate constant. 

 
3.6.1. CJNE A, DIRECT, REL 

Operation:  (PC) ← (PC) + 3 
 

if (A) < > (direct) then  
   (PC) ← (PC) + relative offset 
 
if (A) < (direct) then 
   (C) ← 1 
else  
   (C) ← 0 

 
Bytes:  3 
Cycles:  5 
 
Encoding: 

1 0 1 1 0 1 0 1         
direct address  

relative address  
 
 



DP805x Instructions set details         - 24 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.6.2. CJNE A, #DATA, REL 

Operation:  (PC) ← (PC) + 3 
 

if (A) < > data then  
   (PC) ← (PC) + relative offset 
 
if (A) < data then  
   (C) ← 1 
else  
   (C) ← 0 

 
Bytes:  3 
Cycles:  4 
 
Encoding: 

1 0 1 1 0 1 0 0         
immediate data  
relative address  

 
 

3.6.3. CJNE RN, #DATA, REL 

Operation:  (PC) ← (PC) + 3 
 

if (Rn) < > data then  
   (PC) ← (PC) + relative offset 
 
if (Rn) < data then 
   (C) ← 1 
else  
   (C) ← 0 

 
Bytes:  3 
Cycles:  4 
 
Encoding: 

1 0 1 1 1 r r r         
immediate data  
relative address  

 
 
 



DP805x Instructions set details         - 25 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.6.4. CJNE @RI, #DATA, REL 

Operation:  (PC) ← (PC) + 3 
 

if ((Ri)) < > data then  
   (PC) ← (PC) + relative offset 
 
if ((Ri)) < data then  
   (C) ← 1 
else  
   (C) ← 0 

 
Bytes:  3 
Cycles:  5 
 
Encoding: 

1 0 1 1 0 1 1 i         
immediate data  
relative address  

 



DP805x Instructions set details         - 26 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.7. CLR 

 
3.7.1. CLR A 

 
Function:  Clear accumulator 
 
Description:  The accumulator is cleared (all bits set to zero). No flags are affected. 
 
Operation:  (PC)  ← (PC) + 1 

(A)  ← 0 
 
Bytes:  1 
Cycles:  1 
 
Encoding:  

1 1 1 0 0 1 0 0         
 
 

3.7.2. CLR  BIT 

 
Function:  Clear bit 
 
Description:  The indicated bit is cleared (reset to zero). No other flags are affected.  
 
Operation:  (PC)  ← (PC) + 2 

bit  ← 0 
 
Bytes:  2 
Cycles:  3 
 
Encoding:  

1 1 0 0 0 0 1 0 bit address 
 
 



DP805x Instructions set details         - 27 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.7.3. CLR  C 

 
Function:  Clear carry 
 
Description:  The carry flag is cleared (reset to zero). No other flags are affected.  
 
Operation:  (PC)  ← (PC) + 1  

(C)  ← 0 
 
Bytes:  1 
Cycles:  1 
 
Encoding:  

1 1 0 0 0 0 1 1         
 
 
 



DP805x Instructions set details         - 28 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.8. CPL 

 
3.8.1. CPL A 

 
Function:  Complement accumulator 
 
Description: Each bit of the accumulator is logically complemented (one’s 

complement). Bits which previously contained a one are changed to 
zero and vice versa. No flags are affected. 

 
Operation:  (PC)  ← (PC) + 1  

(A)  ← / (A) 
 
Bytes:   1 
Cycles:   1 
 
Encoding:  

1 1 1 1 0 1 0 0         
 
 

3.8.2. CPL BIT 

 
Function:  Complement bit 
 
Description:  The bit variable specified is complemented. A bit which had been a one 

is changed to zero and vice versa. No other flags are affected. CPL can 
operate on the carry or any directly addressable bit. 

 
Note: When this instruction is used to modify an output pin, the value used as 

the original data will be read from the output data latch, not the input 
pin. 

 
Operation:  (PC)  ← (PC) + 2  

(C)  ← (bit) 
 
Bytes:  2 
Cycles:  3 
 
Encoding: 

1 0 1 1 0 0 1 0 bit address 
 
 
 



DP805x Instructions set details         - 29 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.8.3. CPL C 

 
Function:  Complement carry 
 
Description:  The carry flag is complemented. A bit which had been a one is changed 

to zero and vice versa.  
 
Operation:  (PC)  ← (PC) + 1  

(C)  ← / (C) 
 
Bytes:  1 
Cycles:  1 
 
Encoding:  

1 0 1 1 0 0 1 1         
 
 



DP805x Instructions set details         - 30 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.9. DA 

Instruction: DA A 
 

Function:  Decimal adjust accumulator for addition 
 
Description:  DA A adjusts the eight-bit value in the accumulator resulting from the 

earlier addition of two variables (each in packed BCD format), 
producing two four-bit digits. Any ADD or ADDC instruction may have 
been used to perform the addition. If accumulator bits 3-0 are greater 
than nine (xxxx1010-xxxx1111), or if the AC flag is one, six is added to 
the accumulator producing the proper BCD digit in the low- order nibble. 
This internal addition would set the carry flag if a carry-out of the low- 
order four-bit field propagated through all high-order bits, but it would 
not clear the carry flag otherwise. 
If the carry flag is now set, or if the four high-order bits now exceed nine 
(1010xxxx-1111xxxx), these high-order bits are incremented by six, 
producing the proper BCD digit in the high-order nibble. Again, this 
would set the carry flag if there was a carry-out of the high-order bits, 
but wouldn't clear the carry. The carry flag thus indicates if the sum of 
the original two BCD variables is greater than 100, allowing multiple 
precision decimal addition. OV is not affected. 
All of this occurs during the one instruction cycle. Essentially; this 
instruction performs the decimal conversion by adding 00 H , 06 H , 60 
H , or 66 H to the accumulator, depending on initial accumulator and 
PSW conditions. 

 
Note: DA A cannot simply convert a hexadecimal number in the accumulator 

to BCD notation, nor does DA A apply to decimal subtraction. 
 
