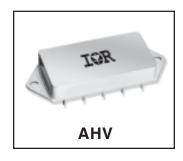
International Rectifier

HYBRID-HIGH RELIABILITY DC/DC CONVERTER

AHV28XX SERIES

28V Input, Single, Dual and Triple Output


Description

The AHV Series of DC/DC converters are designed to replace the AHE/ATO family of converters in applications requiring compliance to MIL-STD-704A through E, in particular the input surge requirement of 80V specified to withstand transient input voltage of 80V. No input voltage or output power derating is necessary over the full military temperature range.

These converters are packaged in an extremely rugged, low profile package that meets all requirements of MIL-STD-883 and MIL-PRF-38534. Parallel seam weld sealing and the use of ceramic pin feed thru seals assure long term hermeticity after exposure to extended temperature cycling.

The basic circuit is a push-pull forward topology using power MOSFET switches. The nominal switching frequency is 500KHz. A unique current injection circuit assures current balancing in the power switches. All AHV series converters use a single stage LC input filter to attenuate input ripple current. A low power 11.5V series regulator provides power to an epitaxial CMOS custom pulse width modulator integrated circuit. This single integrated circuit provides all PWM primary circuit functions. Power is transferred from primary to secondary through a ferrite core power transformer. An error voltage signal is generated by comparing a highly stable reference voltage with the converter output voltage and drives the PWM through a unique wideband magnetic feedback circuit. This proprietary feedback circuit provides an extremely wide bandwidth, high gain control loop, with high phase margin. The feedback control loop gain is insensitive to temperature, radiation, aging, and variations in manufacturing. The transfer function of the feedback circuit is a function of the feedback transformer turns ratio which cannot change when subjected to environmental extremes.

Manufactured in a facility fully qualified to MIL-PRF-38534, these converters are fabricated utilizing DSCC qualified processes. For available screening options, refer to device screening table in the data sheet. Variations in electrical, mechanical and screening can be accommodated. Contact IR Santa Clara for special requirements.

Features

- 80V Transient Input (100 msec max.)
- 50V DC Input (Continous)
- 16V to 40V DC Input Range
- Single, Dual and Triple Outputs
- 15W Output Power (No Temperature Derating)
- Low Input / Output Noise
- Full Military Temperature Range
- Wideband PWM Control Loop
- Magnetic Feedback
- Low Profile Hermetic Package (0.405")
- Short Circuit and Overload Protection
- Constant Switching Frequency (500KHz)
- True Hermetic Package (Parallel Seam Welded, Ceramic Pin Feedthru)
- Standard Microcircuit Drawings Available

AHV28XX Series

Specifications (Single Output Models) $T_{CASE} = -55^{\circ}C$ to +125°C, $V_{IN} = +28V \pm 5\%$ unless otherwise specified

International IOR Rectifier

Absolute Maximum Ratings	
Input voltage	-0.5V to +50VDC (Continous), 80V (100 msec)
Power output	Internally limited, 17.5W typical
Soldering temperature	300°C for 10 seconds (1 pin at a time)
Operating case temperature	-55°C to +125°C
Storage case temperature	-65°C to +135°C

