



# AEQ15AF48 - 5V/3.3V Dual Output DC-DC Converter Module Industry Standard ¼ Brick w/ Baseplate: 36V-75V Input; 60W Output Power

The AEQ15 series is among Astec's dual output; high-density converter offering that comes in an industry standard <sup>1</sup>/<sub>4</sub> brick baseplate package. The AEQ15 series has been designed to deliver 60W of clean, well-regulated DC power for today's demanding loads at high efficiency levels (89% typical for 30W/30W power split between rails). The 5V rail is capable of delivering 12A max and the 3.3V rail is capable of delivering 15A max for a maximum output power of 60W. The module comes with industry standard feature sets such as output enable with positive or negative logic options; input UVLO, output trim, over current, over voltage and over temperature protection.



Industry Standard <sup>1</sup>/<sub>4</sub> Brick Footprint with

**Positive and Negative Logic Enable Options** 

High Efficiency @ 89% (60W full load)

**High Capacitive Load Start-up** 

**Input Under-Voltage Lockout** 

**Fixed Switching Frequency for EMI** 

# **Electrical Parameters**

<u>Input</u> Input Range Input Surge Efficiency

36-75 VDC 100V / 100ms 89% (typ. at balanced load)

# ControlEnableTTL compatible(Positive and Negative Enable Options)

#### <u>Output</u>

Load Current5V @ 12A max3.3V @ 15A max60W Total OutRegulation (Typ) $\pm 4\% V_0 (5V)$ 

 $\begin{array}{l} 3.3V @ 15A max \\ 60W Total Output Power \\ \pm 4\% \ V_{O} \ (5V) \\ \pm 3\% \ V_{O} \ (3V3) \\ 80mV_{PK-PK} \ max \ (5V \ output) \\ 60mV_{PK-PK} \ max \ (3.3V \ output) \end{array}$ 

Output Voltage Adjust Range Transient Response

**Ripple and Noise** 

Over Current Protection

120% I<sub>O.MAX</sub>

±10% V<sub>0,NOM</sub>

2% Vo deviation (Typ)

50% to 75% Load Change

< 100msec settling time (Typ)

Switching Frequency 360kHz

# **Environmental Specifications**

- -40°C to 100°C Base plate Temperature
- -40°C to 125°C Storage Temperature
- MTBF > 1 million hours

**Special Features** 

**Baseplate** 

predictability

**Output Trim** 

**Basic insulation** 

## <u>Safety</u>

UL 1950, 3<sup>rd</sup> Edition CSA C22.2 No 950-95 EN60950 through TUV-PS





# AEQ15 Series

# THIS SPECIFICATION COVERS THE REQUIREMENTS FOR A NEW ¼-BRICK SIZE 12A-15A/ DUAL CHANNEL HIGH EFFICIENCY DC/DC CONVERTER.

| MODEL NAME   | CONSTRUCTION                | V <sub>OUT</sub> / I <sub>OUT</sub> |
|--------------|-----------------------------|-------------------------------------|
| AEQ15AF48    | Baseplate; 5mm pin length   | 5V / 12A; 3.3V / 15A                |
| AEQ15AF48-6  | Baseplate; 3.7mm pin length | 5V / 12A; 3.3V / 15A                |
| AEQ15AF48N   | Baseplate; 5mm pin length   | 5V / 12A; 3.3V / 15A                |
| AEQ15AF48N-6 | Baseplate; 3.7mm pin length | 5V / 12A; 3.3V / 15A                |

**OPTIONS:** 

Negative Enable: Positive Enable: 5mm (default) pin length: 3.7mm pin length: <u>SUFFIX</u> "N" No suffix No Suffix "-6"





# **Electrical Specifications**

STANDARD TEST CONDITION on a single module unless otherwise specified.

| 25°C (Ambient Air)          |
|-----------------------------|
| 1 48Vdc                     |
| 2 Dependent on model series |
| 3 Input return              |
| 4 Load 2                    |
| 5 Secondary Return          |
| 6 Open                      |
| 7 Load 1                    |
|                             |

