

# 155Mbps 850nm Spring-Latch SFP Transceiver

(For 1~2km transmission, RoHS compliant)

Members of Flexon<sup>™</sup> Family



#### **Features**

- Up to 155.52Mbps bi-directional data links
- 850nm VCSEL laser
- Multi-source package with LC optical interface
- With Spring-Latch for high density application
- Class 1 laser product
- 2km transmission distance with 50/125μm MMF or 1km with 62.5/125μm MMF
- Low EMI and excellent ESD protection
- Single +3.3V power supply
- Hot-pluggable capability
- Detailed product information in EEPROM
- ◆ Operating case temperature: 0 to +70°C

### **Applications**

- SDH/STM-1, SONET/OC-3, ATM
- 100Base Fast Ethernet
- Other optical links

#### **Standard**

- Compatible with SFP MSA
- Compatible with FCC 47 CFR Part 15, Class B
- Compatible with FDA 21 CFR 1040.10 and 1040.11, Class I

#### **Description**

FTM-8001C-SLG SFP transceiver is compatible with the SFP Multi-Source Agreement. It is designed to provide SDH/SONET/ATM compatible links at a data rate of 155.52Mbps.

The transmitter section of FTM-8001C-SLG incorporates a highly reliable 850nm VCSEL laser, and the receiver section consists of a PIN photodiode mounted together with a trans-impedance preamplifier (TIA). All modules satisfy Class 1 Laser Safety requirements.

This transceiver enables cost-effective data transmission at a distance of 2km with 50/125 $\mu$ m multi-mode fiber or 1km with 62.5/125 $\mu$ m multi-mode fiber .

FTM-8001C-SLG features an EEPROM that contains the detailed product information stored for retrieval by host equipment. This information is accessed via the two-wire serial CMOS EEPROM protocol. For further information, please refer to SFP Multi-Source Agreement (MSA).

FTM-8001C-SLG is compliant with RoHS.

## **Regulatory Compliance**

The transceivers have been tested according to American and European product safety and electromagnetic compatibility regulations (See Table 1). For further information regarding regulatory certification, please refer to Fiberxon regulatory specification and safety guidelines, or contact Fiberxon, Inc. America sales office listed at the end of the documentation.

**Table 1 - Regulatory Compliance** 

| Feature                       | Standard                      | Performance                   |
|-------------------------------|-------------------------------|-------------------------------|
| Electrostatic Discharge       | MIL-STD-883E                  | Class 1(>500 V)               |
| (ESD) to the Electrical Pins  | Method 3015.7                 | Class 1(>300 V)               |
| Electrostatic Discharge (ESD) | IEC 61000-4-2                 | Compatible with standards     |
| to the Duplex LC Receptacle   | GR-1089-CORE                  | Compatible with standards     |
| Electromagnetic               | FCC Part 15 Class B           | - A T                         |
| Electromagnetic               | EN55022 Class B (CISPR 22B)   | Compatible with standards     |
| Interference (EMI)            | VCCI Class B                  |                               |
| Immunity                      | IEC 61000-4-3                 | Compatible with standards     |
| Lagor Evo Safoty              | FDA 21CFR 1040.10 and 1040.11 | Compatible with Class 1 laser |
| Laser Eye Safety              | EN60950, EN (IEC) 60825-1,2   | product.                      |
| Component Recognition         | UL and CSA                    | Compatible with standards     |
| RoHS                          | 2002/95/EC 4.1&4.2            | Compliant with standards      |

# **Absolute Maximum Ratings**

Stress in excess of the maximum absolute ratings can cause permanent damage to the module.