	_									
		Condition $-55^{\circ}C \le T_C \le +125^{\circ}C,$								
		V _{IN} = 28 V _{DC} ±5%, C _L =0,	Group A	AHV2	2805S	AHV2	2812S	AHV2	2815S	
TEST	SYMBOL	unless otherwise specified	Subgroups	Min	Max	Min	Max	Min	Max	Units
STATIC CHARACTERISTICS										
OUTPUT	V _{OUT}	V _{IN} = 16, 28, and 40 VDC	1	4.95	5.05	11.88	12.12	14.85	15.15	V
Voltage		I _{OUT} = 0	2,3	4.90	5.10	11.76	12.24	14.70	15.30	V
Current	I _{OUT}	V _{IN} = 16, 28, and 40 VDC	1,2,3	0.0	3.00	0.0	1.25	0.0	1.00	l A
Ripple Voltage ¹	V _{RIP}	V _{IN} = 16, 28, and 40 VDC BW = DC to 1 MHz	1,2,3		60		60		60	mVp-p
Power	P _{OUT}	V _{IN} = 16, 28, and 40 VDC	1,2,3	15		15		15		W
REGULATION										
Line	VRLINE	V _{IN} = 16, 28, and 40 VDC	1		5.0		30		35	١.,
Load	VRLOAD	I _{OUT} = 0, half load and full load VIN = 16, 28, and 40 VDC	2,3		25 50		60 120		75 150	mV
Load	VHLUAD	$I_{OUT} = 0$, half load and full load	1,2,3		50		120		150	
INPUT		I _{OUT} = 0, Hall load and full load								
Current	I _{IN}	$I_{OUT} = 0$, Inhibit (pin 2) = 0	1,2,3		18		18		18	mA
Odironi	·IN	$I_{OUT} = 0$, Inhibit (pin 2) = Open	1,2,0		50		50		50	mA
Ripple Current	I _{RIP}	I _{OUT} = Full load	1,2,3,		50		50		50	mAp-p
EFFICIENCY	E _{FF}	I _{OUT} = Full Load	1	72		72		72		%
		T _C = +25°C								
ISOLATION	ISO	Input to output or any pin to case (except pin 8) at 500 VDC TC = +25°C	1	100		100		100		ΜΩ
Capacitive Load 2,3	C _L	No effect on DC performance TC = +25°C	4		500		200		200	μF
Load Fault										
Power Dissipation	P _D	Overload, TC = +25°C ⁴ Short Circuit, TC = +25°C	1		8.5 8.5		8,5 8.5		8.5 8.5	W
Switching Frequency										
. ,	Fs	I _{OUT} = Full Load	4	450	550	450	550	450	550	KHz
DYNAMIC CHARACTERISTICS										
Step Load Changes Output Transient ⁵	VOTLOAD	50% Load ₁₃₅ 100% Load	4	-300	+300	-300	+300	-300	+300	mVpk
Output Transierit	VOILOAD	No Load ₁₃₅ 100% Load No Load ₁₃₅ 50%	4	-500	+500	-300 -750	+300	-300 -750	+300	mVpk mVpk
Recovery ^{5,6}	TTLOAD	50% Load ₁₃₅ 100%	4	-500	70	-750	70	-750	70	μs
110001019	··LOAD	No Load 335 50% Load	4		200		1500		1500	μs
		50% Load 335 No ILoad	4		5.0		5.0		5.0	ms
Step Line Changes										
Output Transient	VOT _{LINE}	Input step 16 to 40 VDC 3,7	4		300		500		500	mVpk
_		Input step 40 to 16 VDC 3,7	4		-1000		-1500		-1500	mVpk
Recovery	TT _{LINE}	Input step 16 to 40 VDC ^{3,6,7} Input step 40 to 16 VDC ^{3,6,7}	4 4		800 800		800 800		800 800	μs μs
TURN-ON										<u> </u>
Overshoot	VTonos	I _{OUT} = OA and Full Load	4,5,6		550		750		750	mVpk
Delay	T on D	I _{OUT} = O and Full Load ⁸	4,5,6		10		10		10	ms
Load Fault Recovery	TR _{LF}	V _{IN} = 16 to 40 VDC	4,5,6		10		10		10	ms

Notes to Specifications (Single Output Models)

- 1. Bandwidth guaranteed by design. Tested for 20KHz to 2MHz.
- 2. Capacitive load may be any value from 0 to the maximum limit without affecting dc performance. A capacitive load in excess of the maximum limit will not disturb loop stability but will interfere with the operation of the load fault detection circuitry, appearing as a short circuit during turn-on.

 3. Parameter shall be tested as part of design characterization and after design or process changes. Thereafter shall be guaranteed to the limits specified.

 4. An overload is that condition with a load in excess of the rated load but less than necessary to trigger the short circuit protection and is the condition of maximum
- power dissipation.

