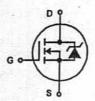


47A, 30V, 0.021 Ohm, N-Channel, Logic Level UltraFET Power MOSFETs

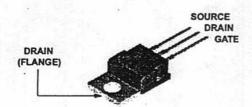
These N-Channel power MOSFETs are manufactured using the innovative SUNTAC process. This advanced process technology achieves the lowest possible on-resistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching converters, motor drivers, relay drivers, low-voltage bus switches, and power management in portable and battery-operated products.

Formerly developmental type TA76121.


Ordering Information

PART NUMBER	PACKAGE	BRAND
76121P .	TO-220AB	76121P
76121S	TO-263AB	76121S

Features


- · Logic Level Gate Drive
- 47A, 30V
- Ultra Low On-Resistance, r_{DS(ON)} = 0.021Ω
- Temperature Compensating PSPICE® Model
- Temperature Compensating SABER[®] Model
- · Thermal Impedance SPICE Model
- · Thermal Impedance SABER Model
- · Peak Current vs Pulse Width Curve
- · UIS Rating Curve
- Related Literature

Symbol

Packaging

TO-220AB

TO-263AB

Absolute Maximum Ratings T _C = 25°C, Unless Otherwise Specified		
The second of th		UNITS
Drain to Source Voltage (Note 1)VDSS	30	V
Drain to Gate Voltage (R _{GS} = 20kΩ) (Note 1)V _{DGR}	30	· V
Gate to Source Voltage	±20	V
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	47 25 24 Figure 4	A A A
Pulsed Avalanche Rating EAS	Figures 6, 17,18	
Power Dissipation	75 0.6	w w/°c
Operating and Storage Temperature	-40 to 150	°C
Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s	300 260	°C
CALIFICAL CALLERY AND A PARTY		

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_J = 25^{\circ}C$ to $150^{\circ}C$.

Electrical Specifications T_A = 25°C, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
OFF STATE SPECIFICATIONS						
Drain to Source Breakdown Voltage	BVDSS	I _D = 250μA, V _{GS} = 0V (Figure 12)	30	94.	-	V
Zero Gate Voltage Drain Current	IDSS	V _{DS} = 25V, V _{GS} = 0V		104	1	μА
		V _{DS} = 25V, V _{GS} = 0V, T _C = 150°C			250	μА
Gate to Source Leakage Current	IGSS	V _{GS} = ±20V			±100	nA
ON STATE SPECIFICATIONS						
Gate to Source Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I _D = 250μA (Figure 11)	1		3	V
Drain to Source On Resistance	rDS(ON)	I _D = 47A, V _{GS} = 10V (Figures 9, 10)	1	0.015	0.021	Ω
		I _D = 25A, V _{GS} = 5V (Figure 9)		0.019	0.028	Ω
		I _D = 24A, V _{GS} = 4.5V (Figure 9)	1	0.021	0.031	Ω
THERMAL SPECIFICATIONS						
Thermal Resistance Junction to Case	R _{BJC}	(Figure 3)	lund.		1.66	°C/W
Thermal Resistance Junction to Ambient	R _{0JA}	TO-220 and TO-263			62	°C/W
SWITCHING SPECIFICATIONS (VGS = 4.5	V)				4991	
Turn-On Time	ton	$V_{DD} = 15V$, $I_{D} \cong 24A$, $R_{L} = 0.63\Omega$,		AGE.	265	ns
Turn-On Delay Time	td(ON)	V _{GS} = 4.5V, R _{GS} = 10.0Ω (Figures 15, 21, 22)		15		ns
Rise Time	tr			160		ns
Turn-Off Delay Time	td(OFF)			14		ns
Fall Time	t _f			31		ns
Turn-Off Time	toff		30000		70	ns