Operation:  (PC)  ← (PC) + 1 

if [[(A3-0) > 9] ^ [(AC) = 1]] then  
   (A3-0) ← (A3-0) + 6 
next 
if [[(A7-4) > 9] ^ [(C) = 1]] then  
   (A7-4) ← (A7-4) + 6 

 
Bytes:  1 
Cycles:  3 
 
Encoding:  

1 1 0 1 0 1 0 0         



DP805x Instructions set details         - 31 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.10. DEC 

Instruction:  DEC byte 
 
Function:  Decrement byte 
 
Description:  The variable indicated is decremented by 1. An original value of 00 H 

will underflow to 0FF H. No flags are affected. Four operand addressing 
modes are allowed: accumulator, register, direct, or register-indirect. 

 
Note: When this instruction is used to modify an output port, the value used 

as the original port data will be read from the output data latch, not the 
input pins. 

 
 

3.10.1. DEC A 

Operation:  (PC)  ← (PC) + 1  
(A)  ← (A) - 1 

 
Bytes:  1 
Cycles:  1 
 
Encoding:  

0 0 0 1 0 1 0 0         
 
 

3.10.2. DEC RN 

Operation:  (PC)  ← (PC) + 1  
(Rn) ← (Rn) - 1 

 
Bytes:  1 
Cycles:  2 
 
Encoding:  

0 0 0 1 1 r r r         
 
 
 
 
 
 
 
 
 



DP805x Instructions set details         - 32 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.10.3. DEC DIRECT 

Operation:  (PC)  ← (PC) + 2  
(direct)  ← (direct) - 1 

 
Bytes:  2 
Cycles:  3 
 
Encoding: 

0 0 0 1 0 1 0 1 direct address 
 
 

3.10.4. DEC @RI 

Operation:  (PC)  ← (PC) + 1  
((Ri))  ← ((Ri)) - 1 

 
Bytes:  1 
Cycles:  3 
 
Encoding:  

0 0 0 1 0 1 1 i         
 



DP805x Instructions set details         - 33 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.11. DIV 

 
Instruction:  DIV AB 
 
Function:  Divide 
 
Description:  DIV AB divides the unsigned eight-bit integer in the accumulator by the 

unsigned eight-bit integer in register B. The accumulator receives the 
integer part of the quotient; register B receives the integer remainder. 
The carry and OV flags will be cleared. 

Exception:  If B had originally contained 00 H, the values returned in the 
accumulator and B register will be undefined and the overflow flag will 
be set. The carry flag is cleared in any case. 

 
Operation:  (PC)  ← (PC) + 1  

(A15-8) ← (A) / (B) – result’s bits 15..8 
 (B7-0)  ← (A) / (B) – result’s bits 7..0 
 
Bytes:  1 
Cycles: 6 
 
Encoding:  

1 0 0 0 0 1 0 0         



DP805x Instructions set details         - 34 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.12. DJNZ  

 
Instruction: DJNZ <byte>, <rel-addr> 
 
Function:  Decrement and jump if not zero 
 
Description:  DJNZ decrements the location indicated by 1, and branches to the 

address indicated by the second operand if the resulting value is not 
zero. An original value of 00 H will underflow to 0FF H. No flags are 
affected. The branch destination would be computed by adding the 
signed relative-displacement value in the last instruction byte to the PC, 
after incrementing the PC to the first byte of the following instruction. 
The location decremented may be a register or directly addressed byte. 

 
Note: When this instruction is used to modify an output port, the value used 

as the original port data will be read from the output data latch, not the 
input pins. 

 
 

3.12.1. DJNZ RN, REL 

Operation:  (PC) ← (PC) + 2 
(Rn) ← (Rn) - 1 
if (Rn) ≠ 0 then 
   (PC) ← (PC) + rel 

 
Bytes:  2 
Cycles:  4 
 
Encoding: 

1 1 0 1 1 r r r relative address 
 
 



DP805x Instructions set details         - 35 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.12.2. DJNZ DIRECT, REL 

Operation:  (PC) ← (PC) + 3 
(direct) ← (direct) - 1 
if (direct) ≠ 0 then  
   (PC) ← (PC) + rel 

 
Bytes:  3 
Cycles:  5 
 
Encoding: 

1 1 0 1 0 1 0 1         
direct address  

relative address  



DP805x Instructions set details         - 36 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.13. INC 

 
Instruction: INC operand 
 
Function:  Increment 
 
Description:  INC increments the indicated variable by 1. An original value of 0FFh 

will overflow to 00h. No flags are affected. Three addressing modes are 
allowed: register, direct, or register-indirect. 

 
Note: When this instruction is used to modify an output port, the value used 

as the original port data will be read from the output data latch, not the 
input pins. 

 
3.13.1. INC A 

Operation:  (PC)  ← (PC) + 1  
(A)  ← (A) + 1 

 
Bytes:  1 
Cycles:  1 
 
Encoding:  

0 0 0 0 0 1 0 0         
 
 

3.13.2. INC RN 

Operation:  (PC)  ← (PC) + 1  
(Rn)  ← (Rn) + 1 

 
Bytes:  1 
Cycles:  2 
 
Encoding:  

0 0 0 0 1 r r r         
 
 
 
 
 
 
 
 
 



DP805x Instructions set details         - 37 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.13.3. INC DIRECT 

Operation:  (PC)  ← (PC) + 2  
(direct)  ← (direct) + 1 

 
Bytes:  2 
Cycles:  3 
 
Encoding: 

0 0 0 0 0 1 0 1 direct address 
 

3.13.4. INC @RI 

Operation:  (PC) ← (PC) + 1  
((Ri)) ← ((Ri)) + 1 

 
Bytes:  1 
Cycles:  3 
 
Encoding:  

0 0 0 0 0 1 1 i         
 
 

3.13.5. INC DPTR 

 
Function:  Increment data pointer 
 
Description:  Increment the 16-bit data pointer by 1. A 16-bit increment (modulo 2 16) 

is performed; an overflow of the low-order byte of the data pointer (DPL) 
from 0FF H to 00 H will increment the high-order byte (DPH). No flags 
are affected. This is the only 16-bit register which can be incremented. 