#### ABSOLUTE MAXIMUM RATINGS

Stresses in excess of the absolute maximum ratings can cause permanent damage to the converter. Functional operation of the converter is not implied at these or any other conditions in excess of those given in the operational section of the specs. Exposure to absolute maximum ratings for extended period can adversely affect device reliability.

| Parameter                       | Device | Symbol                  | Min | Тур | Max  | Unit |
|---------------------------------|--------|-------------------------|-----|-----|------|------|
| Input Voltage <sup>1</sup>      |        |                         |     |     |      |      |
| Continuous                      | All    | V <sub>IN</sub>         | 0   | -   | 75   | Vdc  |
| Transient (100ms)               | All    | V <sub>I N, trans</sub> | 0   | -   | 100  | Vdc  |
| Isolation Voltage               |        |                         |     |     |      |      |
| Input to Output                 | All    |                         | -   | -   | 1500 | Vdc  |
| Input to Case                   |        |                         | -   | -   | 500  | Vdc  |
| Output to Case                  |        |                         | -   | -   | 500  | Vdc  |
| Operating baseplate temperature | All    | T <sub>A</sub>          | -40 | -   | +100 | °C   |
| Storage Temperature             | All    | T <sub>STG</sub>        | -55 | -   | +125 | °C   |
| Operating Humidity              | All    | -                       | -   | -   | 85   | %    |
| Max Output Power                | All    | Po                      | -   | -   | 60   | W    |

Note: 1. An input line fuse is recommended (Littelfuse type 312003, rated 3A, 250V or equivalent).





# **<u>Electrical Specifications</u>** (continued)

#### **INPUT SPECIFICATION**

| Parameter                                             | Device | Symbol              | Min | Тур  | Max  | Unit                |
|-------------------------------------------------------|--------|---------------------|-----|------|------|---------------------|
| Operating Input Voltage                               | All    | V <sub>IN</sub>     | 36  | 48   | 75   | V <sub>DC</sub>     |
| Input Under-Voltage Lock-out                          | All    |                     |     |      |      |                     |
| T_ON Threshold                                        |        |                     | -   | 34.5 | 35   | Vdc                 |
| T_OFF Threshold                                       |        |                     | 30  | 32.5 | -    | Vdc                 |
| Maximum Input Current <sup>1</sup>                    | All    | I <sub>IN,max</sub> | -   | -    | 2.25 | А                   |
| Conditions: $V_{IN} = V_{IN,min}$                     |        |                     |     |      |      |                     |
| $I_O = I_{O,max}$ ; $T_A = 25 \text{ °C}$             |        |                     |     |      |      |                     |
| No Load Input Power                                   | All    |                     | -   | -    | 3.5  | W                   |
| $V_{IN} = 48 V dc$                                    |        |                     |     |      |      |                     |
| Input Reflected Ripple Current <sup>2</sup>           | All    | $I_{I1}/I_{I2}$     | -   | -    | 260  | mA <sub>PK-PK</sub> |
| Conditions: $P_0 = P_{0,max}$ ; $T_A = 25 \text{ °C}$ |        |                     |     |      |      |                     |
| BW: 5Hz to 20MHz                                      |        |                     |     |      |      |                     |

Note: 2. External input capacitance required. See Input Reflected Ripple Current test measurement setup on Fig 1.