Electrical Specifications T_A = 25°C, Unless Otherwise Specified (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
SWITCHING SPECIFICATIONS (VGS	= 10V)				No.		
Turn-On Time	ton	V _{DD} = 15V, I _D ≅ 47A, R _L = 0.32Ω,				80	ns
Turn-On Delay Time	td(ON)	V _{GS} = 10V, R _{GS} = 12.5Ω (Figures 16, 21, 22)		6	.	ns	
Rise Time	tr				47		ns
Turn-Off Delay Time	td(OFF)				47		ns
Fall Time	ų				42		ns
Turn-Off Time	toff					135	ns
GATE CHARGE SPECIFICATIONS	2 1 2 2				19		
Total Gate Charge	Q _{g(TOT)}	V _{GS} = 0V to 10V	V _{DD} = 15V, I _D ≡ 25A, R _L = 0.6Ω I _g (REF) = 1.0mA (Figures 14, 19, 20)		24	30	nC
Gate Charge at 5V	Q _{g(5)}	V _{GS} = 0V to 5V			13	16	nC
Threshold Gate Charge	Q _{g(TH)}	V _{GS} = 0V to 1V			1.0	1.2	nC
Gate to Source Gate Charge	Qgs				2.50	W.J	nC
Gate to Drain "Miller" Charge	Q _{gd}				7.80		nC
CAPACITANCE SPECIFICATIONS							
Input Capacitance	CISS	V _{DS} = 25V, V _{GS} = 0V, f = 1MHz (Figure 13)		- 1	850		pF
Output Capacitance	Coss				465		pF
Reverse Transfer Capacitance	C _{RSS}				100		pF

Source to Drain Diode Specifications

PARAMETER	ARAMETER SYMBOL TEST CONDITIONS		MIN	TYP	MAX	UNITS
Source to Drain Diode Voltage	V _{SD}	I _{SD} = 25A			1.25	V
Reverse Recovery Time	t _{rr}	I _{SD} = 25A, dI _{SD} /dt = 100A/μs			65	ns
Reverse Recovered Charge	Q _{RR}	I _{SD} = 25A, dI _{SD} /dt = 100A/μs			100	nC

Typical Performance Curves

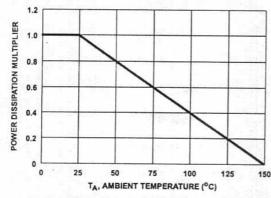


FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE

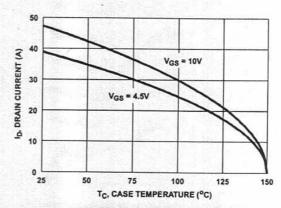


FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

Typical Performance Curves (Continued)

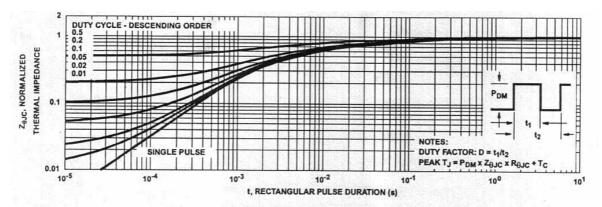


FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE

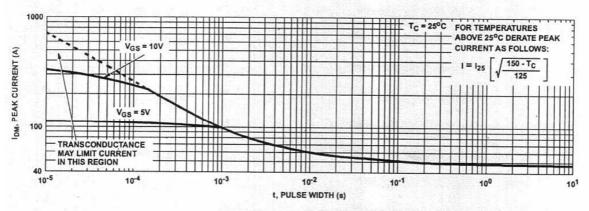


FIGURE 4. PEAK CURRENT CAPABILITY

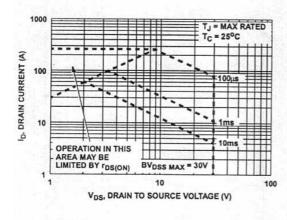
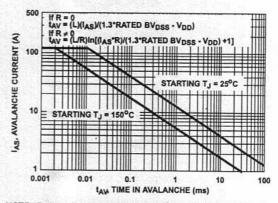



FIGURE 5. FORWARD BIAS SAFE OPERATING AREA

NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY

Typical Performance Curves (Continued)