 5. Load step transition time between 2μs to 10μs.

 6. Recovery time is measured from the initiation of the transient to where V_{ouτ} has returned to within ±1% of V_{ouτ} at 50% load.

- Input step transition time between 2µs and 10µs.
 Turn on delay time measurement is for either a step application of power at input or the removal of a ground signal from the inhinbit pin (pin 2) while power is applied to the input. Above 125°C case temperature, derate output power linearly to 0 at 135°C case.

Specifications (Dual Output Models)

 $T_{CASE} = -55^{\circ}C$ to +125°C, $V_{IN} = +28V \pm 5\%$ unless otherwise specified

Absolute Maximum Ratings	
Input voltage	-0.5V to +50VDC (Continous), 80V (100 msec)
Power output	Internally limited, 17.5W typical
Soldering temperature	300°C for 10 seconds (1 pin at a time)
Operating case temperature	-55°C to +125°C
Storage case temperature	-65°C to +135°C

			1							
		Condition $-55^{\circ}C \le T_C \le +125^{\circ}C,$	Group A	AHV	2805D	AHV	2812	AHV	281D	
TEST	SYMBOL	V _{IN} = 28 V _{DC} ±5%, C _L =0, unless otherwise specified	Subgroups	Min	Max	Min	Max	Min	Max	Units
STATIC CHARACTERISTICS OUTPUT		·								
Voltage ¹	V _{OUT}	I _{OUT} = 0	1 2.3	±4.95 ±4.90	±5.05 ±5.10	±11.88 ±11.76	±12.12 ±12.24	±14.85 ±14.70	±15.15 ±15.30	V V
Current ^{1,2} Ripple Voltage ^{1,3}	I _{OUT} V _{RIP}	V _{IN} = 16, 28, and 40 VDC V _{IN} = 16, 28, and 40 VDC BW = DC to 2 MHz	1,2,3 1,2,3	0.0	±1500 60	0.0	±625 60	0.0	±500 60	mA mVp-p
Power 1,2,4	Pour	V _{IN} = 16, 28, and 40 VDC	1,2,3	15		15		15		W
REGULATION Line ^{1,5} Load ¹	VR _{LINE} I _{OUT} VR _{LOAD}	V _{IN} = 16, 28, and 40 VDC I _{OUT} = 0, half load and full load VIN = 16, 28, and 40 VDC I _{OUT} = 0, half load and full load	1 2,3 1,2,3		30 60 120		30 60 120		35 75 150	mV
INPUT Current	I _{IN}	I _{OUT} = 0, Inali load and full load I _{OUT} = 0, Inhibit (pin 2) Tied to input return (pin 10) I _{OUT} = 0, Inhibit (pin 2) = Open	1,2,3		18 65		18 65		18 65	mA mA
Ripple Current ³	I _{RIP}	I _{OUT} = Full load BW = DC to 2MHz	1,2,3,		50		50		50	mAp-p
EFFICIENCY	E _{FF}	I _{OUT} = Full Load T _C = +25°C	1	72		72		72		%
ISOLATION	ISO	Input to output or any pin to case (except pin 8) at 500 VDC, TC = +25°C	1	100		100		100		MΩ
Capacitive Load 6,7	CL	No effect on DC performance TC = +25°C	4		200		200		200	μF
Load Fault Power Dissipation	P _D	Overload, TC = +25°C ⁸ Short Circuit, TC = +25°C	1		8,5 8.5		8,5 8.5		8.5 8.5	w
Switching Frequency	Fs	I _{OUT} = Full Load	4	450	550	450	550	450	550	KHz
DYNAMIC CHARACTERISTICS Step Load Changes Output Transient ⁹ Recovery ^{9,10}	VOT _{LOAD}	50% Load ₁₃₅ 100% Load No Load ₁₃₅ 50% 50% Load ₁₃₅ 100% No Load ₃₃₅ 50% Load 50% Load ₃₃₅ No ILoad	4 4 4 4	-300 -500	+300 +500 70 200 5.0	-300 -500	+300 +500 70 1500 5.0	-300 -500	+300 +500 70 1500 5.0	mVpk mVpk μs μs ms
Step Line Changes Output Transient 7,11 Recovery 7,10,11	VOT _{LINE}	Input step 16 to 40 VDC Input step 40 to 16 VDC Input step 16 to 40 VDC Input step 40 to 16 VDC	4 4 4 4		300 1000 4800 4800		1200 -1500 4.0 4.0		1500 -1500 4.0 4.0	mVpk mVpk μs μs
TURN-ON Overshoot ¹ Delay ^{1,12}	VTon _{os} T on D	I _{OUT} = O and Full Load I _{OUT} = O and Full Load	4,5,6 4,5,6		550 10		600 10		600 10	mVpk ms
Load Fault Recovery 7	TR∟F		4,5,6	l	10		10		10	ms

