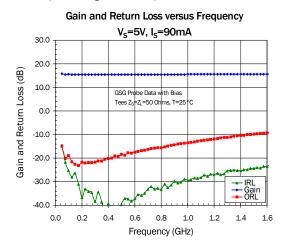
rfmd.com

50MHZ TO 1000MHZ, CASCADABLE ACTIVE BIAS InGaP HBT MMIC AMPLIFIER


Package: Bare Die

Product Description

RFMD's SBB-1000 is a high performance InGaP HBT MMIC amplifier utilizing a Darlington configuration with an active bias network. The active bias network provides stable current over temperature and process Beta variations. Its efficient operation from a single 5V supply and its compact size (0.59mmx0.70mm) make it ideal for high-density multi-chip module applications. It is well-suited for high linearity 5V gain block applications and it is internally matched to 50Ω .

RFMD can provide 100% DC screening, visual inspection, and Hi-Rel wafer qualification. Die can be delivered at the wafer level or picked to gel or waffle paks.

Features

- OIP3=42dBm @ 250MHz
- P1dB=20dBm @ 500MHz
- Single Fixed 5V Supply
- Compact Die Size (0.59 mmx 0.70 mm)
- Patented Thermal Design and Bias Circuit
- Low Thermal Resistance

Applications

- PA Driver Amp
- RF Pre-driver and RF Receive Path
- Military Communications
- Test and Instrumentation

Parameter	Specification			Unit	Condition	
Parameter	Min.	Тур.	Max.	UIIIL	Condition	
Frequency of Operation	50		1000	MHz		
Small Signal Gain		15.5		dB	Freq=250 MHz, 500 MHz, 1000 MHz	
Output Power at 1dB Compression		21.5		dBm	Freq=250MHz	
		20.0		dBm	Freq=500MHz	
		19.0		dBm	Freq=1000MHz	
Output IP ₃		42.0		dBm	Freq=250MHz	
		40.5		dBm	Freq=500MHz	
		35.5		dBm	Freq=1000MHz	
Input Return Loss		>25		dB	Freq=500MHz	
Output Return Loss		18.5		dB	Freq=500MHz	
Current		90		mA		
Noise Figure		3.4		dB	Freq=500MHz	
Thermal Resistance		48.8		°C/W	Junction to lead (89 pkg)	

Test Conditions: $Z_0 = 50\Omega$, $V_D = 5V$, $I_D = 90$ mA, T = 25 °C, OIP3 Tone Spacing=1MHz, $P_{OUT}/tone = 0$ dBm. GSG Probe Data with Bias Tees.

Preliminary

Absolute Maximum Ratings

Parameter	Rating	Unit
Total Current (I _D)	110	mA
Device Voltage (V _D)	5.5	V
Power Dissipation	0.61	W
Operating Lead Temperature (T _L)	-40 to +85	°C
RF Input Power	+12(TBR)*	dBm
Storage Temperature Range	-55 to +150	°C
Operating Junction Temp (T _J)	+150	°C
ESD Rating - Human Body Model (HBM)	Class 1C	

^{*} TBR=To Be Reviewed

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.

Bias Conditions should also satisfy the following expression:

 $I_D V_D \!<\! (T_J \!-\! T_L)/R_{TH}, j \!-\! I$

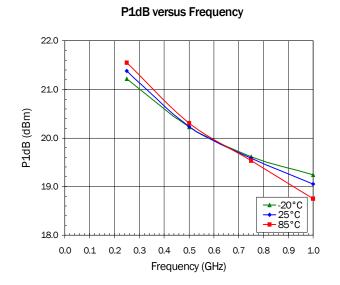
Caution! ESD sensitive device.

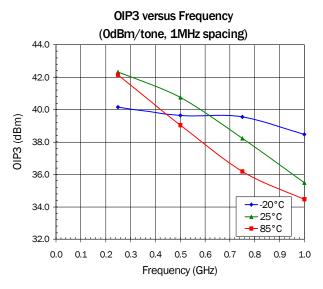
Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

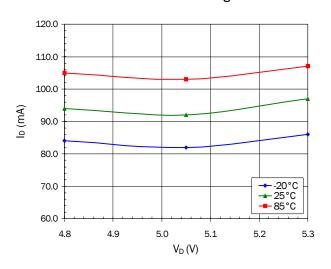
RoHS status based on EU Directive 2002/95/EC (at time of this document revision).