 
Operation:  (PC)  ← (PC) + 1  

(DPTR)  ← (DPTR) + 1 
 
Bytes:  1 
Cycles:  1 
 
Encoding:  

1 0 1 0 0 0 1 1         



DP805x Instructions set details         - 38 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.14. JB 

 
Instruction: JB bit, rel 
 
Function: Jump if bit is set 
 
Description:  If the indicated bit is a one, jump to the address indicated; otherwise 

proceed with the next instruction. The branch destination is computed 
by adding the signed relative-displacement in the third instruction byte 
to the PC, after incrementing the PC to the first byte of the next 
instruction. The bit tested is not modified. No flags are affected. 

 
Operation:  (PC) ← (PC) + 3 

if (bit) = 1 then  
   (PC) ← (PC) + rel 

 
Bytes:  3 
Cycles:  5 
 
Encoding: 

0 0 1 0 0 0 0 0         
bit address  

relative address  



DP805x Instructions set details         - 39 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.15. JBC 

 
Instruction: JBC bit, rel 
 
Function:  Jump if bit is set and clear bit 
 
Description:  If the indicated bit is one, branch to the address indicated; otherwise 

proceed with the next instruction. In either case, clear the designated 
bit. The branch destination is computed by adding the signed relative 
displacement in the third instruction byte to the PC, after incrementing 
the PC to the first byte of the next instruction. No flags are affected. 

 
Note: When this instruction is used to test an output pin, the value used as the 

original data will be read from the output data latch, not the input pin. 
 
Operation:  (PC) ← (PC) + 3 

if (bit) = 1 then 
   (bit) ← 0 
   (PC) ← (PC) + rel 
 

Bytes:  3 
Cycles:  5 
 
Encoding: 

0 0 0 1 0 0 0 0         
bit address  

relative address  



DP805x Instructions set details         - 40 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.16. JC 

 
Instruction: JC rel 
 
Function:  Jump if carry is set 
 
Description:  If the carry flag is set, branch to the address indicated; otherwise 

proceed with the next instruction. The branch destination is computed 
by adding the signed relative- displacement in the second instruction 
byte to the PC, after incrementing the PC twice. No flags are affected. 

 
Operation:  (PC) ← (PC) + 2 

if (C) = 1 then 
   (PC) ← (PC) + rel 

 
Bytes:  2 
Cycles:  3 
 
Encoding: 

0 1 0 0 0 0 0 0 relative address 
 



DP805x Instructions set details         - 41 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.17. JMP 

 
Instruction: JMP @A + DPTR 
 
Function:  Jump indirect 
 
Description:  Add the eight-bit unsigned contents of the accumulator with the sixteen-

bit data pointer, and load the resulting sum to the program counter. This 
will be the address for subsequent instruction fetches. Sixteen-bit 
addition is performed (modulo 2 16): a carry-out from the low-order 
eight bits propagates through the higher-order bits. Neither the 
accumulator nor the data pointer is altered. No flags are affected. 

 
Operation:  (PC) ← (A) + (DPTR) 
 
Bytes:  1 
Cycles:  5 
 
Encoding:  

0 1 1 1 0 0 1 1         



DP805x Instructions set details         - 42 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.18. JNB 

 
Instruction: JNB bit,rel 
 
Function:  Jump if bit is not set 
 
Description:  If the indicated bit is a zero, branch to the indicated address; otherwise 

proceed with the next instruction. The branch destination is computed 
by adding the signed relative-displacement in the third instruction byte 
to the PC, after incrementing the PC to the first byte of the next 
instruction. The bit tested is not modified. No flags are affected. 

 
Operation:  (PC) ← (PC) + 3 

if (bit) = 0 then 
   (PC) ← (PC) + rel. 

 
Bytes:  3 
Cycles:  5 
 
Encoding: 

0 0 1 1 0 0 0 0         
bit address  

relative address  
 
 



DP805x Instructions set details         - 43 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.19. JNC 

 
Instruction: JNC rel 
 
Function:  Jump if carry is not set 
 
Description:  If the carry flag is a zero, branch to the address indicated; otherwise 

proceed with the next instruction. The branch destination is computed 
by adding the signed relative-displacement in the second instruction 
byte to the PC, after incrementing the PC twice to point to the next 
instruction. The carry flag is not modified. 

 
Operation:  (PC) ← (PC) + 2 

if (C) = 0 then 
   (PC) ← (PC) + rel 

 
Bytes:  2 
Cycles:  3 
 
Encoding: 

0 1 0 1 0 0 0 0 relative address 



DP805x Instructions set details         - 44 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.20. JNZ 

 
Instruction: JNZ rel 
 
Function:  Jump if accumulator is not zero 
 
Description:  If any bit of the accumulator is a one, branch to the indicated address; 

otherwise proceed with the next instruction. The branch destination is 
computed by adding the signed relative-displacement in the second 
instruction byte to the PC, after incrementing the PC twice. The 
accumulator is not modified. No flags are affected. 

 
Operation:  (PC) ← (PC) + 2 

if (A) ≠ 0 
then (PC) ← (PC) + rel. 

 
Bytes:  2 
Cycles:  4 
 
Encoding: 

0 1 1 1 0 0 0 0 relative address 
 



DP805x Instructions set details         - 45 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.21. JZ 

 
Instruction: JZ rel 
 
Function:  Jump if accumulator is zero 
 
Description:  If all bits of the accumulator are zero, branch to the address indicated; 

otherwise proceed with the next instruction. The branch destination is 
computed by adding the signed relative-displacement in the second 
instruction byte to the PC, after incrementing the PC twice. The 
accumulator is not modified. No flags are affected. 

 
Operation:  (PC) ← (PC) + 2 

if (A) = 0 then 
   (PC) ← (PC) + rel 

 
Bytes:  2 
Cycles:  4 
 
Encoding: 

0 1 1 0 0 0 0 0 relative address 



DP805x Instructions set details         - 46 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.22. LCALL 

 
Instruction: LCALL addr16 
 
Function:  Long call 
 
Description:  LCALL calls a subroutine located at the indicated address. The 

instruction adds three to the program counter to generate the address 
of the next instruction and then pushes the 16-bit result onto the stack 
(low byte first), incrementing the stack pointer by two. The high-order 
and low-order bytes of the PC are then loaded, respectively, with the 
second and third bytes of the LCALL instruction. Program execution 
continues with the instruction at this address. The subroutine may 
therefore begin anywhere in the full 64 Kbyte program memory address 
space. No flags are affected. 