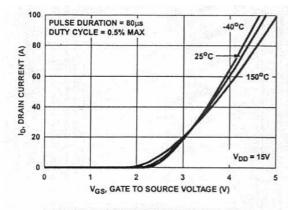


FIGURE 7. TRANSFER CHARACTERISTICS

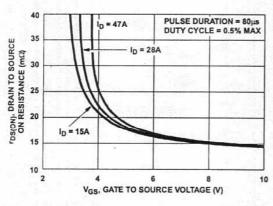


FIGURE 9. SOURCE TO DRAIN ON RESISTANCE VS GATE VOLTAGE AND DRAIN CURRENT

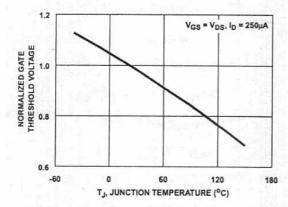


FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE VS JUNCTION TEMPERATURE

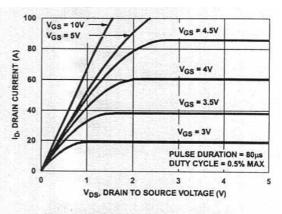


FIGURE 8. SATURATION CHARACTERISTICS

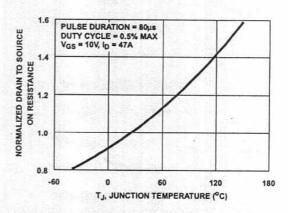


FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE VS JUNCTION TEMPERATURE

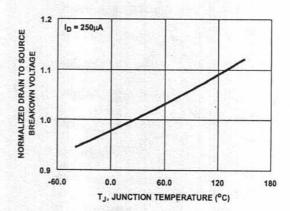


FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE

Typical Performance Curves (Continued)

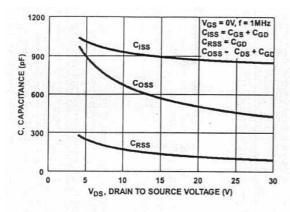
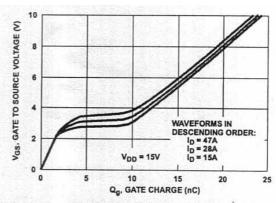



FIGURE 13. CAPACITANCE VS DRAIN TO SOURCE VOLTAGE

NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.

FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT
GATE CURRENT

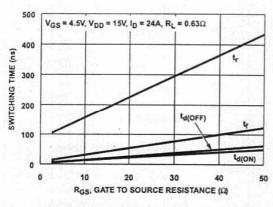


FIGURE 15. SWITCHING TIME VS GATE RESISTANCE

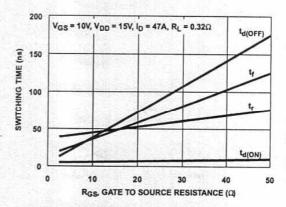


FIGURE 16. SWITCHING TIME VS GATE RESISTANCE

Test Circuits and Waveforms

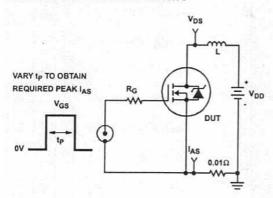


FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT

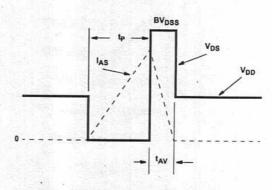


FIGURE 18. UNCLAMPED ENERGY WAVEFORMS

Test Circuits and Waveforms (Continued)

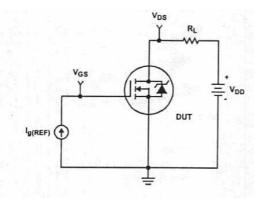


FIGURE 19. GATE CHARGE TEST CIRCUIT

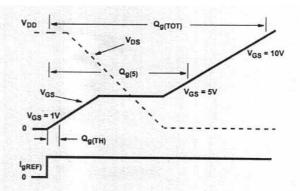


FIGURE 20. GATE CHARGE WAVEFORMS

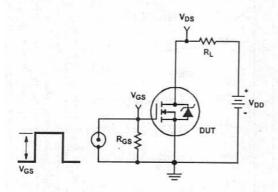


FIGURE 21. SWITCHING TIME TEST CIRCUIT

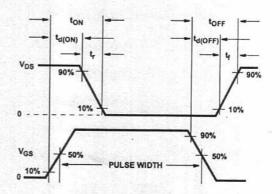


FIGURE 22. SWITCHING TIME WAVEFORM