#### **OUTPUT SPECIFICATIONS**

| Parameter                                            | Device | Symbol              | Min  | Тур  | Max    | Unit                |
|------------------------------------------------------|--------|---------------------|------|------|--------|---------------------|
| Output Voltage Set point                             | All    | V <sub>O,SET1</sub> | 4.93 | 5.00 | 5.08   | Vdc                 |
| $V_{IN} = V_{IN, min}$ to $V_{IN, max}$ ;            |        | V <sub>O,SET2</sub> | 3.25 | 3.30 | 3.35   |                     |
| $I_0 = I_{01} + I_{02} = 6A + 9A; T_A = 25^{\circ}C$ |        |                     |      |      |        |                     |
| Output Current                                       | All    | I <sub>O1</sub>     | 1    | -    | 12     | А                   |
|                                                      |        | I <sub>O2</sub>     | 1    | -    | 15     | A                   |
| Output Regulation                                    |        |                     |      |      |        |                     |
| Line: $V_{IN} = V_{IN, Min}$ to $V_{IN, max}$        | All    | V <sub>01</sub>     | 4.80 | -    | 5.20   | Vdc                 |
| $I_{O1} = 6A; I_{O2} = 9A$                           |        | V <sub>O2</sub>     | 3.20 | -    | 3.40   | Vdc                 |
| Load: (1. $V_{IN} = 48Vdc$ ; $I_{O2} = I_{O.min}$ :  |        | V <sub>01</sub>     | 4.80 | -    | 5.20   | Vdc                 |
| $I_{O1} = I_{O,min}$ to $I_{O,max}$ .                |        | V <sub>O2</sub>     | 3.20 | -    | 3.40   | Vdc                 |
| $2.V_{IN} = 48Vdc; I_{O1} = 3.5A;$                   |        |                     |      |      |        |                     |
| $I_{O2} = 1-13A) T_A = 25^{\circ}C @$                |        |                     |      |      |        |                     |
| 300LFM                                               |        |                     |      |      |        |                     |
| Ripple and Noise <sup>3</sup>                        | All    | V <sub>01</sub>     | -    | -    | 80     | mV <sub>PK-PK</sub> |
| Peak-to-Peak: (5Hz to 20MHz)                         |        | V <sub>O2</sub>     | -    | -    | 60     | $mV_{PK-PK}$        |
| External Load Capacitance                            | All    | -                   | -    | -    | 10,000 | μF                  |
| Output Current-limit Inception <sup>4</sup>          | All    | I <sub>O1</sub>     | 13   | -    | 18     | А                   |
| $V_{OUT} = 90\% V_{O,SET}$                           |        | I <sub>O2</sub>     | 18   | -    | 24     | Α                   |
| Output Short Circuit Current <sup>5</sup>            | All    |                     | -    | -    | 150    | I <sub>O,max</sub>  |
|                                                      |        |                     |      |      |        |                     |
| Efficiency                                           | All    |                     | 89   | 90   | -      | %                   |
| Conditions: $I_0=I_{01}+I_{02}=6A+9A$ ;              |        |                     |      |      |        |                     |
| $V_{IN} = 48 V dc; T_A = 25^{\circ} C$               |        |                     |      |      |        |                     |





# **Electrical Specifications** (continued)

#### **OUTPUT SPECIFICATIONS**

| Parameter                                                                  | Device | Symbol                  | Min | Тур | Max | Unit   |
|----------------------------------------------------------------------------|--------|-------------------------|-----|-----|-----|--------|
| Switching Frequency                                                        | All    | -                       | 310 | 360 | 400 | KHz    |
| Dynamic Response <sup>5</sup>                                              | All    | $\Delta I_{O}/\Delta t$ | -   | -   | 1   | A/10µs |
| Load Change from: $I_0 = 50\%$ to 75% of                                   |        |                         | -   | 2   | 6   | %Vo    |
| $I_{O, Max}$<br>Peak Deviation Settling Time to $V_{O, Nom}$               |        |                         | -   | 250 | 500 | μs     |
| Load Change from: $I_0 = 50\%$ to 25% of $I_{O, Max}$                      |        |                         | -   | 2   | 6   | %Vo    |
| Peak Deviation Settling Time to $V_{O, Nom}$                               |        |                         | -   | 250 | 500 | μs     |
| Turn on time <sup>5</sup>                                                  | All    |                         | -   | 1   | 5   | ms     |
| Condition: $I_O=I_{O,max}$ ; $V_O$ within 1%; the other channel @ min load |        |                         |     |     |     |        |
| Output Overshoot <sup>5</sup>                                              | All    | -                       | -   | -   | 5   | %Vo    |
| Condition: $I_0=I_{0,max}$ ; the other channel<br>@ min load               |        |                         |     |     |     |        |