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

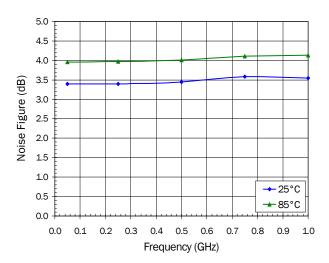
Typical Performance (GSG Probe Data with Bias Tees) V_D =5V, I_D =90 mA, T=25 °C, Z=50 Ω


Parameter	Units	50MHz	100 MHz	250 MHz	500 MHz	750 MHz	1000 MHz
Small Signal Gain	dB	15.8	15.6	15.5	15.5	15.5	15.5
Output 3rd Order Intercept Point (see note 1)	dBm			42.0	40.5	38.0	35.5
Output Power at 1dB Compression	dBm			21.5	20.0	19.5	19.0
Input Return Loss	dB	17.0	24.0	34.0	38.0	32.0	29.0
Output Return Loss	dB	15.0	19.0	21.5	18.5	15.5	13.5
Reverse Isolation	dB	17.0	18.0	18.5	18.0	18.0	18.0
Noise Figure	dB	3.4		3.4	3.4	3.6	3.6

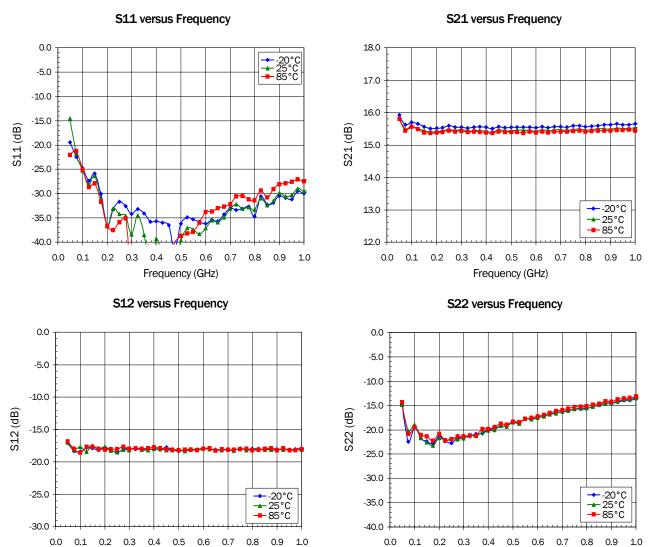

Note 1: 0dBm/tone, 1MHz spacing.


Preliminary

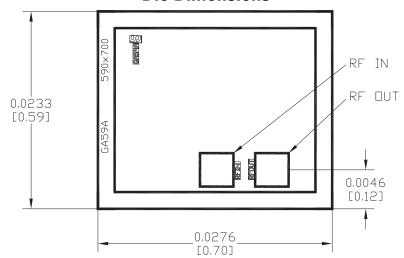
Typical Performance (GSG Probe Data with Bias Tees) $V_D = 5.0V$, $I_D = 90 \text{ mA}$



Current versus Voltage

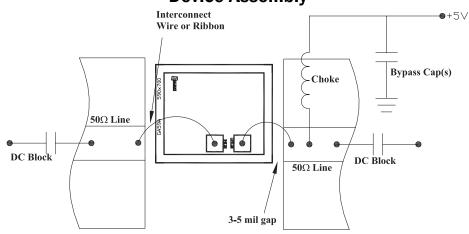

Noise Figure versus Frequency

Typical Performance (GSG Probe Data with Bias Tees) V_D=5.0V, I_D=90mA


Frequency (GHz)

Frequency (GHz)

Die Dimensions


Bond Pad Description

Bond Pad	Function/Description
RF IN	This pad is DC coupled and matched to 50Ω . An external DC block is required.
RF OUT	This pad is DC coupled and matched to 50Ω . DC bias is applied through this pad.
DIE BACKSIDE	Die backside must be connected to RF/DC ground using silver filled conductive epoxy.

Notes:

- 1. All dimensions in inches [millimeters].
- 2. Die Thickness is 0.004 [0.100].
- 3. Typical bond pad is 0.004 (0.100) square.
- 4. Backside metallization: Gold.
- 5. Bond pad metallization: Gold.
- 6. Backside is ground.

Device Assembly

Ordering Information

Part Number	Description	Devices/Container
SBB-1000	Bare Die	

SBB-1000

Preliminary

