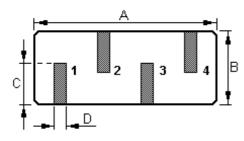
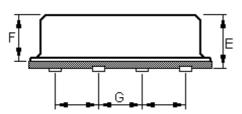


Approved by:

Checked by:

Issued by:

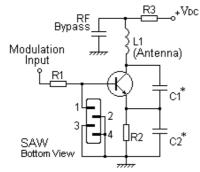

SPECIFICATION


PRODUCT: SAW RESONATOR MODEL: HR315 F11-SMD

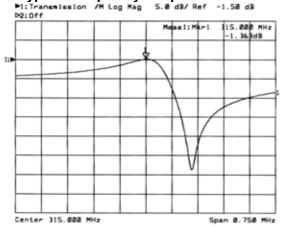
HOPE MICROELECTRONICS CO., LIMITED

Tel:+86-755-82973806 Fax:+86-755-82973550 E-mail: <u>sales@hoperf.com</u> http://www.hoperf.com Page 1 of 1 The HR315 is a true one-port, surface-acoustic-wave (**SAW**) resonator in a low-profile metal **F11-SMD** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **315.000** MHz.

1.Package Dimension (F11-SMD)

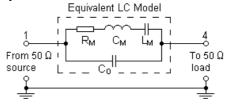

2.Marking

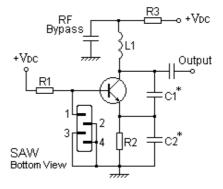
HR315


Color: Black or Blue

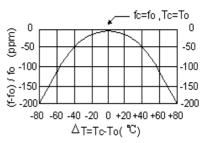
4.Typical Application Circuits

1) Low-Power Transmitter Application


5.Typical Frequency Response


Pin	Configuration				
1	Input / Output				
4	Output / Input				
2/3	Case Ground				
	ion Data (unit: mm)				
Dimension	Data (unit: mm)				
Dimension A	Data (unit: mm) 11.0 ± 0.5				
	. ,				
A	11.0 ± 0.5				

D	0.6 ± 0.05				
E	4.1 ± 0.3				
F	3.4 ± 0.3				
G	2.54 ± 0.2				


3.Equivalent LC Model and Test Circuit

2) Local Oscillator Application

6.Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

Tel:+86-755-82973806 Fax:+86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com

7.Performance

7-1.Maximum Ratings

Rating	Value	Unit	
CW RF Power Dissipation	Р	0	dBm
DC Voltage Between Terminals	V _{DC}	± 30	V
Storage Temperature Range	$T_{\rm stg}$	-40 to +85	
Operating Temperature Range	T _A	-10 to +60	

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25)	Absolute Frequency	f _C	314.925		315.075	MHz
	Tolerance from 315.000 MHz	Δf_{C}		± 75		kHz
Insertion Loss		IL		1.6	2.4	dB
Quality Factor	Unloaded Q	QU		11,700		
	50 Ω Loaded Q	QL		1,950		
Temperature Stability	Turnover Temperature	Τo	25		55	
	Turnover Frequency	f _O		f _C		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/ ²
Frequency Aging Absolute Value during the First Year		f _A		10		ppm/yr
DC Insulation Resistance Between Any Two Terminals			1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		20	32	Ω
	Motional Inductance	L _M		118.2894		μH
	Motional Capacitance	См		2.1603		fF
	Shunt Static Capacitance	Co	2.3	2.6	2.9	pF

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

C 2003. All Rights Reserved.

- 1. The center frequency, f_C, is measured at the minimum IL point with the resonator in the 50 test system.
- Unless noted otherwise, case temperature T_c = +25°C±2°C.
 Frequency aging is the change in f_c with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f₀. The nominal frequency at any case temperature, T_c , may be calculated from: $f = f_0 [1 - FTC (T_0 - T_c)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between Terminal1 and Terminal4. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C , and C_0 .
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, 9. processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or email sales@hoperf.com.