#### FEATURE SPECIFICATION

| Parameter                              | Device | Symbol          | Min | Тур | Max  | Unit            |
|----------------------------------------|--------|-----------------|-----|-----|------|-----------------|
| Output Enable ON/OFF                   |        |                 |     |     |      |                 |
| Negative Enable ("N" suffix)           | Ν      |                 |     |     |      |                 |
| Enable Pin voltage for Module ON       | suffix | -               | 0   | -   | 2.5  | V               |
| Module OFF                             |        | -               | 1.8 | -   | 5.0  | V               |
| Positive Enable (No "N"suffix)         |        |                 |     |     |      |                 |
| Enable Pin voltage for Module ON       | No     | -               | 1.8 | -   | 5.0  | V               |
| Module OFF                             | suffix | -               | 0   | -   | 2.5  |                 |
| Enable Pin Current                     | All    |                 |     |     |      |                 |
| Logic Low                              |        |                 | -   | -   | 1.0  | mA              |
| Logic High ( $I_{LKG}$ @ Enable = 5V)  |        |                 | -   | -   | 50.0 | μΑ              |
| Output Over Voltage Clamp              | All    | V <sub>01</sub> | 5.7 | -   | 6.5  | V               |
| (Auto Recovery; Hiccup Mode)           |        | V <sub>O2</sub> | 3.8 | -   | 4.3  | V               |
| Over Temperature trip point (baseplate | All    |                 |     | 115 |      | °C              |
| temperature)                           |        |                 |     |     |      |                 |
| Output Voltage Trim Range <sup>6</sup> | All    |                 | 90  |     | 110  | %V <sub>0</sub> |

Note: 3.  $V_{IN} = 48$ Vdc;  $I_O = {}_{IO,max}$ ; the other channel at min load. See Figure 2 for Ripple test measurement setup. 4. Hiccup Mode; the other channel at min load.

5. The other channel at min load.

6. See appropriate Trim Equation and configuration on Figures 3 and 4.





# **<u>Electrical Specifications</u>** (continued)

#### **ISOLATION SPECIFICATION**

| Parameter             | Device | Symbol | Min | Тур | Max | Unit |
|-----------------------|--------|--------|-----|-----|-----|------|
| Isolation Capacitance | All    | -      | -   | 680 | -   | pF   |
| Isolation Resistance  | All    | -      | 10  | -   | -   | MΩ   |

#### SAFETY APPROVAL

The AEQ15AF48 series have been certified through:

- UL 1950
- CSA22.2 No 950-95
- EN 60950 through TUV-PS
- Basic Insulation





# **Electrical Specifications** (continued)

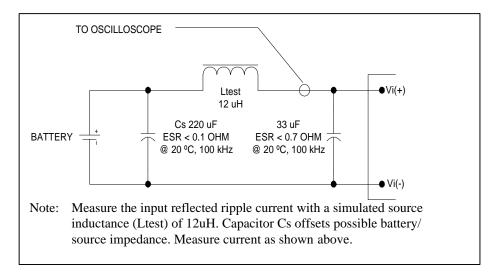



Figure 1. Input Reflected Ripple Current Measurement Setup.

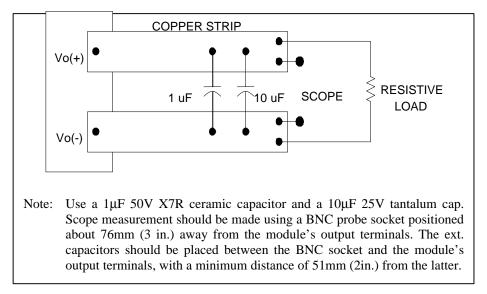


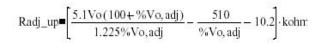

Figure 2. Peak to Peak Output Noise Measurement Setup.