**Table 2 - Absolute Maximum Ratings** 

| Parameter                   | Symbol          | Min. | Max. | Unit |
|-----------------------------|-----------------|------|------|------|
| Storage Temperature         | Ts              | -40  | +85  | °C   |
| Supply Voltage              | V <sub>CC</sub> | -0.5 | 3.6  | V    |
| Operating Relative Humidity | -               | 5    | 95   | %    |

## **Recommended Operating Conditions**

**Table 3 - Recommended Operating Conditions** 

| Parameter                  | Symbol          | Min. | Typical | Max. | Unit |
|----------------------------|-----------------|------|---------|------|------|
| Operating Case Temperature | T <sub>C</sub>  | 0    |         | +70  | °C   |
| Power Supply Voltage       | V <sub>CC</sub> | 3.13 |         | 3.47 | V    |
| Power Supply Current       | I <sub>cc</sub> |      |         | 300  | mA   |
| Data Rate                  |                 |      | 155.52  |      | Mbps |



May. 09, 2006

# **Optical and Electrical Characteristics**

**Table 4 - Optical and Electrical Characteristics** 

| Para                           | ameter         | Symbol                         | Min.       | Typical      | Max.    | Unit | Notes |
|--------------------------------|----------------|--------------------------------|------------|--------------|---------|------|-------|
|                                |                | Т                              | ransmitter |              |         |      |       |
| Centre Waveler                 | ngth           | $\lambda_{C}$                  | 830        |              | 860     | nm   |       |
| Spectral Width                 | (RMS)          | σ                              |            |              | 0.85    | nm   |       |
| Average Output                 | Power          | P <sub>0ut</sub>               | -10        |              | -4      | dBm  | 1     |
| Extinction Ratio               | n              | EX                             | 9          |              |         | dB   |       |
| P <sub>0ut</sub> @TX Disabl    | e Asserted     |                                |            |              | -30     | dBm  |       |
| Rise/Fall Time                 |                | t <sub>r</sub> /t <sub>f</sub> |            |              | 2.5     | ns   |       |
| Output Optical I               | <u>=</u> ye    |                                | ITU-T (    | 3.957 compli | ant     |      | 2     |
| Data Input Swir                | g Differential | V <sub>IN</sub>                | 300        |              | 1860    | mV   | 3     |
| Input Differentia              | Il Impedance   | Z <sub>IN</sub>                | 90         | 100          | 110     | Ω    |       |
| TX Disable                     | Disable        |                                | 2.0        |              | Vcc+0.3 | V    |       |
| I A Disable                    | Enable         |                                | 0          | 7///         | 0.8     | V    |       |
| TX Fault                       | Fault          | - 5                            | 2.0        |              | Vcc+0.3 | V    |       |
| 1 A Fault                      | Normal         |                                | 0          |              | 0.8     | V    |       |
| TX Disable Ass                 | ert Time       | t_off                          | 1 1 1 1 2  | 2            | 10      | μs   |       |
|                                |                |                                | Receiver   |              |         |      |       |
| Centre Waveler                 | ngth           | λc                             | 760        |              | 860     | nm   |       |
| Receiver Sensit                | tivity         | 12                             |            |              | -25     | dBm  | 4     |
| Receiver Overlo                | oad            |                                | 0          |              |         | dBm  |       |
| LOS De-Assert                  |                | LOS <sub>D</sub>               |            |              | -26     | dBm  |       |
| LOS Assert                     |                | LOS <sub>A</sub>               | -40        |              |         | dBm  |       |
| LOS Hysteresis                 |                |                                | 0.5        |              | 4       | dB   |       |
| Data Output Swing Differential |                | V <sub>OUT</sub>               | 370        |              | 2000    | mV   | 5     |
| 1.00                           | High           |                                | 2.0        |              | Vcc+0.3 | V    |       |
| LOS                            | Low            |                                | 0          |              | 8.0     | V    |       |
| Rise/Fall Time                 |                | t <sub>r</sub> /t <sub>f</sub> |            |              | 2.2     | ns   |       |

#### Notes:

- 1. The optical power is launched into MMF.
- 2. Measured with a PRBS 2<sup>23</sup>-1 test pattern @155.52Mbps.
- 3. Internally AC-coupled and terminated to  $100\Omega$  differential load.
- 4. Measured with a PRBS  $2^{23}$ -1 test pattern @155.52Mbps, BER better than or equal to  $1 \times 10^{-10}$
- 5. Internally AC coupled, should be terminated with  $100\Omega$  (differential).