 
Operation:  (PC)  ← (PC) + 3 

(SP)  ← (SP) + 1 
((SP))  ← (PC7-0) 
(SP)  ← (SP) + 1 
((SP))  ← (PC15-8) 
(PC)  ← addr15-0 

 
Bytes:  3 
Cycles:  4 
 
Encoding: 

0 0 0 1 0 0 1 0         
address 15..8  
address 7..0  



DP805x Instructions set details         - 47 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.23. LJMP 

 
Instruction: LCALL addr16 
 
Function:  Long jump 
 
Description:  LJMP causes an unconditional branch to the indicated address, by 

loading the high- order and low-order bytes of the PC (respectively) with 
the second and third instruction bytes. The destination may therefore be 
anywhere in the full 64K program memory address space. No flags are 
affected. 

 
Operation:  (PC) ← addr15... addr0 
 
Bytes:  3 
Cycles:  4 
 
Encoding: 

0 0 0 0 0 0 1 0         
address 15..8  
address 7..0  



DP805x Instructions set details         - 48 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.24. MOV  

 
Instruction: MOV <dest-byte>, <src-byte> 
 
Function:  Move byte variable 
 
Description:  The byte variable indicated by the second operand is copied into the 

location specified by the first operand. The source byte is not affected. 
No other register or flag is affected. This is by far the most flexible 
operation. Fifteen combinations of source and destination addressing 
modes are allowed. 

 
3.24.1. MOV A, RN 

Operation:  (PC) ← (PC) + 1  
(A)  ← (Rn) 

 
Bytes:  1 
Cycles:  1 
 
Encoding:  

1 1 1 0 1 r r r         
 
 

3.24.2. MOV A, DIRECT 

Operation:  (PC) ← (PC) + 2  
(A)  ← (direct) 

 
Note: MOV A, ACC is a valid instruction. 
 
Bytes:  2 
Cycles:  2 
 
Encoding: 

1 1 1 0 0 1 0 1 direct address 
 
 
 
 
 
 
 
 
 



DP805x Instructions set details         - 49 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.24.3. MOV A, @RI 

Operation:  (PC) ← (PC) + 1  
(A)  ← ((Ri)) 

 
Bytes:  1 
Cycles:  2 
 
Encoding:  

1 1 1 0 0 1 1 i         
 
 
3.24.4. MOV A, #DATA 

Operation:  (PC) ← (PC) + 2  
(A) ← #data 

 
Bytes:  2 
Cycles:  2 
 
Encoding: 

0 1 1 1 0 1 0 0 immediate data 
 
 

3.24.5. MOV RN, A 

Operation:  (PC) ← (PC) + 1  
(Rn)  ← (A) 

 
Bytes:  1 
Cycles:  1 
 
Encoding:  

1 1 1 1 1 r r r         
 
 

3.24.6. MOV RN, DIRECT 

Operation:  (PC) ← (PC) + 2  
(Rn)  ← (direct) 

 
Bytes:  2 
Cycles:  3 
 
Encoding: 

1 0 1 0 1 r r r direct address 
 



DP805x Instructions set details         - 50 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.24.7. MOV RN, #DATA 

Operation:  (PC) ← (PC) + 2  
(Rn)  ← #data 

 
Bytes:  2 
Cycles:  2 
 
Encoding: 

0 1 1 1 1 r r r immediate data 
 
 

3.24.8. MOV DIRECT, A 

Operation:  (PC)  ← (PC) + 2  
(direct)  ← (A) 

 
Bytes:  2 
Cycles:  2 
 
Encoding: 

1 1 1 1 0 1 0 1 direct address 
 
 

3.24.9. MOV DIRECT, RN 

Operation:  (PC)  ← (PC) + 2  
(direct)  ← (Rn) 

 
Bytes:  2 
Cycles:  2 
 
Encoding: 

1 0 0 0 1 r r r direct address 
 

3.24.10. MOV DIRECT, DIRECT 

Operation:  (PC)  ← (PC) + 3  
(direct)  ← (direct) 

 
Bytes:  3 
Cycles:  3 
 
Encoding: 

1 0 0 0 0 1 0 1         
direct address (source)  

direct address (destination)  



DP805x Instructions set details         - 51 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.24.11. MOV DIRECT, @RI 

Operation:  (PC)  ← (PC) + 2  
(direct)  ← ((Ri)) 

 
Bytes:  2 
Cycles:  3 
 
Encoding: 

1 0 0 0 0 1 1 i direct address 
 
 

3.24.12. MOV DIRECT, #DATA 

Operation:  (PC)  ← (PC) + 2  
(direct)  ← #data 

 
Bytes:  3 
Cycles:  3 
 
Encoding: 

0 1 1 1 0 1 0 1         
direct address (source)  

immediate data  
 
 

3.24.13. MOV @RI, A 

Operation:  (PC)  ← (PC) + 1  
((Ri))  ← (A) 

 
Bytes:  1 
Cycles:  2 
 
Encoding:  

1 1 1 1 0 1 1 i         
 
 

3.24.14. MOV @RI, DIRECT 

Operation:  (PC)  ← (PC) + 2  
((Ri))  ← (direct) 

 
Bytes:  2 
Cycles:  3 
 
Encoding: 

1 0 1 0 0 1 1 i direct address 



DP805x Instructions set details         - 52 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.24.15. MOV @RI, #DATA 

Operation:  (PC)  ← (PC) + 2  
((Ri))  ← #data 

 
Bytes:  2 
Cycles:  2 
 
Encoding: 

0 1 1 1 0 1 1 i immediate data 
 
 

3.24.16. MOV C, BIT 

 
Function:  Move bit data 
 
Description:  The Boolean variable indicated by the second operand (directly 

addressable bit) is copied into carry flag. No other register or flag is 
affected. 