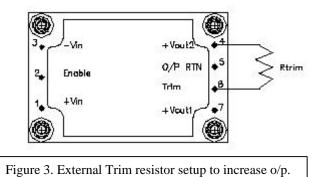


## **Basic Operation and Features**

#### INPUT UNDER VOLTAGE LOCKOUT


To prevent any instability to the converter, which may affect the end system, the AEQ15 series have been designed to turn-on once  $V_{IN}$  is in the voltage range of 34.5-36 VDC. Likewise, it has also been programmed to turn-off when  $V_{IN}$  drops down to 30 - 32.5 VDC.

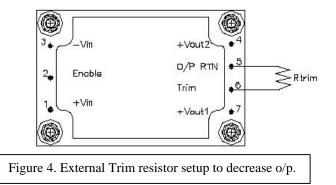
#### **OUTPUT VOLTAGE ADJUST/TRIM**


The converter comes with a TRIM pin (PIN 6), which is used to adjust both outputs simultaneously by as much as 90% to 110% of its set point. This is achieved by connecting an external resistor as described below.

To INCREASE the output voltages, external  $R_{adj\_up}$  resistor should be connected between TRIM PIN (Pin6) and +Vo2 (Pin 4). Please refer to Equation (1) for the  $V_{0,adj}$  and  $R_{adj\_up}$  relationship.

Equation (1)




where:  $%V_{O,adj}$  = percent change in o/p voltage



To DECREASE the output voltages, external  $R_{adj\_down}$  resistor should be connected between TRIM PIN (Pin 6) and O/P Return (Pin 5). Please refer to Equation (2) for the  $V_{0,adj}$  and  $R_{adj\_down}$  relationship.

#### Equation (2)

Radj\_down 
$$\left(\frac{510}{\% Vo, adj} - 10.2\right)$$
·kohm



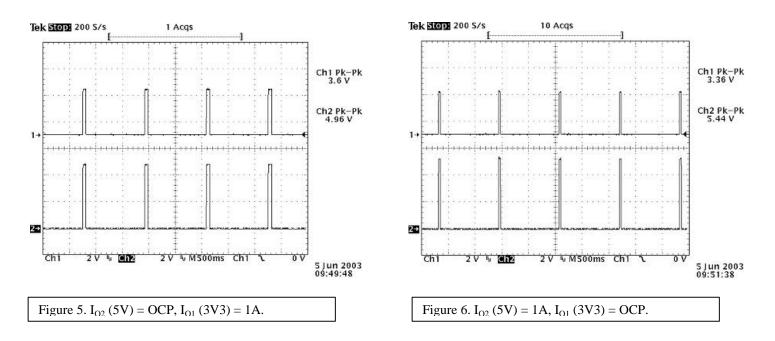




# **Basic Operation and Features** (continued)

#### **OUTPUT ENABLE**

The AEQ15 comes with an Enable pin (PIN 2) which is primarily used to turn ON/OFF the converter. Both a Positive (no part number suffix required) and Negative (suffix "N" required) Enable Logic option is being offered (see Part Numbering Scheme in Table 1).


For Positive Enable, the converter is turned on when the Enable pin is at logic HIGH or left open. The unit turns off when the Enable pin is at logic LOW or directly connected to -VIN. On the other hand, the Negative Enable version turns on when the Enable pin is at logic LOW or directly connected to -VIN. The unit turns off when the Enable pin is at Logic HIGH.

#### **OUTPUT OVER VOLTAGE PROTECTION (OVP)**

The Over Voltage Protection circuit will shut down the entire converter if any of the two output voltages exceeds the OVP threshold limits. The converter will automatically recover once the fault is removed.

#### **OUTPUT OVER CURRENT PROTECTION (OCP)**

The Over Current Protection circuit will shutdown the converter if any of the load current of either output reaches the OCP threshold limits. The unit will automatically recover by going into a hiccup mode until the cause of the over current condition is removed. Note that in Figures 5 and 6, Channel 1 is 3.3V and Channel 2 is 5V.