#### **EEPROM Information**

The SFP MSA defines a 256-byte memory map in EEPROM describing the transceiver's capabilities, standard interfaces, manufacturer, and other information, which is accessible over a two-wire serial interface at the 8-bit address 1010000X (A0h). The memory contents refer to Table 5.

Table 5 - EEPROM Serial ID Memory Contents (A0h)

| Addr.    | Field Size<br>(Bytes) | Name of Field    | Hex                     | Description                                    |  |
|----------|-----------------------|------------------|-------------------------|------------------------------------------------|--|
| 0        | 1                     | Identifier       | 03                      | SFP                                            |  |
| 1        | 1                     | Ext. Identifier  | 04                      | MOD4                                           |  |
| 2        | 1                     | Connector        | 07                      | LC                                             |  |
| 3—10     | 8                     | Transceiver      | 00 00 01 00 00 00 00 00 | OC 3, Multi-mode short reach                   |  |
| 11       | 1                     | Encoding         | 03                      | NRZ                                            |  |
| 12       | 1                     | BR, nominal      | 02                      | 155Mbps                                        |  |
| 13       | 1                     | Reserved         | 00                      |                                                |  |
| 14       | 1                     | Length (9um)-km  | 00                      |                                                |  |
| 15       | 1                     | Length (9um)     | 00                      |                                                |  |
| 16       | 1                     | Length (50um)    | 02                      | 2km                                            |  |
| 17       | 1                     | Length (62.5um)  | 01                      | 1km                                            |  |
| 18       | 1                     | Length (copper)  | 00                      |                                                |  |
| 19       | 1                     | Reserved         | 00                      |                                                |  |
| 20—35    | 16                    | Vendor name      | 46 49 42 45 52 58 4F 4E | "FIBERXON INC. "(ASC II )                      |  |
| 20—33    | 10                    | vendoi mame      | 20 49 4E 43 2E 20 20 20 | FIBERAON INC. (ASCII)                          |  |
| 36       | 1                     | Reserved         | 00                      |                                                |  |
| 37—39    | 3                     | Vendor OUI       | 00 00 00                |                                                |  |
| 40—55    | 16                    | Vendor PN        | 46 54 4D 2D 38 30 30 31 | "ETM 9004C SI C" (ASC II )                     |  |
| 40-55    |                       | VEHIOU FIN       | 43 2D 53 4C 47 20 20 20 | "FTM-8001C-SLG" (ASC Ⅱ)                        |  |
| 56—59    | 4                     | Vendor rev       | xx xx 00 00             | ASC II ( "31 30 00 00" means 1.0 revision)     |  |
| 60—62    | 3                     | Reserved         | 00 00 00                |                                                |  |
| 63       | 1                     | CC BASE          | xx                      | Check sum of bytes 0 - 62                      |  |
| 64—65    | 2                     | Options          | 00 1A                   | LOS, TX_FAULT and TX_DISABLE                   |  |
| 66       | 1                     | BR, max          | 00                      |                                                |  |
| 67       | 1                     | BR, min          | 00                      |                                                |  |
| 68—83    | 16                    | Vendor SN        | xx xx xx xx xx xx xx xx | ASC II                                         |  |
| 00-03 10 |                       | vendor Siv       | xx xx xx xx xx xx xx xx | ASCII                                          |  |
| 84—91    | 8                     | Vendor date code | xx xx xx xx xx xx 20 20 | Year (2 bytes), Month (2 bytes), Day (2 bytes) |  |
| 92—94    | 3                     | Reserved         | 00 00 00                |                                                |  |
| 95       | 1                     | CC EXT           | xx                      | Check sum of bytes 64 - 94                     |  |
| 96—255   | 160                   | Vendor specific  |                         | All are set to 0                               |  |

Note: The "xx" byte should be filled in according to practical case. For more information, please refer to the related document of *SFP Multi-Source Agreement (MSA)*.