 
Operation:  (PC)  ← (PC) + 2  

(C)  ← (bit) 
 
Bytes:  2 
Cycles:  2 
 
Encoding: 

1 0 1 0 0 0 1 0 bit address 
 
 

3.24.17. MOV BIT, C 

 
Function:  Move carry flag 
 
Description:  The carry flag is copied into the Boolean variable indicated by the first 

operand (directly addressable bit). No other register or flag is affected. 
 
Operation:  (PC)  ← (PC) + 2  

(bit) ← (C) 
 
Bytes:  2 
Cycles:  3 
 
Encoding: 

1 0 0 1 0 0 1 0 bit address 
 



DP805x Instructions set details         - 53 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.24.18. MOV DPTR, #DATA16 

 
Function:  Load data pointer with a 16-bit constant 
 
Description: The data pointer is loaded with the 16-bit constant indicated. The 16 bit 

constant is loaded into the second and third bytes of the instruction. The 
second byte (DPH) is the high-order byte, while the third byte (DPL) 
holds the low-order byte. No flags are affected. This is the only 
instruction which moves 16 bits of data at once. 

 
Operation:  (PC)  ← (PC) + 3 

DPH ← immediate data15...8 
DPL  ← immediate data7..0 

 
Bytes:  3 
Cycles:  3 
 
Encoding: 

1 0 0 0 0 1 0 1         
immediate data 15...8  
immediate data 7...0  



DP805x Instructions set details         - 54 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.25. MOVC 

 
Instruction: MOVC A, @A + <base-reg> 
 
Function:  Move code byte 
 
Description:  The MOVC instructions load the accumulator with a code byte, or 

constant from program memory. The address of the byte fetched is the 
sum of the original unsigned eight-bit accumulator contents and the 
contents of a sixteen-bit base register, which may be either the data 
pointer or the PC. In the latter case, the PC is incremented to the 
address of the following instruction before being added to the 
accumulator; otherwise the base register is not altered. Sixteen-bit 
addition is performed so a carry-out from the low-order eight bits may 
propagate through higher-order bits. No flags are affected. 

 
3.25.1. MOVC A, @A + DPTR 

Operation:  (PC) ← (PC) + 1  
(A) ← ((A) + (DPTR)) 

 
Bytes:  1 
Cycles:  5 
 
Encoding:  

1 0 0 1 0 0 1 1         
 
 

3.25.2. MOVC A, @A + PC 

Operation:  (PC) ← (PC) + 1 
(A)  ← ((A) + (PC)) 

 
Bytes:  1 
Cycles:  4 
 
Encoding:  

1 0 0 0 0 0 1 1         



DP805x Instructions set details         - 55 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.26. MOVX 

 
Instruction: MOVX <dest-byte>, <src-byte> 
 
Function:  Move external 
 
Description:  The MOVX instructions transfer data between the accumulator and a 

byte of external data memory, hence the X appended to MOV. There 
are two types of instructions, differing in whether they provide an eight-
bit or sixteen-bit indirect address to the external data RAM. 
In the first type, the contents of R0 or R1 in the current register bank 
provides an eight-bit address, in the second type of MOVX instructions, 
the data pointer generates a sixteen-bit address.  

 
3.26.1. MOVX A, @RI 

Operation:  (PC) ← (PC) + 1  
(A)  ← ((Ri)) 

 
Bytes:  1 
Cycles:  3* 
 
Encoding:  

1 1 1 0 0 0 1 i         
 
 

3.26.2. MOVX A, @DPTR 

Operation:  (PC) ← (PC) + 1  
(A) ← ((DPTR)) 

 
Bytes:  1 
Cycles:  2* 
 
Encoding:  

1 1 1 0 0 0 0 0         
 
 

* MOVX cycles depends on STRETCH register. Shown values with STRETCH=0. 



DP805x Instructions set details         - 56 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.26.3. MOVX @RI, A 

Operation:  (PC)  ← (PC) + 1  
((Ri))  ← (A) 

 
Bytes:  1 
Cycles:  4* – if MOVX CODE is executed from on-chip ROM or on-chip RAM, 

and destination data are placed inside off-chip XRAM 
5* – for all other cases as follow:  
CODE inside off-chip XPRG, destination inside off-chip XRAM 
CODE inside off-chip XPRG, destination inside off-chip XPRG 
CODE inside off-chip XPRG, destination inside on-chip PRG RAM 
CODE inside on-chip ROM, destination inside off-chip XPRG 
CODE inside on-chip ROM, destination inside on-chip PRG RAM 
CODE inside on-chip RAM, destination inside off-chip XPRG 
CODE inside on-chip RAM, destination inside on-chip PRG RAM 

 
 
Encoding:  

1 1 1 1 0 0 1 i         
 
 

3.26.4. MOVX @DPTR, A 

Operation:  (PC)  ← (PC) + 1  
((DPTR))  ← (A) 

 
Bytes:  1 
Cycles:  3* – if MOVX CODE is executed from on-chip ROM or on-chip RAM, 

and destination data are placed inside off-chip XRAM 
4* – for all other cases as listed above 

 
Encoding:  

1 1 1 1 0 0 0 0         
 

* MOVX cycles depends on STRETCH register. Shown values with STRETCH=0. 



DP805x Instructions set details         - 57 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.27. MUL 

 
Instruction: MUL AB 
 
Function:  Multiply 
 
Description:  MUL AB multiplies the unsigned eight-bit integers in the accumulator 

and register B. The low-order byte of the sixteen-bit product is left in the 
accumulator, and the high-order byte in B. If the product is greater than 
255 (0FF H) the overflow flag is set; otherwise it is cleared. The carry 
flag is always cleared. 

 
Operation:  (PC)  ← (PC) + 1  

(A)  ← (A) x (B)  – result’s bits 7..0 
(B)  ← (A) x (B)  – result’s bits 15..8 
 

 
Bytes:  1 
Cycles:  2 
 
Encoding:  

1 0 1 0 0 1 0 0         



DP805x Instructions set details         - 58 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.28. NOP 

 
Function:  No operation 
 
Description:  Execution continues at the following instruction. Other than the PC, no 

registers or flags are affected. 
 