Specifications (Triple Output Models) $T_{CASE} = -55^{\circ}C \text{ to } +125^{\circ}C, \ \ V_{IN} = +28V \pm 5\% \text{ unless otherwise specified}$

Absolute Maximum Ratings	
Input voltage	-0.5V to +50VDC (Continous), 80V (100 msec)
Power output	Internally limited, 17.5W typical
Soldering temperature	300°C for 10 seconds (1 pin at a time)
Operating case temperature	-55°C to +125°C
Storage case temperature	-65°C to +135°C

	0						
	- ,	Group A	AHV2	812T	AHV2	2815T	
SYMBOL	V _{IN} = 28 V _{DC} ±5%, C _L =0, unless otherwise specified	Subgroups	Min	Max	Min	Max	Units
V_{OUT}	I _{OUT} = 0 (main)	1 2.3	4.95 4.90	5.05 5.10	4.95 4.90	5.05 5.10	V
	$I_{OUT} = 0 (dual)^1$	1 2,3	±11.88	±12.12	±14.85	±15.15	V V
I _{OUT}	V _{IN} = 16, 28, and 40 VDC (main) V _{IN} = 16, 28, and 40 VDC (dual) ¹	1,2,3 1,2,3	0.0	2000	0.0	2000	mA mA
V_{RIP}	V _{IN} = 16, 28, and 40 VDC BW = DC to 2 MHz (main)	1,2,3		80		80	mVp-p
	V _{IN} = 16, 28, and 40 VDC BW = DC to 2 MHz (main)	1,2,3		40		40	MVp-p
P _{OUT}	V _{IN} = 16, 28, and 40 VDC (main) (+dual) (-dual)	1,2,3 1,2,3 1,2,3	10 2.5 2.5		10 2.5 2.5		W W W
ļ	(total)	1,2,3	15		15		W
VP	V = 16 29 and 40 VDC						
V ITLINE	I _{OUT} = 0, 50%, and 100% load (main)	1,2,3		25 ±60		25 ±75	
VR _{LOAD}	$V_{\text{IN}} = 16, 28, \text{ and } 40 \text{ VDC}$ $I_{\text{OUT}} = 0, 50\%, \text{ and } 100\% \text{ load (main)}$ $I_{\text{OUT}} = 0, 50\%, \text{ and } 100\% \text{ load (dual)}$			50 ±60		50 ±75	mV
I _{IN}	I _{OUT} = 0, Inhibit (pin 8) Tied to input return (pin 10)	1,2,3		15		15	mA
	I _{OUT} = 0 Inhibit (pin 2) = open	1,2,3		50		50	mA
I _{RIP}	$I_{OUT} = 2000 \text{ mA (main)}$ $I_{OUT} = \pm 208 \text{mA (} \pm 12 \text{V)}$ $I_{OUT} = \pm 167 \text{mA (} \pm 15 \text{V)}$ $I_{OUT} = \pm 167 \text{mA (} \pm 15 \text{V)}$ $I_{OUT} = \pm 167 \text{mA (} \pm 15 \text{V)}$	1,2,3		50		50	mAp-p
E _{FF}	$I_{OUT} = 2000 \text{mA (main)}$ $I_{OUT} = \pm 208 \text{mA } (\pm 12 \text{V})$	1	72		72		%
ISO	Input to output or any pin to case (except pin 7) at 500 VDC, TC = +25°C	1	100		100		MΩ
C _L	No effect on DC performance TC = +25°C (main) (dual)	4		500 200		500 200	μF
P _D	Overload, TC = +25°C ⁵	1		8.5 8.5		8.5 8.5	w
	Short Circuit, 1C = +25°C	'		0.0		0.0	1
Fs	$I_{OUT} = 2000\text{mA} \text{ (main)}$ $I_{OUT} = \pm 208\text{mA} (\pm 12\text{V})$	4	450	550	450	550	KHz
	Vout Iout VRIP Pout VRLINE VRLOAD IIN IRIP EFF ISO CL	Unless otherwise specified Vout	$SYMBOL \begin{tabular}{ll} $-55^{\circ}C \le T_C \le +125^{\circ}C,$ \\ $V_{IN} = 28 \ V_{DC} \pm 5\%, \ C_L = 0,$ \\ unless otherwise specified \\ \end{tabular} \begin{tabular}{ll} $-30 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	SYMBOL Symbol	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SYMBOL Symbol	Vour Vour