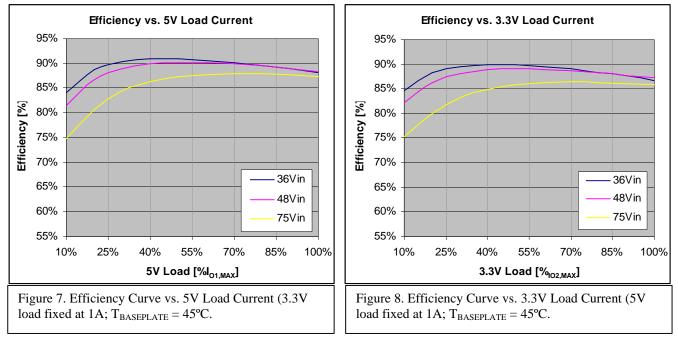




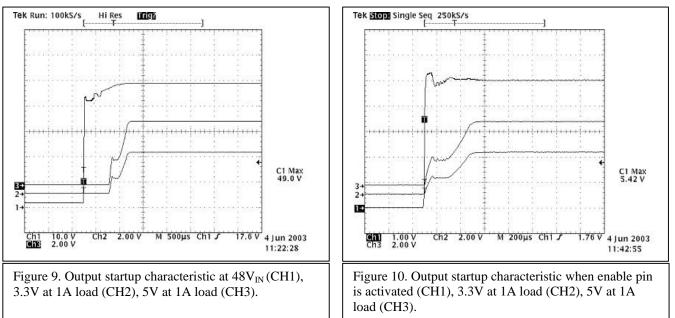


# **Basic Operation and Features** (continued)

#### **OVER TEMPERATURE PROTECTION (OTP)**


The Over Temperature Protection circuit will shutdown the converter once the sensed location reaches the OTP range. This feature prevents the unit from overheating and consequently going into thermal runaway, which may further damage the converter and the end system. Such overheating may be an effect of operation outside the given power thermal derating conditions. Restart is possible once the baseplate temperature drops to less than 105°C.