Operation:  (PC)  ← (PC) + 1 
 
Bytes:  1 
Cycles:  1 
 
Encoding:  

0 0 0 0 0 0 0 0         



DP805x Instructions set details         - 59 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.29. ORL 

 
Instruction: ORL <dest-byte>, <src-byte> 
 
Function:  Logical OR for byte variables 
 
Description:  ORL performs the bit wise logical OR operation between the indicated 

variables, storing the results in the destination byte. No flags are 
affected (except P, if <dest-byte> = A). 
The two operands allow six addressing mode combinations. When the 
destination is the accumulator, the source can use register, direct, 
register-indirect, or immediate addressing; when the destination is a 
direct address, the source can be the accumulator or immediate data. 

 
Note: When this instruction is used to modify an output port, the value used 

as the original port data will be read from the output data latch, not the 
input pins. 

 
3.29.1. ORL A, RN 

Operation:  (PC)  ← (PC) + 1  
(A)  ← (A) or (Rn) 

 
Bytes:  1 
Cycles:  1 
 
Encoding:  

0 1 0 0 1 r r r         
 
 

3.29.2. ORL A, DIRECT 

Operation:  (PC)  ← (PC) + 2  
(A)  ← (A) or (direct) 

 
Bytes:  2 
Cycles:  2 
 
Encoding: 

0 1 0 0 0 1 0 1 direct address 
 
 



DP805x Instructions set details         - 60 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.29.3. ORL A, @RI 

Operation:  (PC)  ← (PC) + 1  
(A)  ← (A) or ((Ri)) 

 
Bytes:  1 
Cycles:  2 
 
Encoding:  

0 1 0 0 0 1 1 i         
 
 

3.29.4. ORL A, #DATA 

Operation:  (PC)  ← (PC) + 1  
(A)  ← (A) or #data 

 
Bytes:  2 
Cycles:  2 
 
Encoding: 

0 1 0 0 0 1 0 0 immediate data 
 
 

3.29.5. ORL DIRECT, A 

Operation:  (PC)  ← (PC) + 1  
(direct)  ← (direct) or (A) 

 
Bytes:  2 
Cycles:  3 
 
Encoding: 

0 1 0 0 0 0 1 0 direct address 
 
 

3.29.6. ORL DIRECT, #DATA 

Operation:  (PC)  ← (PC) + 1  
(direct)  ← (direct) or #data 

 
Bytes:  3 
Cycles:  3 
 
Encoding: 

0 1 0 0 0 0 1 1         
direct address  

Immediate data  
Instruction: ORL C, <src-bit> 



DP805x Instructions set details         - 61 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

Function:  Logical OR for bit variables 
 
Description:  Set the carry flag if the Boolean value is a logic 1; leave the carry in its 

current state otherwise. A slash (“/”) preceding the operand in the 
assembly language indicates that the logical complement of the 
addressed bit is used as the source value, but the source bit itself is not 
affected. No other flags are affected. 

 
3.29.7. ORL C, BIT 

Operation:  (PC)  ← (PC) + 2  
(C)  ← (C) or (bit) 

 
Bytes:  2 
Cycles:  2 
 
Encoding: 

0 1 1 1 0 0 1 0 bit address 
 
 

3.29.8. ORL C, /BIT 

Operation:  (PC)  ← (PC) + 2  
(C)  ← (C) or /(bit) 

 
Bytes:  2 
Cycles:  2 
 
Encoding: 

1 0 1 0 0 0 0 0 bit address 



DP805x Instructions set details         - 62 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.30. POP 

 
Instruction: POP direct 
 
Function:  Pop from stack 
 
Description:  The contents of the internal RAM location addressed by the stack 

pointer are read, and the stack pointer is decremented by one. The 
value read is the transfer to the directly addressed byte indicated. No 
flags are affected. 

 
Operation:  (PC)  ← (PC) + 2  

(direct)  ← ((SP)) 
(SP)  ← (SP) - 1 

 
Bytes:  2 
Cycles:  2 
 
Encoding: 

1 1 0 1 0 0 0 0 direct address 



DP805x Instructions set details         - 63 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.31. PUSH 

Instruction: PUSH direct 
 
Function:  Push onto stack 
 
Description:  The stack pointer is incremented by one. The contents of the indicated 

variable are then copied into the internal RAM location addressed by 
the stack pointer. Otherwise no flags are affected. 

 
Operation:  (PC)  ← (PC) + 2  

(SP)  ← (SP) + 1 
((SP)) ← (direct) 

 
Bytes:  2 
Cycles:  3 
 
Encoding: 

1 1 0 0 0 0 0 0 direct address 



DP805x Instructions set details         - 64 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.32. RET 

 
Function:  Return from subroutine 
 
Description:  RET pops the high and low-order bytes of the PC successively from the 

stack, decrementing the stack pointer by two. Program execution 
continues at the resulting address, generally the instruction immediately 
following an ACALL or LCALL. No flags are affected. 

 
Operation:  (PC15-8)  ← ((SP)) 

(SP)  ← (SP) - 1 
(PC7-0)  ← ((SP)) 
(SP)  ← (SP) - 1 

 
Bytes:  1 
Cycles:  4 
 
Encoding:  

0 0 1 0 0 0 1 0         



DP805x Instructions set details         - 65 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.33. RETI 

 
Function:  Return from interrupt 
 
Description:  RETI pops the high and low-order bytes of the PC successively from 

the stack, and restores the interrupt logic to accept additional interrupts 
at the same priority level as the one just processed. The stack pointer is 
left decremented by two. No other registers are affected; the PSW is not 
automatically restored to its pre-interrupt status. Program execution 
continues at the resulting address, which is generally the instruction 
immediately after the point at which the interrupt request was detected. 
If a lower or same-level interrupt is pending when the RETI instruction is 
executed, that one instruction will be executed before the pending 
interrupt is processed. 