For Notes to Specifications, refer to page 5

Specifications (Triple Output Models) - continued

TEST	SYMBOL	Condition $ -55^{\circ}C \le T_C \le +125^{\circ}C, \\ V_{IN} = 28 \ V_{DC} \pm 5\%, \ C_L = 0, \\ unless \ otherwise \ specified $	Group A Subgroups	AHV:	2812T Max	AHV2	2815T Max	Units
DYNAMIC CHARACTERISTICS Step Load Changes								
Output Transient 9	VOT _{LOAD}	50% Load ₁₃₅ 100% Load	4	-300	+300	-300	+300	mVpk
9 10		No Load 135 50%	4	-400	+400	-400	+400	mVpk
Recovery 9,10	TT _{LOAD}	50% Load ₁₃₅ 100%	4		100		100	μς
		No Load 335 50% Load 50% Load 335 No ILoad	4 4		2000 5.0		2000 5.0	μς
Otana Lina Ohanana		50 % LOAU 335 INO ILOAU	4		5.0		5.0	ms
Step Line Changes Output Transient	VOTUNE	Input step 16 to 40 VDC	4		1200		1200	mVpk
Output Transierit	VOTLINE	Input step 16 to 40 VDC	4		-1500		-1500	mVpk
Recovery 7,10, 11	TT _{LINE}	Input step 16 to 40 VDC	4		4.0		4.0	μs
riccovery	TILINE	Input step 40 to 16 VDC	4		4.0		4.0	μς
TURN-ON								
Overshoot 1	VTonos	Iout = o and ±625mA	4		750		750	mVpk
Delay 1,12	T on D	I _{OUT} = o and ±625mA	4		15		15	ms .
Load Fault Recovery 7	TR _{LF}		4		15		15	ms

Notes to Specifications (Triple Output Models)

- 1. Tested at each output.
- 2. Parameter guaranteed by line and load regulation tests.
- 3. At least 25% of the total power should be taken from the (+5V) main output.
- 4. Bandwidth guaranteed by design. Tested for 20KHz to 2MHz.
- 5. An overload is that condition with a load in excess of the rated load but less than that necessary to trigger the short circuit protection and is the condition of maximum power dissipation.
- 6. Capacitive load may be any value from 0 to the maximum limit without affecting dc performance. A capacitive load in excess of the maximum limit will not disturb loop stability but may interfere with the operation of the load fault detection circuitry, appearing as a short circuit during turn-on.
- 7. Parameter shall be tested as part of design characterization and after design or process changes. Thereafter parameters shall be guaranteed to the limits specified.
- 8. Above 125°C case temperature, derate output power linearly to 0 at 135°C case.
- 9. Load step transition time between $2\mu s$ and $10\mu s.$
- 10. Recovery time is measured from the initiation of the transient to where V_{OUT} has returned to within $\pm 1\%$ of V_{OUT} at 50% load.
- 11. Input step transition time between 2μs and 10μs.
- 12. Turn on delay time measurement is for either a step application of power at input or the removal of a ground signal from the inhibit pin (pin 8) while power is applied to the input.