1~2 km transmission with MMF, RoHS compliant

# **Recommended Host Board Power Supply Circuit**

Figure 1 shows the recommended host board power supply circuit.

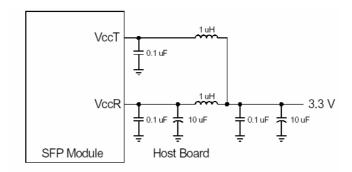



Figure 1, Recommended Host Board Power Supply Circuit

#### **Recommended Interface Circuit**

Figure 2 shows the recommended interface circuit.

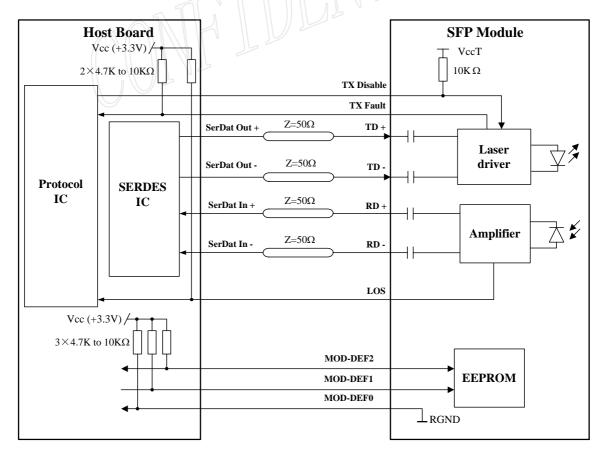
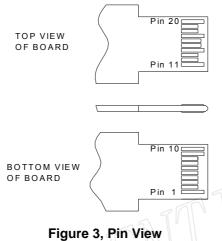




Figure 2, Recommended Interface Circuit

#### **Pin Definitions**

Figure 3 below shows the pin numbering of SFP electrical interface. The pin functions are described in Table 6 with some accompanying notes.



**Table 6 – Pin Function Definitions** 

| Pin No. | Name        | Function                     | Plug Seq. | Notes  |
|---------|-------------|------------------------------|-----------|--------|
| 1       | VeeT        | Transmitter Ground           | 1         |        |
| 2       | TX Fault    | Transmitter Fault Indication | 3         | Note 1 |
| 3       | TX Disable  | Transmitter Disable          | 3         | Note 2 |
| 4       | MOD-DEF2    | Module Definition 2          | 3         | Note 3 |
| 5       | MOD-DEF1    | Module Definition 1          | 3         | Note 3 |
| 6       | MOD-DEF0    | Module Definition 0          | 3         | Note 3 |
| 7       | Rate Select | Not Connected                | 3         |        |
| 8       | LOS         | Loss of Signal               | 3         | Note 4 |
| 9       | VeeR        | Receiver Ground              | 1         |        |
| 10      | VeeR        | Receiver Ground              | 1         |        |
| 11      | VeeR        | Receiver Ground              | 1         |        |
| 12      | RD-         | Inv. Received Data Out       | 3         | Note 5 |
| 13      | RD+         | Received Data Out            | 3         | Note 5 |
| 14      | VeeR        | Receiver Ground              | 1         |        |
| 15      | VccR        | Receiver Power               | 2         |        |
| 16      | VccT        | Transmitter Power            | 2         |        |
| 17      | VeeT        | Transmitter Ground           | 1         |        |
| 18      | TD+         | Transmit Data In             | 3         | Note 6 |
| 19      | TD-         | Inv. Transmit Data In        | 3         | Note 6 |
| 20      | VeeT        | Transmitter Ground           | 1         |        |

#### Notes:

1. TX Fault is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host



May. 09, 2006

board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.

2. TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a  $4.7k\sim10k\Omega$  resistor. Its states are:

Low (0~0.8V): Transmitter on (>0.8V, <2.0V): Undefined

High (2.0~3.465V): Transmitter Disabled
Open: Transmitter Disabled

- 3. MOD-DEF 0,1,2 are the module definition pins. They should be pulled up with a  $4.7k\sim10k\Omega$  resistor on the host board. The pull-up voltage shall be VccT or VccR.
  - MOD-DEF 0 grounded by the module to indicate that the module is present
  - MOD-DEF 1 is the clock line of two-wire serial interface for serial ID
  - MOD-DEF 2 is the data line of two-wire serial interface for serial ID
- 4. LOS is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; logic 1 indicates loss of signal. In the low state, the output will be pulled to less than 0.8V.
- 5. These are the differential receiver output. They are internally AC-coupled  $100\Omega$  differential lines which should be terminated with  $100\Omega$  (differential) at the user SERDES.
- 6. These are the differential transmitter inputs. They are AC-coupled, differential lines with  $100\Omega$  differential termination inside the module.

## **Mechanical Design Diagram**

The mechanical design diagram is shown in Figure 4.

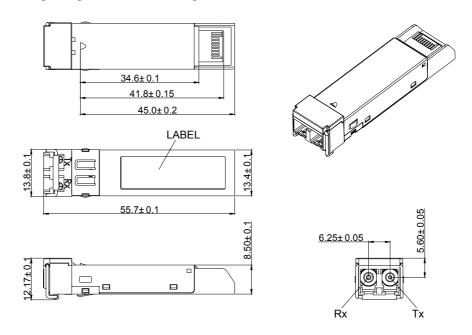
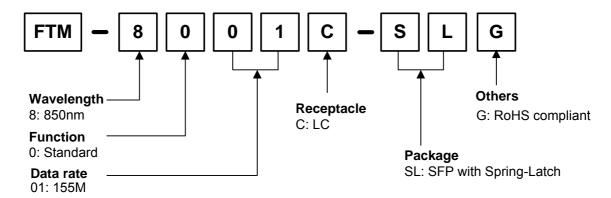




Figure 4, Mechanical Design Diagram of the SFP with Spring-Latch



# **Ordering information**



| Part No.      | Product Description                                                       |  |  |  |  |
|---------------|---------------------------------------------------------------------------|--|--|--|--|
| FTM-8001C-SLG | 850nm, 155.52Mbps, 1~2km with MMF, SFP with Spring-Latch, RoHS compliant, |  |  |  |  |
|               | 0°C~+70°C                                                                 |  |  |  |  |

#### **Related Documents**

For further information, please refer to the following documents:

- Fiberxon SFP Installation Guide
- Fiberxon SFP Application Notes
- SFP Multi-Source Agreement (MSA)

## **Obtaining Document**

You can visit our website:

#### http://www.fiberxon.com

Or contact Fiberxon, Inc. America Sales Office listed at the end of the documentation for get the latest documents.

## **Revision History**

| Revision | Initiate    | Review     | Approve    | Subject           | Release Date  |
|----------|-------------|------------|------------|-------------------|---------------|
| Rev. 1a  | Univer.Yang | Simon.Jang | Walker.Wei | Initial datasheet | May. 09, 2006 |
|          |             |            |            |                   |               |
|          |             |            |            |                   |               |
|          |             |            |            |                   |               |

May. 09, 2006

#### © Copyright Fiberxon Inc. 2006

All Rights Reserved.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons.

The information contained in this document does not affect or change Fiberxon product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Fiberxon or third parties. All information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environment may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will Fiberxon be liable for damages arising directly from any use of the information contained in this document.

#### Contact

U.S.A. Headquarter: 5201 Great America Parkway, Suite 340 Santa Clara, CA 95054 U.S.A.

Tel: 408-562-6288 Fax: 408-562-6289

Or visit our website: http://www.fiberxon.com