HR868.35 868.35MHz One-Port SAW Resonator

Approved by:

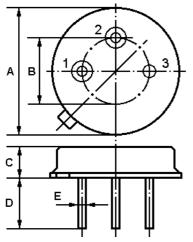
Checked by:

Issued by:

SPECIFICATION

PRODUCT: SAW RESONATOR

MODEL: HR868.35 TO-39

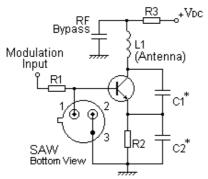

HOPE MICROELECTRONICS CO., LIMITED

Tel:+86-755-82973806 Fax:+86-755-82973550 E-mail: <u>sales@hoperf.com</u> http://www.hoperf.com Page 1 of 1

HR868.35

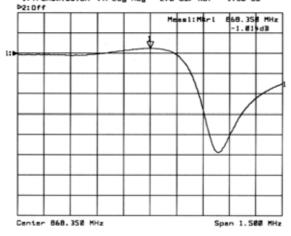
The HR868.35 is a true one-port, surface-acoustic-wave (**SAW**) resonator in a low-profile metal **TO-39** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **868.350** MHz.

1. Package Dimension (TO-39)

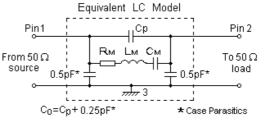

2. Marking

HR868.35

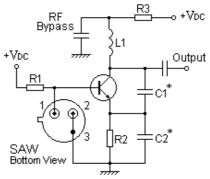
Color: Black or Blue


4. Typical Application Circuits

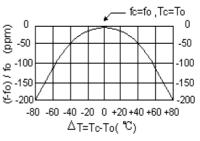
1) Low-Power Transmitter Application


5. Typical Frequency Response

▶1:Transmission /H Log Mag 2.8 dB/ Ref -1.58 dB



Pin	Configuration				
1	Input / Output				
2	Output / Input				
3	Case Ground				
Dimension	Data (unit: mm)				
А	9.30±0.20				
В	5.08±0.10				
С	3.40±0.20				
D	3±0.20 / 5±0.20				
E	0.45±0.20				


3. Equivalent LC Model and Test Circuit

2) Local Oscillator Application

6. Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7-1.Maximum Ratings

Rating	Value	Unit	
CW RF Power Dissipation	Р	0	dBm
DC Voltage Between Any two Pins	V _{DC}	± 30	V
Storage Temperature Range	$T_{\rm stg}$	-40 to +85	
Operating Temperature Range	T _A	-10 to +60	

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25)	Absolute Frequency	f _C	868.200		868.500	MHz
	Tolerance from 868.350MHz	Δf_{C}		± 150		kHz
Insertion Loss		IL		1.2	1.8	dB
Quality Factor	Unloaded Q	QU		12,270		
	50 Ω Loaded Q	QL		1,600		
Temperature Stability	Turnover Temperature	T ₀	25		55	
	Turnover Frequency	f ₀		fc		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/ ²
Frequency Aging Absolute Value during the First Year		f _A		10		ppm/yr
DC Insulation Resistance Between Any Two Pins			1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		15	23	Ω
	Motional Inductance	L _M		33.7414		μH
	Motional Capacitance	См		0.9966		fF
	Pin 1 to Pin 2 Static Capacitance	C ₀	2.15	2.40	2.65	pF

(i)CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

C 2003. All Rights Reserved.

- 1. The center frequency, f_C, is measured at the minimum IL point with the resonator in the 50 test system.
- 2. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$.
- Frequency aging is the change in f_c with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_c , may be calculated from: $f = f_0 [1 FTC (T_0 T_c)^2]$.
- This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between Pin1 and Pin2. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_c , IL, 3 dB bandwidth, f_c versus T_c , and C_0 .
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail sales@hoperf.com.