Notes to Specifications (Dual Output Models)

- 1. Tested at each output.
- 2. Parameter guaranteed by line and load regulation tests.
- 3. Bandwidth guaranteed by design. Tested for 20KHz to 2MHz.
- 4. Total power at both outputs.
- 5. When operating with unbalanced loads, at least 25% of the load must be on the positive output to maintain regulation.
- 6. Capacitive load may be any value from 0 to the maximum limit without affecting dc performance. A capacitive load in excess of the maximum limit will not disturb loop stability but may interfere with the operation of the load fault detection circuitry, appearing as a short circuit during turn-on.
- 7. Parameter shall be tested as part of design characterization and after design or process changes. Thereafter parameters shall be guaranteed to the limits specified.
- 8. An overload is that condition with a load in excess of the rated load but less than that necessary to trigger the short circuit protection and is the condition of maximum power dissipation.
- 9. Load step transition time between $2\mu s$ and $10\mu s$.
- 10. Recovery time is measured from the initiation of the transient to where V_{OUT} has returned to within $\pm 1\%$ of V_{OUT} at 50% load.
- 11. Input step transition time between $2\mu s$ and $10\mu s.$
- 12. Turn on delay time measurement is for either a step application of power at input or the removal of a ground signal from the inhibit pin (pin 2) while power is applied to the input.
- 13. Above 125°C case temperature, derate output power linearly to 0 at 135°C.

Application Information

Inhibit Function

Connecting the inhibit pin (Pin 2 of single and dual models, pin 8 of triple models) to the input return (pin 10) will cause the converter to shutdown and operate in a low power standby mode. Power consumption in this mode is calculated by multiplying Vin times the input current inhibited, typically 225mW at Vin equal to 28V. The input current inhibited is relatively constant with changes in Vin. The open circuit inhibit pin voltage is typically 11.5V and can be conveniently driven by an open collector driver. An internal pull-up resistor enables the user to leave this pin floating if the inhibit function is not used in their particular application. All models use identical inhibit internal circuits. Forcing inhibit pin to any voltage between 0V and 6V will assure the converter is inhibited. The input current to this pin is 500µA maximum at Vpin2 = to 0V. The converter can be turned on by opening Pin 2 or forcing a voltage from 10V to 50V. Inhibit pin current from 10V to 50V is less than \pm 50 μ A.

EMI Filter

An optional EMI filter (AFC461) will reduce the input ripple current to levels below the limits imposed by MIL-STD-461 CEO3.

The output voltage of the AHV28XXS can be adjusted upward by connecting a resistor between the Output Adjust (Pin 3) and the Output Common (Pin 4) as shown in Table 1.

Table 1: Output Adjustment Resistor Values

* Resistance (Ohms)	Output Voltage Increase (%)					
Pin 3 to 4	5V	12V	15V			
None	0	0	0			
390 K	+1.0%	+1.6%	+1.7%			
145 K	+2.0%	+3.2%	+3.4%			
63 K	+3.1%	+4.9%	+5.1%			
22 K	+4.1%	+6.5%	+6.8%			
0	+5.0%	+7.9%	+8.3%			

^{*} Output Adjust (Single Output Models Only)

Standard Microcircuit Drawing Equivalence Table

Standard Microcircuit	Vendor Cage	IR Standard
Drawing Number	Code	Part Number
5962-91773	52467	AHV2805S
5962-92112	52467	AHV2812S
5962-92113	52467	AHV2815S
5962-92114	52467	AHV2812D
5962-92115	52467	AHV2812T
5962-92116	52467	AHV2815T