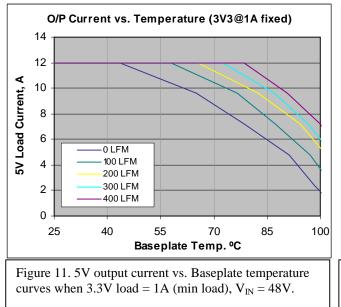


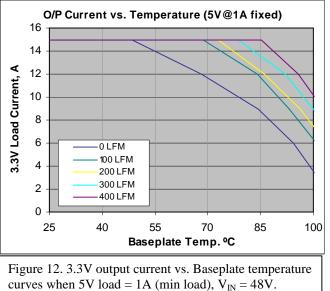

# **Performance Curves**

#### EFFICIENCY



#### STARTUP CHARACTERISTIC



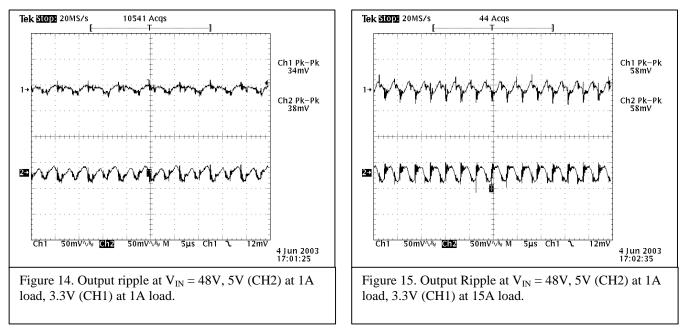


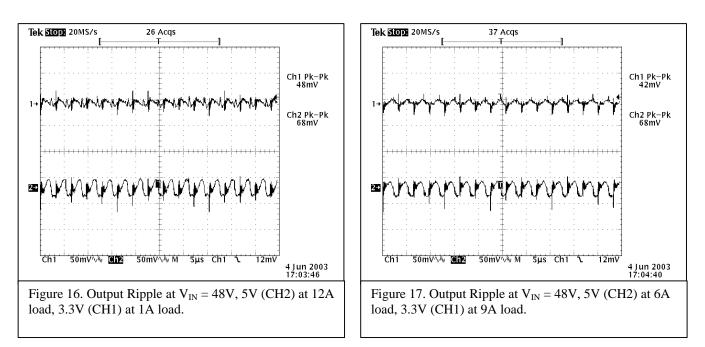

# **<u>Performance Curves</u>** (continued)

#### **CURRENT VS. TEMPERATURE CURVES**







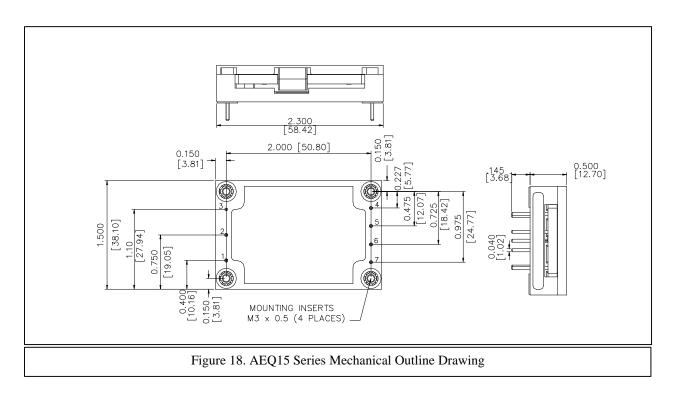



# **<u>Performance Curves</u>** (continued)

#### **OUTPUT RIPPLE**










# **Mechanical Specifications**

| Parameter      | Device | Symbol            | Min | Тур          | Max      | Unit        |
|----------------|--------|-------------------|-----|--------------|----------|-------------|
| Dimension      | All    | L                 | -   | 2.30 [58.42] | -        | in [ mm ]   |
|                |        | W                 | -   | 1.50 [38.10] | -        | in [ mm ]   |
|                |        | Н                 | -   | 0.50 [12.70] | -        | in [ mm ]   |
| Weight         |        |                   | -   | -            | 60 [2.1] | g [oz]      |
| PIN ASSIGNMENT |        |                   |     |              |          |             |
| 1              | -      | +V <sub>IN</sub>  |     | 5            | O/P R    | RTN         |
| 2              | Ε      | Enable            |     | 6            |          | Μ           |
| 3              |        | -V <sub>IN</sub>  |     | 7            |          | U <b>T1</b> |
| 4              | +`     | V <sub>OUT2</sub> |     |              |          |             |

#### NOTE: Pin diameters are 0.04" (1.02mm) in all positions







# Mechanical Specifications (continued)

#### SOLDERING CONSIDERATIONS

The AEQ15AF48 series converters are compatible with standard wave soldering techniques. When wave soldering, the converter pins should be preheated for 20-30 seconds at 110°C and wave soldered at 260°C for less than 10 seconds.

When hand soldering, the iron temperature should be maintained at 425°C and applied to the converter pins for less than 5 seconds. Longer exposure can cause internal damage to the converter. Cleaning can be performed with cleaning solvent IPA or with water.

|       | OUTPUT<br>VOLTAGE 1          | OUTPUT<br>VOLTAGE 2          |    | ENABLE LOGIC                       | PIN LENGTH OPTION                        |
|-------|------------------------------|------------------------------|----|------------------------------------|------------------------------------------|
| AEQ15 | W                            | X                            | 48 | У                                  | Z                                        |
|       | $\mathbf{A} = \mathbf{5.0V}$ | $\mathbf{F} = \mathbf{3.3V}$ |    | N = Negative<br>"Blank" = Positive | "Blank" = 5mm (Standard)<br>"-6" = 3.7mm |

 Table 2 PART NUMBERING SCHEME FOR ORDERING

Please call 1-888-41-ASTEC for further inquiries or visit us at <u>www.astecpower.com</u>