Incremental Encode Output Type SENS ORING... **HGP** D Series Built-in 2-phase output in a small sized package. Contributes to making the encoder system smaller and to increasing the design flexibility. Magnetic Sensor Piezo Sensor Resistive Sensor ## Features - Has a built-in high sensitivity and high precision two phase output - Small size (1.8V type 2×1×0.55mm). - Low consumption current (1.8V type total 20μ A for two phases). ## Applications Detection of rotation speed and rotation direction for rotation mechanisms of small motors and actuators, etc., as well as dial input of all kinds of portable devices such as mobile phones and digital cameras. Typical Specifications | 1 ypical openituations | | | | | | | |--------------------------|------------------------------------|---------------------------|----------------------------------|--|--|--| | Items | Specifications | | | | | | | | HGPJDM | HGPHDM | HGPFDT | | | | | Operating voltage | Typ. 1.8V (1.6V min. to 3.6V max.) | | Typ. 5V (4.5V min. to 5.5V max.) | | | | | Sampling period | 1.3m sec | 320μ sec | 35μ sec | | | | | Current consumption | 20μ A Ave. (at VDD= 1.8V) | 70μ A Ave. (at VDD= 1.8V) | 4mA Ave. (at VDD= 5V) | | | | | 2-phase element interval | | Typ. 0.65mm | | | | | ## Product list | Operating voltage | Package Specifications/Size | Function | Model No. | Operating
magnetic field | |-------------------|-----------------------------|--|------------|-----------------------------| | Typ. 1.8V | MAP type
2×1×0.55mm | 2-phase alternating output
Sampling period: 1.3msec | HGPJDM001A | | | | | 2-phase alternating output
Sampling period: 320 \mu sec | HGPHDM001A | Hon:+1mT
Hoff:-1mT | | Typ. 5V | SOT23 type
2.9×2.8×1.1mm | 2-phase alternating output Sampling period: 35μ sec | HGPFDT001A | | Dimensions Style MAP type SOT23 type 2.9 1.0.055 1.0.95