International TOR Rectifier

AHV28XX Series

Figure 1. (Single Output) Block Diagram

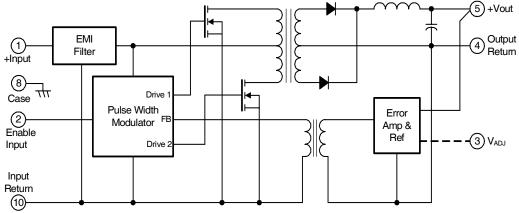


Figure 2. (Dual Output) Block Diagram

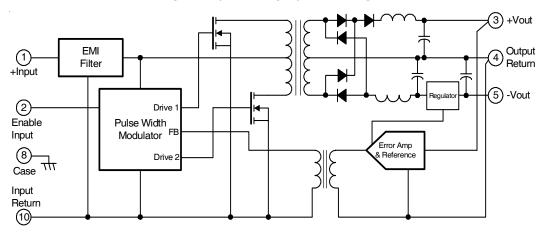
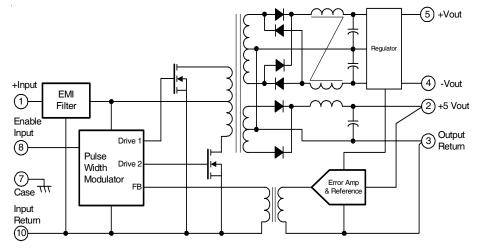



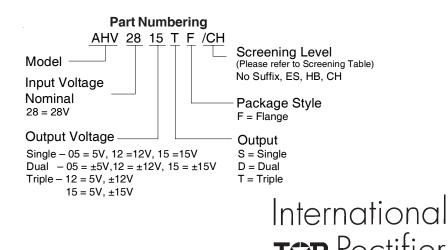
Figure 3. (Triple Output) Block Diagram

Mechnical Outlines

Pin Designation

Pin #	Single Output	Dual Output	Triple Output
1	+ Input	+ Input	+ Input
2	Enable Input	Enable Input	+ 5VDC Output
3	Output Adjust *	+ Output	Output Return
4	Output Return	Output Return	- Dual Output (12/15VDC)
5	+ Output	- Output	+ Dual Output (12/15VDC)
6	NC	NC	NC
7	NC	NC	Case Ground
8	Case Ground	Case Ground	Enable Input
9	NC	NC	NC
10	Input Return	Input Return	Input Return

^{*} Output Adjust (Single Output Models Only)


9

Device Screening

Requirement	MIL-STD-883 Method	No Suffix	ES ②	НВ	СН
Temperature Range	_	-20°C to +85°C	-55°C to +125°C ^③	-55°C to +125°C	-55°C to +125°C
Element Evaluation	MIL-PRF-38534	N/A	N/A	N/A	Class H
Non-Destructive Bond Pull	2023	N/A	N/A	N/A	N/A
Internal Visual	2017	0	Yes	Yes	Yes
Temperature Cycle	1010	N/A	Cond B	Cond C	Cond C
Constant Acceleration	2001, Y1 Axis	N/A	500 Gs	3000 Gs	3000 Gs
PIND	2020	N/A	N/A	N/A	N/A
Burn-In	1015	N/A	48 hrs@hi temp	160 hrs@125°C	160 hrs@125°C
Final Electrical	MIL-PRF-38534	25°C	25°C ②	-55°C, +25°C,	-55°C, +25°C,
(Group A)	& Specification			+125°C	+125°C
PDA	MIL-PRF-38534	N/A	N/A	N/A	10%
Seal, Fine and Gross	1014	Cond A	Cond A, C	Cond A, C	Cond A, C
Radiographic	2012	N/A	N/A	N/A	N/A
External Visual	2009	1	Yes	Yes	Yes

Notes:

- ① Best commercial practice
- ② Sample tests at low and high temperatures
- 3 -55°C to +105°C for AHE, ATO, ATW

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 252-7105 IR SANTA CLARA: 2270 Martin Av., Santa Clara, California 95050, Tel: (408) 727-0500 Visit us at www.irf.com for sales contact information.

Data and specifications subject to change without notice.12/2006