 
Operation:  (PC15-8)  ← ((SP)) 

(SP)  ← (SP) - 1 
(PC7-0)  ← ((SP)) 
(SP)  ← (SP) - 1 

 
Bytes:  1 
Cycles:  4 
 
Encoding:  

0 0 1 1 0 0 1 0         



DP805x Instructions set details         - 66 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.34. RL 

 
Instruction: RL A 
 
Function:  Rotate accumulator left 
 
Description:  The eight bits in the accumulator are rotated one bit to the left. Bit 7 is 

rotated into the bit 0 position. No flags are affected. 
 
Operation:  (PC)  ← (PC) + 1  

(An + 1)  ← (An) n = 0-6 
(A0)  ← (A7) 

 
Bytes:  1 
Cycles:  1 
 
Encoding:  

0 0 1 0 0 0 1 1         



DP805x Instructions set details         - 67 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.35. RLC  

 
Instruction: RLC A 
 
Function:  Rotate accumulator left through carry flag 
 
Description:  The eight bits in the accumulator and the carry flag are together rotated 

one bit to the left. Bit 7 moves into the carry flag; the original state of the 
carry flag moves into the bit 0 position. No other flags are affected. 

 
Operation:  (PC)  ← (PC) + 1  

(An + 1)  ← (An) n = 0-6 
(A0)  ← (C) 
(C)  ← (A7) 

 
Bytes:  1 
Cycles:  1 
 
Encoding:  

0 0 1 1 0 0 1 1         



DP805x Instructions set details         - 68 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.36. RR 

 
Instruction: RR A 
 
Function:  Rotate accumulator right 
 
Description:  The eight bits in the accumulator are rotated one bit to the right. Bit 0 is 

rotated into the bit 7 position. No flags are affected. 
 
Operation:  (PC)  ← (PC) + 1  

(An)  ← (An + 1) n = 0-6 
(A7)  ← (A0) 

 
Bytes:  1 
Cycles:  1 
 
Encoding:  

0 0 0 0 0 0 1 1         



DP805x Instructions set details         - 69 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.37. RRC 

 
Instruction: RRC A 
 
Function:  Rotate accumulator right through carry flag 
 
Description:  The eight bits in the accumulator and the carry flag are together rotated 

one bit to the right. Bit 0 moves into the carry flag; the original value of 
the carry flag moves into the bit 7 position. No other flags are affected. 

 
Operation:  (PC)  ← (PC) + 1  

(An)  ← (An + 1) n=0-6 
(A7)  ←  (C) 
(C)  ← (A0) 

 
Bytes:  1 
Cycles:  1 
 
Encoding:  

0 0 0 1 0 0 1 1         



DP805x Instructions set details         - 70 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.38. SETB 

 
Instruction: SETB <bit> 
 
Function:  Set bit 
 
Description:  SETB sets the indicated bit to one. SETB can operate on the carry flag 

or any directly addressable bit. No other flags are affected. 
 

3.38.1. SETB C 

Operation:  (PC)  ← (PC) + 1  
(C)  ← 1 

 
Bytes:  1 
Cycles:  1 
 
Encoding:  

1 1 0 1 0 0 1 1         
 
 

3.38.2. SETB BIT 

Operation:  (PC)  ← (PC) + 2  
(bit)  ← 1 

 
Bytes:  2 
Cycles:  3 
 
Encoding: 

1 1 0 1 0 0 1 0 bit address 



DP805x Instructions set details         - 71 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.39. SJMP 

 
Instruction: SJMP rel 
 
Function:  Short jump 
 
Description:  Program control branches unconditionally to the address indicated. The 

branch destination is computed by adding the signed displacement in 
the second instruction byte to the PC, after incrementing the PC twice. 
Therefore, the range of destinations allowed is from 128 bytes 
preceding this instruction to 127 bytes following it. 

 
Note: Under the above conditions the instruction following SJMP will be at 

102 H. Therefore, the displacement byte of the instruction will be the 
relative offset (0123 H - 0102 H ) = 21 H . In other words, an SJMP with 
a displacement of 0FE H would be a one-instruction infinite loop. 

 
Operation:  (PC) ← (PC) + 2 

(PC) ← (PC) + rel 
 
Bytes:  2 
Cycles:  3 
 
Encoding: 

1 0 0 0 0 0 0 0 relative address 



DP805x Instructions set details         - 72 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.40. SUBB 

 
Instruction: SUBB A, <src-byte> 

 
Function:  Subtract with borrow 
 
Description:  SUBB subtracts the indicated variable and the carry flag together from 

the accumulator, leaving the result in the accumulator. SUBB sets the 
carry (borrow) flag if a borrow is needed for bit 7, and clears C 
otherwise. (If C was set before executing a SUBB instruction, this 
indicates that a borrow was needed for the previous step in a multiple 
precision subtraction, so the carry is subtracted from the accumulator 
along with the source operand). AC is set if a borrow is needed for bit 3, 
and cleared otherwise. OV is set if a borrow is needed into bit 6 but not 
into bit 7, or into bit 7 but not bit 6. 
When subtracting signed integers OV indicates a negative number 
produced when a negative value is subtracted from a positive value, or 
a positive result when a positive number is subtracted from a negative 
number. 
The source operand allows four addressing modes: register, direct, 
register-indirect, or immediate. 

 
3.40.1. SUBB A, RN 

Operation:  (PC)  ← (PC) + 1  
(A)  ← (A) - (C) - (Rn) 

 
Bytes:  1 
Cycles:  1 
 
Encoding:  

1 0 0 1 1 r r r         
 
 

3.40.2. SUBB A, DIRECT 

Operation:  (PC)  ← (PC) + 2  
(A)  ← (A) - (C) - (direct) 

 
Bytes:  2 
Cycles:  2 
 
Encoding: 

1 0 0 1 0 1 0 1 direct address 
 



DP805x Instructions set details         - 73 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.40.3. SUBB A, @RI 

Operation:  (PC)  ← (PC) + 1  
(A)  ← (A) - (C) - ((Ri)) 

 
Bytes:  1 
Cycles:  2 
 
Encoding:  

1 0 0 1 0 1 1 i         
 
 

3.40.4. SUBB A, #DATA 

Operation:  (PC)  ← (PC) + 2  
(A)  ← (A) - (C) - #data 

 
Bytes:  2 
Cycles:  2 
 
Encoding: 

1 0 0 1 0 1 0 0 immediate data 



DP805x Instructions set details         - 74 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.41. SWAP 

 
Instruction: SWAP A 
 
Function:  Swap nibbles within the accumulator 
 
Description:  SWAP A interchanges the low and high-order nibbles (four-bit fields) of 

the accumulator (bits 3-0 and bits 7-4). The operation can also be 
thought of as a four-bit rotate instruction. No flags are affected. 

 
Operation:  (PC)  ← (PC) + 1  

(A3-0) ↔ (A7-4),  
(A7-4) ↔ (A3-0) 

 
Bytes:  1 
Cycles:  1 
 
Encoding:  

1 1 0 0 0 1 0 0         



DP805x Instructions set details         - 75 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.42. XCH  

 
Instruction: XCH A, <byte> 
 
Function:  Exchange accumulator with byte variable 
 
Description:  XCH loads the accumulator with the contents of the indicated variable, 

at the same time writing the original accumulator contents to the 
indicated variable. The source/destination operand can use register, 
direct, or register-indirect addressing. 

 
3.42.1. XCH A, RN 

Operation:  (PC)  ← (PC) + 1  
(A)  ↔ (Rn) 

 
Bytes:  1 
Cycles:  2 
 
Encoding:  

1 1 0 0 1 r r r         
 
 

3.42.2. XCH A, DIRECT 

Operation:  (PC)  ← (PC) + 2  
(A)  ↔ (direct) 

 
Bytes:  2 
Cycles:  3 
 
Encoding: 

1 1 0 0 0 1 0 1 direct address 
 
 

3.42.3. XCH A, @RI 

Operation:  (PC)  ← (PC) + 1  
(A)  ↔ ((Ri)) 

 
Bytes:  1 
Cycles:  3 
 
Encoding:  

1 1 0 0 0 1 1 i         



DP805x Instructions set details         - 76 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.43. XCHD 

 
Instruction: XCHD A, @Ri 
 
Function:  Exchange digit 
 
Description:  XCHD exchanges the low-order nibble of the accumulator (bits 3-0, 

generally representing a hexadecimal or BCD digit), with that of the 
internal RAM location indirectly addressed by the specified register. The 
high-order nibbles (bits 7-4) of each register are not affected. No flags 
are affected. 

 
Operation:  (PC)  ← (PC) + 1  

(A3-0)  ↔ ((Ri)3-0) 
 
Bytes:  1 
Cycles:  3 
 
Encoding:  

1 1 0 1 0 1 1 i         



DP805x Instructions set details         - 77 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.44. XRL  

 
Instruction: XRL <dest-byte>, <src-byte> 
 
Function:  Logical Exclusive OR for byte variables 
 
Description:  XRL performs the bit wise logical Exclusive OR operation between the 

indicated variables, storing the results in the destination. No flags are 
affected (except P, if <dest-byte> = A). 
The two operands allow six addressing mode combinations. When the 
destination is the accumulator, the source can use register, direct, 
register-indirect, or immediate addressing; when the destination is a 
direct address, the source can be accumulator or immediate data. 

 
Note: When this instruction is used to modify an output port, the value used 

as the original port data will be read from the output data latch, not the 
input pins. 

 
3.44.1. XRL A, RN 

Operation:  (PC)  ← (PC) + 1  
(A)  ← (A) xor (Rn) 

 
Bytes:  1 
Cycles:  1 
 
Encoding:  

0 1 1 0 1 r r r         
 
 

3.44.2. XRL A, DIRECT 

Operation:  (PC)  ← (PC) + 2  
(A)  ← (A) xor (direct) 

 
Bytes:  2 
Cycles:  2 
 
Encoding: 

0 1 1 0 0 1 0 1 direct address 
 
 
 
 



DP805x Instructions set details         - 78 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

3.44.3. XRL A, @ RI 

Operation:  (PC)  ← (PC) + 1  
(A)  ← (A) xor ((Ri)) 

 
Bytes:  1 
Cycles:  2 
 
Encoding:  

0 1 1 0 0 1 1 i         
 
 

3.44.4. XRL A, #DATA 

Operation:  (PC)  ← (PC) + 2  
(A)  ← (A) xor #data 

 
Bytes:  2 
Cycles:  2 
 
Encoding: 

0 1 1 0 0 1 0 0 immediate data 
 
 

3.44.5. XRL DIRECT, A 

Operation:  (PC)  ← (PC) + 2  
(direct)  ← (direct) xor (A) 

 
Bytes:  2 
Cycles:  3 
 
Encoding: 

0 1 1 0 0 0 1 0 direct address 
 
 

3.44.6. XRL DIRECT, #DATA 

Operation:  (PC)  ← (PC) + 3  
(direct)  ← (direct) xor #data 

 
Bytes:  3 
Cycles:  3 
 
Encoding: 

0 1 1 0 0 0 1 1         
direct address  

immediate data  
 



DP805x Instructions set details         - 79 -       

All trademarks mentioned in this document http://www.DigitalCoreDesign.com 
are trademarks of their respective owners.  http://www.dcd.pl 
 

Copyright 1999-2003 DCD – Digital Core Design. All Rights Reserved. 
 

4. CONTACTS 
If any problems are encountered please contact Digital Core Design. 
 
Headquarters: 
Wroclawska 94 
41-902 Bytom 
POLAND 
e-mail: iiinnnfffooo@@@dddcccddd...ppplll  
tel.     : +48 32 282 82 66 
fax     : +48 32 282 74 37 
Field Office: 
 Texas Research Park  
 14815 Omicron Dr. suite 100 
 San Antonio, TX 78245,USA 
 e-mail: iiinnnfffoooUUUSSS@@@dddcccddd...ppplll  
 tel.     : +1 210 422 8268 
 fax     : +1 210 679 7511 
 
Distributors: 
 Please check hhhttttttppp:::/// ///wwwwwwwww...dddcccddd...ppplll ///aaapppaaarrrtttnnn...ppphhhppp 

mailto:info@dcd.pl
mailto:infous@dcd.pl
http://www.dcd.pl/apartn.php

